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ABSTRACT

Recent works display that large scale image classification

problems rule out computationally demanding methods. On

such problems, simple approaches like k-NN are affordable

contenders, with still room space for statistical improvements

under the algorithmic constraints. A recent work showed how

to leverage k-NN to yield a formal boosting algorithm. This

method, however, has numerical issues that make it not suited

for large scale problems.

We propose here an Adaptive Newton-Raphson scheme

to leverage k-NN, N3, which does not suffer these issues.

We show that it is a boosting algorithm, with several key al-

gorithmic and statistical properties. In particular, it may be

sufficient to boost a subsample to reach desired bounds for

the loss at hand in the boosting framework. Experiments are

provided on the SUN, and Caltech databases. They confirm

that boosting a subsample — sometimes containing few ex-

amples only — is sufficient to reach the convergence regime

of N3. Under such conditions, N3 challenges the accuracy of

contenders with lower computational cost and lower memory

requirement.

Index Terms— Machine learning

1. INTRODUCTION

Large scale image classification implies satisfying tight time,

memory and numerical processing requirements. Coping

with them involves in general two kinds of approaches. For

the first one, scalability goes hand in hand with simplification:

algorithms are built around sophisticated, state-of-the art ap-

proaches that are simplified to fit into these requirements,

such as Support Vector Machines (SVM) with linear ker-

nels [1], or (Ada)Boosting with weight clipping and simple

stumps as weak classifiers [2].

The second kind of approaches use as core very simple

algorithms that already fit into these requirements, and then,

from this basis, elaborate more complex approaches with im-

proved performances: this is the case for the k-nearest neigh-

bor (NN) classifier, or the nearest class mean classifier em-

bedded with metric learning [3, 4]. From the experimental

standpoint, these latter approaches obtain surprising compet-

itive results with respect to the former ones. In fact, they may

have another advantage: while theoretical guarantees barely

survive extreme simplification, elaborating on a core makes

it perhaps easier to preserve its theoretical properties, such as

its statistical consistency (e.g. for k-NN [5]).

Our paper belongs to the second category of approaches,

as we elaborate on the ordinary k-NN classifier. Our approach

is different but complementary to metric learning approaches,

as we choose to adapt k-NN to the boosting framework.

One recent approach exists in this line of works [6], but it

is not of Newton-Raphson type, and the numerical constraints

for the computations of the weights updates and the leverag-

ing coefficients make it impracticable for large scale classifi-

cation.

Our high-level contribution is threefold:

(i) a proof of the boosting ability of N3, the first boosting-

compliant convergence rates for a Newton-type approach to

convex loss minimization to the best of our knowledge;

(ii) a divide and conquer algorithm to compute these esti-

mators and cope with the curse of dimensionality with low

memory requirement;

(iii) experimentally optimized core-processing stages for N3

with linear cost per boosting iteration. Experimental results

display that N3 manages to challenge accuracy of sophisti-

cated approaches while being faster, and requires low mem-

ory.

The remaining of the paper is organized as follows: Sec-

tion 2 states basic definitions. Section 3 presents classification-

calibrated losses. Section 4 presents N3. Sections 5 discuss

its theoretical properties. Section 6 presents experiments, and

section 7 concludes the paper.

2. PROBLEM STATEMENT

We first provide some basic definitions. Our setting is mul-

ticlass, multilabel classification. We have access to an in-

put set of m examples (or prototypes), S
.
= {(xi,yi), i =

1, 2, ...,m}. Vector yi ∈ {−1,+1}C encodes class member-

ships, assuming yic = +1 means that observation xi belongs

to class c. A classifier H is a function mapping observations
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crit transfer function f calibrated loss F

A 1
1+exp(−x) ln(1 + exp(−x))

B 1
1+2−x ln(1 + 2−x)

C 1
2

(

1 + x√
1+x2

)

exp sinh−1(−x)

D
1+H(−x)
2+|x| H(x)− ln(2 + |x|)

Table 1. Calibrated losses that match (3) for several transfer

functions. From top to bottom, losses are the logistic loss,

binary logistic loss, Matsushita’s loss, calibrated Hinge loss.

to vectors in R
C . Given some observation x, the sign of co-

ordinate c in H(x) gives whether H predicts that x belongs

to class c, while its absolute value may be viewed as a confi-

dence in classification.

The nearest neighbors (NNs) rule belongs to the oldest,

simplest and still most widely studied classification algo-

rithms [5]. It relies on a non-negative real-valued “distance”

function. This function measures how much two observations

differ from each other, and may not necessarily satisfy the re-

quirements of metrics. We let j →k x denote the assertion

that example (xj ,yj), or simply example j, belongs to the

k NNs of observation x. We shall abbreviate j →k xi by

j →k i — in this case, we say that example i belongs to

the inverse neighborhood of example j. To classify an ob-

servation x, the k-NN rule H(x) computes the sum of class

vectors of its nearest neighbors, that is: Hc(x)
.
=

∑

j→kx
yjc

is the coordinate c in H(x). A leveraged k-NN rule [6]

generalizes this to:

Hc(x)
.
=

∑

j→kx

αjcyjc , (1)

where αj ∈ R
C leverages the classes of example j. Leverag-

ing nearest neighbors raises the question as to whether there

exists efficient inductive learning schemes for these leverag-

ing coefficients.

To learn them, we adopt the framework of [7, 8], and focus

on the minimization of a total calibrated risk which sums per-

class losses:

εF (H, S)
.
=

1

C

C∑

c=1

1

m

m∑

i=1

F (yicHc(xi))

︸ ︷︷ ︸

εF (Hc,S)

. (2)

To be classification-calibrated, loss F : R→ R is required to

be convex, differentiable and such that F ′(0) < 0 [7] (The-

orem 4), [8]. The recent advances in the understanding and

formalization of (multiclass) loss functions suitable for clas-

sification have essentially concluded that classification cali-

bration is mandatory for the loss to be Fisher consistent or

proper [7, 8]. These are crucial properties without which the

minimization of the loss brings no string statistical guarantee

with respect to Bayes rule (such as universal consistency).

3. CLASSIFICATION-CALIBRATED LOSSES

In this paper, we are interested in a subset of classification-

calibrated functions, namely those for which:

F (x)
.
= −x+

∫

f , (3)

for some continuous transfer function f : R → [0, 1], in-

creasing and symmetric with respect to (0, 1/2 = f(0)). In-

tuitively, a transfer function brings an estimate of posteri-

ors: it is a bijective mapping between a real-valued predic-

tion Hc(x) and a corresponding posterior estimation for the

class, p̂[yc = +1|x], mapping which states that both values

are positively correlated, and establishes a tie for Hc = 0 to

which corresponds p̂[yc = +1|x] = 1/2. Transfer functions

have a longstanding history in optimization [9], and the set

of F that match (3) strictly contains balanced convex losses,

functions with appealing statistical properties [6] (and refer-

ences therein). Table 1 provides four example of such losses

on which we focus. The calibrated Hinge loss relies on the

linear Hinge loss:

H(x)
.
= max{0,−x} . (4)

Another example of losses that meet (3) is the squared loss,

for transfer f = min{1,max{0, x+ 1/2}}.
To carry out the minimization of (2), we adopt a main-

stream 1-vs-rest boosting scheme which, for each c =
1, 2, ..., C, carries out separately the minimization of εF (Hc, S)
in εF (H, S). To do so, it fits the cth coordinate in leveraging

coefficients by considering the two-class problem of class c
versus all others.

4. N3: ADAPTIVE NEWTON NEAREST NEIGHBORS

4.1. Algorithm

We now present algorithm N3, which stands for “Newton

Nearest Neighbors”. N3 updates iteratively the leveraging co-

efficients of an example in S, example picked by an oracle,

WEO for “Weak Example Oracle”. We detail below the prop-

erties and implementation of WEO. The technical details of

the N3 are given in Table 2. N3 follows the boosting scheme,

with iterative updates of leveraging coefficients followed by

an iterative re-weighting of examples. Before embarking into

formal algorithmic and statistical properties for N3, we first

show that N3 is of Newton-Raphson type.

Theorem 1 N3 performs adaptive Newton-Raphson steps to

minimize εF (Hc, S), ∀c.



Algorithm 1: Algorithm NEWTON NN, N3(S, crit, k)

Input: Sample S, criterion crit ∈ {A,B,C,D}, k ∈ N∗;

Let αj ← 0,∀j = 1, 2, ...,m;
for c = 1, 2, ..., C do

//Minimize εF (Hc, S)

Let wi ←
1

‖1+yicyi‖1
, ∀i;

for t = 1, 2, ..., T do
[I.0]//Choice of the example to leverage
Let j ← WEO(S,w);
[I.1]//Leveraging update, δj
Let η(c, j)←

∑
i:j→ki

wtiyicyjc;

Let nj ← |{i : j →k i}|;
Compute δj following Table 2, using crit;
[I.2]//Weights update
∀i : j →k i, update wi as in Table 2, using crit;
[I.3]//Leveraging coefficient update
Let αjc ← αjc + δj ;

Output: H(x)
.
=

∑
j→kx

αj ◦ yj

Proof sketch: The key to the proof, which we explore fur-

ther in subsection 4.2, is the existence of a particular function

gF , strictly concave and symmetric with respect to 1/2, which

allows to rewrite the loss as:

F (x) = (−gF )
⋆(−x) , (5)

where ⋆ denotes the (Legendre) convex conjugate. Convex

conjugates have the property that their derivatives are inverses

of each other. This property, along with (5), allows to simplify

the computation of the derivatives of the loss, for any example

i in the inverse neighborhood of j:

∂F (yicHc(xi))

∂δj
= yicyjcF

′(yicHc(xi)) (6)

= −yicyjc((−gF )
⋆)′(−yicHc(xi))

= −yicyjc((−gF )
′)−1(−yicHc(xi))

= −yicyjc(1− (g′F )
−1(−yicHc(xi)))

= −yicyjc(g
′
F )

−1(yicHc(xi))

= −KFwiyicyjc . (7)

Eq. (7) holds because we can also rewrite the weights update

(Table 2) as:

wi ←
1

KF

(g′F )
−1 (δjyicyjc + g′F (KFwi)) , (8)

where (g′F )
−1 is the inverse function of the first derivative

of gF , and KF is a normalizing constant: it is respectively

ln(2), 1, 1/2, 1 for A, B, C and D in Table 3. From (6), it

also comes ∂2F (yicHc(xi))/∂δ
2
j = F ′′(yicHc(xi)), where

F ′′ denotes the second derivative. Considering the whole in-

verse neighborhood of j, the Newton-Raphson update for δj
is (with η(c, j)

.
=

∑

i:j→ki
wtiyicyjc in N3):

δj ← λF ×
KF η(c, j)

∑

i:j→ki
F ′′(yicHc(xi))

, (9)

crit leveraging weight update

update, δj g : wi ← g(wi, δj , yic, yjc)

A
4 ln(2)η(c,j)

nj

wi

wi ln 2+(1−wi ln 2)×exp(δjyicyjc)

B
4η(c,j)
ln2(2)nj

wi

wi+(1−wi)×2δjyicyjc

C
η(c,j)
2nj

1 − 1−wi+
√

wi(2−wi)δjyicyjc
√

√

√

√

√

1 + δ2jcwi(2 − wi)

+2(1 − wi)
√

wi(2 − wi)δjyicyjc

D
4η(c,j)

nj

1+H
(

δjyicyjc+
1−2wi
err(wi)

)

2+
∣

∣

∣
δjyicyjc+

1−2wi
err(wi)

∣

∣

∣

Table 2. Leveraging and weight updates in N3 corresponding

to each choice of calibrated loss in Table 1.

crit generator gF
A −x lnx− (1− x) ln(1− x)
B −x log2 x− (1− x) log2(1− x)

C
√

x(1− x)
D ln(2err(x)) + 1− 2err(x)

Table 3. Generators corresponding to calibrated losses in Ta-

ble 1.

for learning rate 0 < λF ≤ 1. Matching this expression with

the updates in Table 2 brings learning rate:

0 < λF =
LF

∑

i:j→ki
F ′′(yicHc(xi))

KFnj

≤
LFF

′′(0)

KF

= 1 ,

for each criteria A, B, C and D, where LF is respectively

4 ln(2), 4/ ln2(2), 1/2, 4, and nj
.
= |{i : j →k i}| in N3.

The inequalities come from the fact that F ′′ > 0 and takes its

maximum in 0 for all criteria. We then check that F ′′(0) =
KF /LF for A, B, C and D.

4.2. A key to the properties of N3

The duality between real-valued classification and posterior

estimation which stems from f (See Section 3) is fundamen-

tal for the algorithmic and statistical properties of N3. To

simplify the statement of results and proofs, it is convenient

to make the parallel between our calibrated losses F and func-

tions elsewhere called permissible1, that is, functions defined

on (0, 1), strictly concave, differentiable and symmetric with

respect to x = 1/2. It can be shown that for any of our choices

of F , there exists a permissible gF , that we call a generator,

for which the relationships (8) and (5) used in the proofsketch

of Theorem 1 indeed hold. Furthermore, the generator is also

useful to write the transfer function itself, as we have:

f(x) = (−gF )
′−1(x) . (10)

1The usual definitions are more restricted: for example the generator of

calibrated Hinge loss would not be permissible in the definitions of [10, 6].



Table 3 provides the four generators corresponding to choices

A, B, C and D. The permissible generator of the calibrated

Hinge loss makes use of the error function:

err(x)
.
= min{x, 1− x} . (11)

Permissible functions (as well as (11)) are used in losses

that rely on posterior estimation rather than real-valued clas-

sification. Such losses are the cornerstone of decision-tree

induction and other methods that directly fit posteriors [5].

Hence, (5) establishes a duality between the two kinds of

losses, duality which appears as a watermark in various

works [7, 11]. The writing of the weight update using gF
in (8) is also extremely useful to simplify the proofs of the

following Theorems. Finally, there is a synthetic writing for

the weights, which sheds light on their interpretation: unrav-

eling the weight update (8) and using (10), we obtain that wi

satisfies:

wi ∝ 1− f(yicHc(xi)) . (12)

Hence, weights and estimated posteriors are in opposite linear

relationship. According to (12), examples “easier to classify”

(receiving large estimated posteriors) receive small weight.

This is a fundamental property of boosting algorithms, that

progressively concentrate on the hardest examples.

5. ALGORITHMIC PROPERTIES OF N3

The first result is a direct follow-up from Table 2.

Lemma 1 With choice D (calibrated Hinge loss), N3 may be

implemented using only rational arithmetic.

Comments on Lemma 1: In the light of the boosting prop-

erties of N3, this result is important in itself. Most exist-

ing boosting algorithms, including UNN, AdaBoost, Gen-

tle AdaBoost and spawns [6, 11] make it necessary to tweak

or clip the key numerical steps, including weights update or

leveraging coefficients [2], at the possible expense of failing

to meet boosting’s convergence or accuracy. Rational arith-

metic still requires significant computational resources with

respect to floating point computation, but Lemma 1 shows

that whenever these are accessible, formal boosting may be

implemented virtually without any loss in numerical preci-

sion.

Let us now shift to the boosting result on N3, which is

stated under the following weak learning assumption:

There exist constants γu > 0, γn > 0 such that at any

iterations c, t of N3, index j returned by WEO is such

that nj > 0 and the following holds: (i)

∑

i:j→ki wi

nj
≥

γu

KF
, and (ii) |p̂w[yjc 6= yic|j →k i]− 1/2| ≥ γn.

Requirement (ii) corresponds to the usual weak learning as-

sumption of boosting: it postulates that the current normal-

ized weights in the inverse neighborhood of example j au-

thorize a classification different from random by at least γn.

k-NN N3
log

N3
binlog

N3
hinge

N3
mat

ACC
L1 25.58 35.50 36.40 33.62 34.40

L2 25.90 33.97 35.44 32.87 33.55

Table 4. Top1 accuracy on CAL (64 splits, L1 or L2 normal-

ization).

k-NN N3
log

N3
binlog

SGD

Top1 ACC 20.92 30.16 30.10 28.59

Top5 ACC 42.67 55.21 54.90 57.08

Table 5. Top5 accuracy on SUN (64 splits, L1 normalization).

Requirement (i) states that unnormalized weights must not

be too small. This is a necessary condition as unnormalized

weights of minute order do not necessary prevent (i) to be

met, but would obviously impair the convergence of N3 given

the linear dependence of δj in the unnormalized weights. The

following Theorem states that N3 is a boosting algorithm.

Theorem 2 Suppose N3 is ran for T steps for each c, and

that the weak learning assumption holds at each iteration of

N3. Denote I the whole multi-set of indexes returned by WEO.

Then for any criterion A, B, C, D, the total calibrated risk

does not exceed some ε ≤ F (0) provided:

∑

j∈I

nj = Ω

(
(C + |ε|)m

γ2
nγ

2
u

)

. (13)

Remark: requirement ε ≤ F (0) comes from the fact that

a leveraged NN with null leveraging vectors would make a

total calibrated risk equal to F (0).

6. EXPERIMENTAL EVALUATION

6.1. Settings: contenders, databases and features

We mainly report and discuss experiments of N3 versus k-

NN and support vector machines (SVM) implemented with

Stochastic Gradient Descent SGD which represents the state

of art among the classifiers on large scale datasets [12].

We abbreviate N3
log , N3

binlog , N3
mat, N3

hinge the four fla-

vors of N3 corresponding respectively to rows A, B, C, D in

Table 1. In N3, WEO chooses the example with the largest

current δj .

The datasets used in this paper, Caltech256, and SUN are

among the most challenging datasets publicly available for

large scale image classification:

• Caltech256 [13] (CAL): This dataset is a collection of 30607
images of 256 object classes. Following classical evaluation,

we use 30 images/class for training and the rest for testing.

• SUN [14] (SUN): This dataset is a collection of 108656 im-

ages divided into 397 scenes categories. We set the number of

training images per class to 50 and we test on the remaining.
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Fig. 1. The x-axis is the number of splits of the FV, on domains CAL (left) and SUN (center, right). The y-axis reports, using

L1 or L2 normalization, the accuracy (left), top1 accuracy (center) and top5 accuracy (right) of N3. Posteriors combined with

the harmonic mean.
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Fig. 2. Top1 and top5 accuracies (with 1 split) on CAL (left) and SUN (right) as a function of T .

We adopted for the features the Fisher vectors (FV) [15]

encoding to represent images. Fisher Vector are computed

over densely extracted SIFT descriptors (FVs) and local color

features (FVsc), both projected with PCA in a subspace of

dimension 64. Fisher Vectors are extracted using a vocabulary

of 16 Gaussian and normalized separately for both channels

and then combined by concatenating the two features vectors

(FVs+sc). This approach leads to to a 4K dimensional features

vector.

To compare algorithms, we adopt the top1 and top5 ac-

curacies (ACC), defined respectively as the proportion of ex-

amples that was correctly labelled and the proportion of those

for which the correct class belongs to the top5 predicted pat-

terns [3]. We also report processing times on a 2 X Intel Xeon

E5-2687W 3,1GHz and analyse the convergence and the cost

of N3. But first, we propose a divide and conquer algorithm

that optimizes classification using posteriors.

6.2. A divide and conquer algorithm to cope with the

curse of dimensionality with low memory requirement

It is well known that NN classifiers suffer of the curse of

dimensionality [16], hubs [17], so that the accuracy can de-

crease when increasing the size of descriptors. This may also

affect N3. FV are extremely powerful descriptors but they

generate a space with about 4K dimension for 32 gaussians

that could impair N3 performance.

Our approach relies on nice property of minimizing

classification-calibrated losses: we can easily compute the

posteriors from the score using N3 (see [18]). Thus, we pro-

pose a three step splitting method :

• split FV in a regular set of n∗ ∈ {2, 4, 8, 16, 32, 64} sub-

descriptors and normalize with L1 or L2 norm;

• compute posteriors for each sub-vector (Table 1);

• combine these probabilities using a generalized average:

arithmetic, geometric or harmonic.

6.3. Analysis on accuracy and convergence

First, figure 1 validates the divide and conquer approach, as

increasing the number of splits on FV clearly improves per-

formances. Also, as seen from the left plot, L1 normalization

tends to outperform L2 normalization. The “optimal” number

of splits (64) is then used in Table 4 which displays that L1
normalization of FV slightly improves classical L2 normal-

ization. N3
binlog is also better than all other flavors of N3, and

overall all flavors of N3 very significantly outperform k-NN.

We have also compared N3 against SGD and k-NN on

the SUN data set [14]. Results using T = 50 iter for N3 and

1000 iter for SGD are displayed in Table 5. One sees that



N3 significantly beats k-NN and approaches the accuracy of

SGD. Note that memory requirement for N3 is divided by the

number of splitting (i.e. twice the number of Gaussian of the

Fischer Vector).

Training time is very important for large scale data base

processing. The training time of linear SGD is typically of

order O(md). This results in hours of training reported by

[15, 3, 19] where m is the training data set size and d is the

features space dimension. On the other hand, NN classifiers

become more efficient for huge data bases as reported by [19,

20, 3].

In fact, figure 2 shows the convergence of N3 on CAL and

SUN. One sees from the plots that the convergence of the

Newton approach in N3 is extremely fast and requires only

few iterations — this is not the case for the non-Newton ap-

proach UNN [6], which requires a larger number of itera-

tions. The fast convergence in N3 results in sparse prototype

selection (T ≪ m), well adapted for large scale datasets,

and suggests to choose T as a function of the number of im-

ages in the corresponding class (inner loop of N3), such as

T = O(m/C). Hence, we end up with a complexity depend-

ing on T ≪ m.

7. CONCLUSION

In this paper we have proposed a novel Newton-Raphson ap-

proach to boosting k-NN. We show that it is a boosting algo-

rithm, with several key algorithmic and statistical properties.

Experiments display that although accuracy results are simi-

lar to state of the art approaches like SGD , our N3 requires

memory divided by the number of Gaussian. This approach

is suitable for very large scale image classification problems.
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