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In this article we show the Markov-WZ Method in action as it finds rapidly converging series representations for a
given hypergeometric series. We demonstrate the method by finding new representation@fot (8Bgand{(3).
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A function H(x,2), in the integer variables andz, is calledhypergeometricif H(x+1,z)/H(x,z) and
H(x,z+1)/H(x,z) are rational functions af andz. In this article we consider only those hypergeomet-
ric functions which are a ratio of products of factorials (we call such hypergeometric fungtizas
hypergeometrig). A P-recursive function is a function that satisfies a linear recurrence relation with
polynomial coefficients. A paifH, G) is called a Markov-WZ pair (MWZ-pair for short) if there exists a
polynomialP(x, z) in z of the form

P(x,2) = ag(X) +a1(X)z+ - +a (X)Z, (POLY)
for some non-negative integer and P-recursive functioreg(x), . . .,a (x) such that

H(x+1,2)P(x+1,z) —H(X,2)P(X,2) = G(x,z+ 1) — G(x,2) . (Markow-WZ)

We call G(x,2) an MWZ mate ofH (x,2). We also require that th(x)'s satisfy the initial conditions
ap(0) =1,8(0) =0, for1<i<L.

First we will show that given a hypergeometric functiditx, z), there always exists a polynomial with
minimum degree that satisfig¢s (Markow-WZ2) .
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1 Existence of MWZ-pair

In this section, de@) stands for the degree afas a polynomial irz.

Theorem 1. Given a hypergeometric term(i z), there exist a non-negative integer L and a polynomial
P(x,2) of the form(POLY]) associated with Kk, z) such that Hx,z) has an MWZ mate.

Proof. We need to show that there exist> 0, & (x)'s, G(x, z), andP(x,z) of the form [POLY) such that
H(x,2)P(x,z) andG(x,z) satisfy [Markow-WZ). Moreove((x,z) has the fornG(x,z) = R(x,2)F(x,z),

whereR(x, 2) is a ratio of two P-recursive functions (i, z).

Write
H(x+1,2)P(x+1,2) —H(x,2)P(x,2) = POL(z) - H(x,2) ,

where

POL(2) := A(2) _ia (x+1)Z —B(2) _iﬁ (X7,

|
H(x+1,2) _@ H(x,2)
H(x,z B2’ B(2)
SinceH (x,z) is a hypergeometric function divided by a polynomial, we can write the above expression as
a(z) POL(z+1)

H(x+1,2)P(x+1,2) —H(x,2)P(x,2) = b(z  POL(z)

and H(x,z) =

where

H(x+1,2) a2

H(x,2 b2’

Without loss of generality, we may assume tigat(a(z),b(z+h)) =1 for h> 0, otherwise we re-
group and incorporate additional factors into the polynomial g@@l(z). Then witha(z),b(z) and
c(z) := POL(z) in parametric Gosper's algorithin [MZ] , look for a polynomi&(z) that satisfies

a(2)X(z+1) —b(z—1)X(z) =c(2) . (Gosper)
We may consider only those with
degX) = degc) —maxXdega),degb)} ,
and the degree af(z) is easily seen to be
degc) =L+ maxdegA),degB)}.

The unknowns are the deg —maxdega),degb)}+1 coefficients ofX(z) and theas (there are a
total of 2(L+ 1) unknowns). Comparing coefficients on both sideq of (Gdsper) giveed linear
homogeneous equations. In order to guarantee a non-zero solution, we need

# of unknowns-# of equations> 1,
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and this holds if
2(L+1)—(degc)+1)>1.

In particular, if we choose

L := maxXdega),degb)} ,
we are guaranteed to get a non-trivial solution(!). This givesRthez) and thelL. G(x,z) is the anti-
difference outputted by parametric Gosper [MZ]. O

Theorem 2. Let(H, G) be an MWZ-pair.

(@) If lim G(x, j) =0 ¥x >0, then
J—00

0

iH(O,z) = iG(x,O)—Jim H(i,2)P(i,2) ,

|—o00
=

whenever both sides converge.

(b) If imH(i,2)P(i,z) =0 vz> 0, then

|—00

0

Z)H (0,2) — I|m G(x J):X;G(xﬂ),

whenever both sides converge.

Proof. (@) Let P(x,z) be the polynomial that features in the MWZ-péit (x,z), G(x,z)) arising from
H(x,2).

Then apply theorem 7 [Z] to the 1-form
w=H(X,2)P(x,2)0z+ G(x,2)0X,, Q)
and the region
Q={(%2]0<z<0,0<x<i},

with the discrete boundary

{(0,z+1)— (0,2) | z> 0} U {(x,0) — (x+1,0) | 0<x<i} U{(i,2) — (i,z+1) | z> o} U {(x+
1,0) — (X,0) |i—1<x<0},

and use the initial conditiorg (0) = dp for0<i < L.

([® Replace the region ifi](a) by
Q={(%2|0<x<,0<z<j}

with the corresponding discrete boundary in the proof pf (a), and appl[y to (1) together with the
initial conditionsa; (0) = o for 0 <i < L.

O
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Corollary 1. If the limit in the conclusion of {a) of [b) is zero in addition to the given hypothesis, then

iH(O,z) = iG(x,O) .

Theorem 3. Let \y be a non-negative integer arit, G) be an MWZ-pair. Then

Z)H(O,z) = Z}(H(No—i-x,x)P(No—s-x,x)+G(No+x,x+1 Z) G(x,0) — I|m G(x i),
- =
whenever both sides converge.

Proof. LetP(x,z) be the polynomial that features in the MWZ-pétit(x,z), G(x, z)) arising fromH (x, z).
Then the proof follows from theorem [71[Z] by applying to the 1-form

w = H(x,2)P(x,2)6z+ G(x,2)dX,
and the region
Q={(%2]0<z2<0,0<x<z+Np},
with the discrete boundary

0Qn, :={(0,z+1) — (0,2) |z> 0} U{(x,0) = (x+1,0) |0 <x < No} U{(No+x,x) — (No+x+
1,x) — (Np+Xx+1,x+1)| x>0} U{(x+1,0)— (x,0) | x>0},

and using the initial conditiona (0) = & for 0 <i < L. O

Corollary 2. Let(H,G) be an MWZ-pair. Iflim 'y G(x, j) =0, then
J—>00

X=

iH(O, 2)= i(H(x,x)P(x,x) +G(x,x+1)) .

Proof. SetNo = 0 in theorenf B, and use the initial conditiom$0) = &jo for 0 <i < L. O
Remark.If lim G(x, j) = 0Vvxand the hypothesis of theorﬂqﬁ (a) holds, then

]—>—oo

S H(x,z2)P(x,2) ,

Z=—00

has a closed form evaluation (see exariple 10 below).

In the following examples, we use the Maple package MarkovWZ|[MZ] which, for a diMenz), outputs
the polynomialP(x,z) and theG(x,z) .
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2 Examples of Accelerating Series

LetH(a,b) :=

|
(ax+2)! I in exampleﬂl throuﬁ 9.

(bx+z+1)!
Examplel. Consider the hypergeometric tefm1)”H(0,1), and corresponding to this kernel determine
a polynomialP(x, z) in zwith a minimum degree such thgt-1)*H (0, 1), G(x, 2)) is an MWZ-pair. Using
the maple package MarkovWEZ [MZ] , we see that the polynomial is
x!
P(X7 Z) = ? )

and the corresponding MWZ mate @f1)*H(0,1) is

(1)t

G(x,2) = o1

H(0,1).
It is not hard to check thdt(—1)H(0, 1), G(x,2)) is indeed a MWZ-pair with the corresponding polyno-
mial P(x,z) = x! /2%,

Applying corollary[2 to the MWZ-pair we get,

o (—1IX(x+1)! . Q
log(2 2 W 2arcsinh| 7]

Similarly, if we apply corollary L to the MWZ-pair, we find
09(2) = 3 20 2(x+1)

In the remaining examples, we simply give the hypergeometric t&(rjz), the polynomialP(x,z) that
features in the MWZ-pair, the correspondiBgx, z), and then the identities that follow from the applica-
tion of the corollaries above.

Example2. Starting with the kernel—1)*H(0, 3), we find

3x)!
Pz = S
and ) 2
32+ 63x° 493X+ 222+ 30xz+ 4
= P —1)*H .
Application of corollany 1 gives
i X(x+1)1(3%)! (415 4 487x 4 134)

log(2 ZO (4x+ 418 ’
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On the other hand if we apply corollgry 2, we get

& (63x% + 93x+32)
00(2)= 3 ZaEx+ 2+ ) Bx - B

Example3. By taking the kerne(—1)?H (0, 6), we find

Pk = &8
and
Q(x,2)P(x,2)

G(X, Z) (_1)ZH (07 6) )

- 16(6x+z+ 2)(6x+z+ 3)(6x+z+4)(6x+ 2+ 5)(6x+ 2+ 6)
whereQ(x, z) is a certain polynomial ix andz

Corollary[2 gives
e (=1)X(6x)! (x4 1)!IP(x)
002 = 3 T xrea

P(x) := 1648544° + 4584284 + 4905938 + 2511703 4 61082% 4 55914,
and corollary L gives

where

10g(2) = 2 40824¢ + 1299244 + 1588143 + 92655 + 25605 + 2654
92 = 3~ 38&6x+ 1) (@x+ 1) (>+ 1) (3x+ 2) (5+ 6 (x+ )67

Example4. Starting withH (0,2)?, we find that

V(2013
P de (a1
and
B Q(x,2)
G2 = AT Es a2xg zr 2 *2HO, 2,
where

Q(x,2) := 120¢* 4 372¢ + 13662+ 56x°7 + 426¢° + 316¢°z
+ 242xz+ 86XZ + 8XZ + 213+ 39+ 337 4 62° + 61z.

Application of corollary 2 gives

o = VT E (2912¢+ 71006 + 6381x% 4 2494 + 355) ((x+ 1)1)2((2x)!)®
t2)= ?XZO I (2x+5/2)((3x+3)!1)216¢ '

On the other hand, corollafy 1 yields

oy 3T (202 4 32x+ 13)(2x)!
o) = 32 & (2x+1)(x+1)I(2x+5/2)16¢
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Exampleb. By taking the kerneH (1, 2)2, we get

1\3
P(X, Z) — M ,
AT (x+1/2)
2163 + 55x2 + 47X+ 13+ 28x%z+ 48xz+ 20z+ 13xZ + 1172 +223F
2(2x+ 1) (2x+ 2+ 2)?

G(x,2) = (x,2),
whereF (x,2) := P(x,2)H(1,2)2.

If we apply corollary  we get

1 2 (145¢ 4186+ 59)(X!)°T (x4 1/2)4
2= 9ﬁXZO ((3x+2)1)2 ’

On the other hand, corollafy 1 yields

22 (21x+13)x3
T 64 £y (BAX(T(x+3/2)3

(2

Examples. Corresponding téd (1,3)2, we find that

IRAL V01N
P2 = Toraxt 1/2)
and
_ Q(x,2) z
Gx2) = 2(3+4x) (14 4x) (3x+ 2+ 2)2(3x+ 2+ 3)2P(X’ 9(-1HL.3*,

whereQ(x, z) is a polynomial irx andz. Application of corollary P gives

™2 2 ((2¢)1)3(10920¢* + 27908¢ + 2596 X2 + 10275+ 1421)

(2= 2048 £ (F(2x+5/2))3(4096) ’

and corollary L gives
_VIS P22
(=73 2 16T (2x+52) (B D7’

where
P(x) := 2912¢* 4 7100 + 6381 + 2494+ 355.

Example7. Corresponding téd (1,5)2, we find that

V2m(4x)13
(256)%sin(1/8m) sin(3/8m)I (4x+1/2) ’

P(x,z) = 1
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and a corresponding MWZ ma@&(x, z). If we apply corollary 2, we find

N © P(X)((4x)!)3(x1)?

42 = 3300 sir13/8m) Sin(1/81) 2, (Z567T (4x+ 9/2)((5x+ &)1

where

P(X) := 333324595810+ 18842142338 + 4720459713€° + 68964524348’ + 65011852179
+4128084844% +17862102186" +519433188%° + 9701663192 + 104901994 + 4974228

256 .
976562& )
Example8. Similarly for the kerneH (0, 2)3, we get

The terms of this series a(( O(107%).

Qx,2)

G2 = GaxT D (ax+ 2) (X 25 27

H(0,2)3P(x,2) ,

whereQ(x,z) is a certain polynomial ix andz

By using corollary P, we get

C e (CDX(2913(x+ 1)1°P(x)
Z(S)—X; 2(x+1)2((3x+3)H4 ’

where
P(x) := 40885¢C + 124346 + 150160C + 89888 + 2662% + 3116

and application of corollary 1 gives

L X(56x% + 80x +29)(x1)3
*20 4(2x+1)2(3x+ 3)!

Example9. Starting with the kerneH (1,3)3, we get

B (3>.<)! and

_ Q(x,2)
G2 = §axT 2 Bt D 3x+ 2+ 23 23 AR E 3
where

Q(x,2) =: 448¢C + 6242 + 1760¢* + 19322 4 2728 + 3482X3 + 22147+ 2084 + 792X
+ 90252 + 594xZ + 111X z+ 97X + 132X + 784 + 67 + 2072+ 482° + 1477 + 116.
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In this example, we show all the steps to demonstrate the application of thigorem 2

Let
F(x,2) :=H(x,2)P(x,2) .

DefineM(n) , for n=0,1,2,3,4,..., by

M(n) = nX;G(x, 0)+ i(F(er n,x)+G(x+n,x+1)) .

Then theorerh|2 says thé¢3) = M(n), V\n=0,1,2,3,4,... .

In particular
12 ()3(2018(—1)*P(x)

3= T 24L 3x+2 ((4x+3)1)3

)

where
P(X) := 126392° + 412708 4 531578 + 33636 % + 10400 + 12463.

On the other hand, application of corollary 1 gives

12 P(x)(X)e((2x)!
)_szg) (3x+2)1)4 ’

P(x) := 40885¢C + 124346* + 150160  + 89888 + 2662% + 3116.

where

The series[(2) was first derived in [AZ] and used by S. Wedeniwski (1999) to obtain up to 128 million
correct decimal places. The terms of the serieflin (2)f@10592 1) ~ O(10~%)), while the terms of

64 V)~ 0(1074).

the second series am(531441

Instead, if we takéd (1,5)%, we get

2V3  (2x—1/2)3(2x)!5(4096)*

P(x2) = 3V (T29XT (2x+2/3)F (2x+1/3) ’

and a correspondin@(x,z). Let
F(x,2) = H(1,5)%P(x,2) ,

and letM(n) be as above.
Then theorerﬁ]Z give§(3) =M(n) ,vn=0,1,2,3,4,... and in particular

16 2 P(x)(4096((4x))3((291)2((2x+ 1)) (~1)*
48 =M0) =5 Z) ((6x+5)!) ’

®3)
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where
P(x) := 5561689253120 + 418278523522562 + 143295193251208' + 295842983236608°
+410324548816928 -+ 403368918753744& 4 288879369092920 -+ 152460289970636

+5924041492995 + 16722886152858 + 3330604771504
+44281505102¢ + 3519580202 + 1261871244

The terms of this series a®((sgrisoassas)’) ~ O(1078)).

This improves the previous recofd (2).

ExamplelO. If we start with
x+a\ /x+b
Hix2) = (a+z) <b+z> ’

we get
_ (a+b)!(x+a)!(x+b)!
P = rojan
and
2 — — — —
G(x,z):(sx + 2xa+ 2xb+ 6x— 2xz+2b+2a—2z+ 3—za+ab Zb)(a+z)(b+z)H(x,z)P(x,z).

(a+2x+1+b)(2x+b+2+a)(x+1-2)?)
One can easily check th@i(x, +o) = 0.

Hence, we get

o (X+a\ [x+b\  (a+2x+b)lalb!

o (a+ z> (b+ z) ~ (a+b)!(x+a)l(x+b)!

This is a derivation of the classical Chu-Vandermonde summation formula, in the framework of the MW2Z-
method. The Markov-WZ method can sometimes lead to a discovery of new identities with appropriate
H(x,2).

Examplell Let

Hs(x,2) := (E;?g&)s .

In this example we will show how to use implementations of some numerical methods together with the
Markov-WZ Method to give new WZ-pairs. The steps are:

(a) Take the output from Markov in MarkovWZ (se€e [MZ] ), which is a system of first order linear
recurrence relation(s) for the unknown coefficient functiars)’s.

(b) Crank out some terms for the unknown coefficients, i.e. use the recurrence equation outputted by the
program and find the first few terms.
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(c) Use the Salvy-Zimmermargfun program in the Algolib library available fromigo.inria.fr ,
or findrec in EKHAD E], to find a recurrence equation satisfied by the coefficient functions.

(d) Finally, solve the recurrence relations to find a closed form for the coefficients (if there exists one)
(for example, in Maple, usesolve ).

11.1 Starting wittHz(x,z), we find that. = 0 and
M(3+x)°r(3—1/2)
AT (d+x—1/2)M(d)3 "
Therefore we get a WZ-paifF,G)(notMW 2), whereF (x,z) := Hz(x,2)P(x,2), and

o (3x+2z+2m—2+43%)
G(x,2) :=F(x,2) 22x 7 25-1) ,

and by applying corollary]1, we get the identity

2 T(z+m)2r (m+3)? (3x+35+2m—2)I (8+x)%r (8—1/2) (m+8)? [/ 1\*
M (m)2r (m+ 3+ 2)2 220 F(&+x—1/2)F(8)3 (M+x+8)2(2x+ 25— 1) <4) ’

P(x,z) :=

ford=0,1,2,3,...,m=0,1,2,3,.... If we specialize tan=1 andd = 1, we get the formula for
{(2), which is

3yme r(x+1) 1\* 3 1, ,1 11
(2= Z (x+1)T(3/2+x) (4> 35( 2,3 '4>

X

11.2 Starting wittHz(x,2) we find thatL = 1 and there is a vector first order recurrence relations for the
polynomialsag(x),as1(X),. That means if we set
a(x) := [ao(x), ax(x)]",
then there is a 2 by 2 matriX(x) such that(x+ 1) = A(x)a(x), and by using findrec in EKHAD
we get
(1T (x+0)3(x+8—-1)r(3—1/2) _2(=1)T(3+x)°r (8—1/2)
ao(x) = TOE , anday(X) := r)7
Hence our polynomial isP(x,z) = ap(X) +a1(x)(z+m),, and the corresponding WZ-pair is
(Hs(x,2)P(x,2),G(x,2)), where

G(x.2) = 2X+20+z+m-1
T 2z42m+ 6+ x—1
as outputted by zeil in EKHAD. Applying corollary 1, we get the identity

2 (~1)%(2z+2m+8— 1) (m+2)3 2x+26+m 1 (x+8)3
zZo r(mr(m+é+23 Z) 3)3r (m+38+x)3 ’

ford=0,1,2,3,... ,andm=0,1,2,3,... .

P(x,2)Hs(x,2) ,

T download-able free fromhttp://www.math.rutgers.edu/ zeilberg/
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11.3 Starting wittHa(x,2) we find thatL = 1 and there is a first order vector recurrence relations for the
polynomialsag(x),as1 (X). Using findrec in EKHAD we get

(=T (3+Xx)°B+x—1r(d-1/2)
M(5+x—1/2)I(5)54% ’

ap(Xx) 1=

and
2(—1)T (3+x)°r (8—1/2)
AT (5+x—1/2)r(8)5

a(x) ;=

This leads to the WZ-paifF (x,2) (ag(x) + a1(x)(m+2)),G) , whereG is

5x2 + 6mx+ 100X + 6md + 582 + 2P + 6xz— 6X+ 65z — 68+ 4mz— Am—+ 222 — 4z + 2

G= 2(2x+ 25— 1)(2m+ 22+ x+ 5 1)

Application of corollanf 1 yields the identity

2 M(m+242m+2z4+3—-1) 12 T(m)* (x43)5r (8—1/2)P(X) (—1)X
4 )

Z;j r(m+9d+2z4 420r x+1/2+6 )T (M+3+x)4T(3)5 \ 4
that holds fo® =0,1,2,3,..., andm=0,1,2,3,4,..., where

P(X) := 5%+ 108 + 6xm-+ 2P + 557 + 65m -+ 2 — 6X — 4m— 63 .

If we specialize tan=1 andd = 1, we find the motivation for Andrei Markov’s beautiful work,
namely

_B/mM r(x+1) -1\* 5 1,,1,1,1 -1
(3= 4 £ (x+1)2r(x+3/2) <4> 44F3< 2,2, 3 '4)'

X;

11.4 Starting withHs(x,z) we found thatl = 3. The corresponding polynomial satisfies a recurrence
relation of order> 2, for which we couldn't find an explicit closed form solution for the polyno-
mial. Nonetheless, as described[in [MZ] , we have an accelerating formul@Sp(see [MZ] for
5<n<9).
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