Classification of biological cells using bio-inspired descriptors

Abstract : This paper proposes a novel automated approach for the categorization of cells in fluorescence microscopy images. Our supervised classification method aims at recognizing patterns of unlabeled cells based on an annotated dataset. First, the cell images need to be indexed by encoding them in a feature space. For this purpose, we propose tailored bio-inspired features relying on the distribution of contrast information. Then, a supervised learning algorithm is proposed for classifying the cells. We carried out experiments on cellular images related to the diagnosis of autoimmune diseases, testing our classification method on the HEp-2 Cells dataset of Foggia et al (CBMS 2010). Results show classification precision larger than 96% on average, thus confirming promising application of our approach to the challenging application of cellular image classification for computer-aided diagnosis.
Type de document :
Communication dans un congrès
ICPR - 21st International Conference on Pattern Recognition, Nov 2012, Tsukuba, Japan. IEEE, pp.3353-3357, 2012
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00958856
Contributeur : Estelle Nivault <>
Soumis le : jeudi 13 mars 2014 - 14:45:44
Dernière modification le : jeudi 21 janvier 2016 - 15:58:04

Fichier

icpr_2012.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00958856, version 1

Collections

CEA | UNICE | I3S | BNRMI | GAEL | UGA | DSV

Citation

Wafa Bel Haj Ali, Dario Giampaglia, Michel Barlaud, Paolo Piro, Richard Nock, et al.. Classification of biological cells using bio-inspired descriptors. ICPR - 21st International Conference on Pattern Recognition, Nov 2012, Tsukuba, Japan. IEEE, pp.3353-3357, 2012. <hal-00958856>

Partager

Métriques

Consultations de
la notice

325

Téléchargements du document

1032