A Nitsche finite element method for dynamic contact : 1. Semi-discrete problem analysis and time-marching schemes

Abstract : This paper presents a new approximation of elastodynamic frictionless contact problems based both on the finite element method and on an adaptation of Nitsche's method which was initially designed for Dirichlet's condition. A main interesting characteristic is that this approximation produces well-posed space semi-discretizations contrary to standard finite element discretizations. This paper is then mainly devoted to present an analysis of the semi-discrete problem in terms of consistency, well-posedness and energy conservation, and also to study the well-posedness of some time-marching schemes (theta-scheme, Newmark and a new hybrid scheme). The stability properties of the schemes and the corresponding numerical experiments can be found in a second paper.
Type de document :
Article dans une revue
ESAIM: Mathematical Modelling and Numerical Analysis, EDP Sciences, 2015, 49 (2), pp.481-502
Liste complète des métadonnées

Littérature citée [41 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00958695
Contributeur : Franz Chouly <>
Soumis le : jeudi 13 mars 2014 - 11:15:43
Dernière modification le : vendredi 26 octobre 2018 - 10:37:33
Document(s) archivé(s) le : vendredi 13 juin 2014 - 11:06:05

Fichier

chouly-hild-renard-cdyn-1.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00958695, version 1

Citation

Franz Chouly, Patrick Hild, Yves Renard. A Nitsche finite element method for dynamic contact : 1. Semi-discrete problem analysis and time-marching schemes. ESAIM: Mathematical Modelling and Numerical Analysis, EDP Sciences, 2015, 49 (2), pp.481-502. 〈hal-00958695〉

Partager

Métriques

Consultations de la notice

681

Téléchargements de fichiers

374