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We aim at coupling a method of moments, the Wave Concept Iterative Procedure, and the Hybridizable Discontinuous Galerkin
method to study electromagnetic susceptibility of innovative planar circuits in 3D. Hybridizing the Wave Concept Iterative Procedure
with volumic methods like the Frequency Domain Transmission Line Matrix method, the Finite Element Method and the Hybridizable
Discontinuous Galerkin method in 2D is a first step for the validation of the proposed coupling technique. The considered problem
is Maxwell’s equations in the frequency domain. Three test cases in 2D and a preliminary result in 3D are provided.

Index Terms—Microwave propagation, method of moments, finite element methods.

I. INTRODUCTION

THE Wave Concept Iterative Procedure (WCIP) [1] is

a method adapted to the study of microwave circuits,

solving Maxwell’s equations in guided and stratified structures.

Nevertheless, it cannot characterize circuits with dielectric

inhomogeneities [2]. This has naturally led to the issue of

hybridization of the WCIP with volumic methods such as the

finite element method (FEM), the hybridized discontinuous

Galerkin method (HDG) [3] or a method based on transmission

line theory, the Frequency Domain Transmission Line Matrix

method (FDTLM). A hybridization with the FDTLM has

already been achieved in [4]. The advantage of the HDG

method lies in its flexibility with regards to the type of mesh

used for the discretization of the volumic part (it can be

unstructured, hybrid, non-conforming) and in its adaptivity in

the polynomial approximation order; this interpolation order

can be chosen lower near the interface (if the field is not

regular because of discontinuities) and higher some elements

further.

This work is concerned with circuit modeling in the high

frequency range. It describes the hybridization of numerical

methods in the frequency domain to study the electromag-

netic susceptibility of planar circuits. We aim at detecting

potential perturbations induced in a circuit by an external

electromagnetic source. In this purpose, the planar circuit is

illuminated by a wave and we calculate the electric field and

current induced on the considered circuit. Three 2D [5] and

one 3D test problems are dealt with in this paper to validate

the resulting hybrid methods. TM and TE cases have been

studied, but only TE results are presented here (conclusions

for the TM case being similar). The ultimate goal is to be able

to treat more complex 3D configurations.

II. HYBRIDIZATION PRINCIPLE

For the sake of simplicity, the computational domain is de-

composed into two subdomains as shown in Fig. 1. Boundaries
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Fig. 1. Case under study, separation between both domains 1 and 2 according
to the interface Σ.

at x = 0 and x = a are metallic walls. In the hybridization

context, the wave propagation in domain 1 is numerically

modeled by the WCIP whereas in domain 2 it is addressed

with a volumic method; the connection is achieved at the

interface Σ. The WCIP domain is not bounded, whereas the

other domain is bounded by a metallic wall. We describe

below the iterative process of the WCIP and then proceed

to the formulation of the linear system characterizing the

hybridization approach. The WCIP is based on outgoing waves

A1 and A2 and incoming waves B1 and B2 on Σ (see Fig. 1).

The iterative process without coupling writes

{

B
(k+1)
1 = FMT −1

Γ1 FMT A
(k)
1 +B0,

B
(k+1)
2 = FMT −1

Γ2 FMT A
(k)
2 ,

(1)

with vectors A
(k)
i , B

(k)
i containing the discrete representations

of the waves Ai, Bi at the iteration k, Γi the diagonal matrix

composed of modal diffraction coefficients Γi,n, FMT standing

for Fast Modal Transform [1], and B0 representing the source

excitation. In the TE case, Γ1,n is given by

Γ
TE
1,n =

1−Z0Y TE
1,n

1+Z0Y TE
1,n

with Y TE
1,n =

√

(nπ

a

)2

− k2
0

jωµ0
, (2)
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where Y TE
1,n corresponds to a mode of order n admittance

injected in domain 1, Z0 the free space impedance (377Ω), a

the distance between metallic slabs (a = 1.27cm), k0 the wave

number in vacuum at frequency f0 = 16GHz, which gives

k0 = 335rad/m, ω=10x1010rad/s and µ0=1.26x10−6H ·m−1.

The transmission operator S between both domains satisfies
(

A
(k)
1

A
(k)
2

)

= S

(

B
(k)
1

B
(k)
2

)

=

(

S11 S12

S21 S22

)

(

B
(k)
1

B
(k)
2

)

, (3)

where S11 and S12 are N-sized matrices (N being the number

of segments on Σ), respectively equal to -1 and 0 on metal

segments and respectively equal to 0 and 1 on insulator

segments. For instance, when there is no metal, S11 is filled

with zeros and S12 is equal to the identity matrix.

Consequently, the linear system to be solved is
(

Id −
(

SW
1 0

0 SW
2

)

S

)(

B1

B2

)

=

(

B0

0

)

, (4)

where Id is the identity matrix, SW
i a matrix for the discretiza-

tion by the WCIP, defined by

SW
i = FMT−1

ΓiFMT. (5)

The coupling of the WCIP with a volumic method is ob-

tained by replacing SW
2 by a matrix SF

2 for the discretization by

a volumic method. Matrix SF
2 has to characterize the relation

between B2 and A2. In the hybridization setting, the wave A2

is introduced as a source term in the weak formulation. In

2D, TE and TM modes are uncoupled, which explains that

waves are only along y-axis, according to Fig. 1 orientation.

The corresponding weak formulation for the FEM is given by∫
D2

∇Ey2 ·∇wds− k2
0

∫
D2

Ey2wds

+ jk0

∫
Σ

Ey2wdl = 2 jk0

√

Z0

∫
Σ

Ay2wdl,
(6)

where D2 corresponds to domain 2, Ey2 is the electric field

component along y-axis, w stands for a test function and Ay2

is the outgoing wave component along y-axis. The insertion

of the source term for the HDG method is given by writing a

conservativity condition [3] adding a specific term on Σ∫
∂Th

n× (Hx2x+Hz2z)wdl −
∫

∂Th

τ(Ey2 −λh)wdl

+
∫

Σ

1

Z0
λhwdl =

2√
Z0

∫
Σ

Ay2wdl ,
(7)

where Th is the triangulation of domain 2, τ a stabilization

parameter equal to
1

Z0
in our examples and λh the hybrid

variable introduced in HDG. It is a continuous variable defined

at the interface of the elements, which represents the tangential

electric field: λh = Ey2|Th
. In FEM, field Ey2 is continuous at

the frontiers between two elements whereas in HDG it is not.

Indeed, fields Ey2, Hx2 and Hz2 are calculated independently

in each element and called, as a result, local fields. HDG

solution is achieved calculating a hybrid variable λh on all

interfaces with (7) (after having eliminated local fields Ey2, Hx2

and Hz2 with Maxwell’s equations [3]) and then local fields

are deduced. Incoming wave component By2 can be calculated

according to

By2 =
1

2
√

Z0

(

Ey2|Σ −
Z0

jωµ0

∂Ey2

∂z

∣

∣

∣

Σ

)

, (8)

or By2 =
1√
Z0

Ey2|Σ −Ay2, (9)

due to the wave definitions (recalled in [4]). Equation (8) was

mentioned in [6], but it appeared that equation (9) provided

more accurate results and improved the convergence. Ey2|Σ
was identified to variable λh on Σ to perform By2 calculation.

In the linear system (4), matrices are never explicitly built;

(4) of size 2N is solved by a restarted GMRES method [7].

Iterative solution is stopped when the norm of the residue

has been divided by 108. A comparison with the BICGSTAB

method [8] is also discussed in the next section.

III. NUMERICAL RESULTS

Three test cases are considered in 2D: diffraction of a guided

mode in vacuum on a perfect sheet (Fig. 2a), diffraction of a

guided mode on a microstrip line in vacuum and diffraction

of a guided mode on a microstrip line printed on an inho-

mogeneous substrate (εr,1 = 1 and εr,2 = 5) (Fig. 2b). Some

preliminary results are also given for a 3D configuration.
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Fig. 2. Examples

A. Diffraction of a guided mode on a perfect sheet

The example of Fig. 2a is studied with H = 1.27cm and

a = 1.27cm at 16GHz. The source wave, B0, corresponds

to the TE1 mode. Domains 1 and 2 are vacuum. Analytical

expressions for electric and magnetic fields being known, the

relative discretization error in L2-norm, defined by

1

max |Ey analytical|
[

∫ a

0
|Ey(x)−Ey analytical(x)|2dx

]1/2

(10)

is provided in Fig. 3 for the E-field, where mesh step is the

edge length.

The TE1 mode expression is given by

BTE
0 (x) =

√
Z0

ZTE
1,1 +Z0

f1(x) where ZTE
1,1 =

jωµ0
√

(

π

a

)2

− k2
0

and where f1(x) =

√

2

a
sin
(

π

a
x
)

.

(11)
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Fig. 3. Vacuum: relative discretization error in L2-norm for E-field (Ey

component) with TE1 in excitation.

The FEM is implemented with quadrangular elements and

first order approximation (FEM-Q1) and HDG with triangular

elements and first order approximation (HDG-P1). The HDG-

P1 method provides better results as far as relative error

is concerned (see Fig. 3). It is noteworthy that the HDG

discretization results in more degrees of freedom. Convergence

order is defined by

order =
log(Errel h1)− log(Errel h2)

log(h1)− log(h2)
(12)

where Errel h1 and Errel h2 correspond to the relative dis-

cretisation errors in L2-norm respectively for mesh step h1

and for refined mesh step h2. Here, the convergence order of

the three methods is 2, which means that they converge in

h2, h denoting the mesh step. A comparison between hybrid

methods using HDG-P0, HDG-P1 and HDG-P2 [3] in domain

2 was also performed for the E-field. This comparison shows

that convergence order is 1 with HDG-P0, 2 with HDG-P1 and

also 2 with HDG-P2 because WCIP limits convergence order,

but relative error on this example is improved with HDG-P2.

B. Diffraction of a guided mode on a microstrip line

A microstrip line is inserted on the surface Σ (see Fig. 2b). It

is centered and the metal proportion compared to air is 50%.

Since domains 1 and 2 are vacuum, dielectric permittivities

are εr,1 = 1 and εr,2 = 1. In this case, an analytical solution

is not available and therefore, the chosen reference is the

solution obtained with the WCIP alone, meshing the domain

with N = 215 where N is the number of segments on Σ. We

inject the TE1 mode on the microstrip line and we calculate

the relative error on the E-field and the J-current compared

to the WCIP reference. Relative errors on electric field and

current are respectively summarized in Tables I- IV. Mesh size

represents the edge length ratio of the rectangles compared to

the initial mesh. For instance, 1/2 means that the step size is

twice smaller than the initial step size in both axes. Initial mesh

is characterized by a step size of 794µm in both directions x

and z.

We observe that convergence orders are respectively 1 and

0.5 for E-field and J-current (order reduction coming from

TABLE I
MICROSTRIP LINE: RELATIVE DISCRETIZATION ERROR IN L2-NORM ON

E-FIELD WITH WCIP/HDG.

Mesh size WCIP/HDG-P0 WCIP/HDG-P1

1 3.09x10−2 - 2.91x10−2 -

1/2 1.72x10−2 0.8479 1.58x10−2 0.8827

1/4 9.08x10−3 0.9188 8.23x10−3 0.9373

1/8 4.76x10−3 0.9314 4.31x10−3 0.9350

1/16 2.46x10−3 0.9517 2.23x10−3 0.9507

TABLE II
MICROSTRIP LINE: RELATIVE DISCRETIZATION ERROR IN L2-NORM ON

E-FIELD WITH WCIP/FDTLM AND WCIP/FEM.

Mesh size WCIP/FDTLM WCIP/FEM-Q1

1 2.65x10−2 - 2.34x10−2 -

1/2 1.47x10−2 0.8557 1.34x10−2 0.8025

1/4 7.72x10−3 0.9237 7.24x10−3 0.8933

1/8 4.06x10−3 0.9262 3.86x10−3 0.9059

1/16 2.11x10−3 0.9440 2.03x10−3 0.9282

TABLE III
MICROSTRIP LINE: RELATIVE DISCRETIZATION ERROR IN L2-NORM ON

J-CURRENT WITH WCIP/HDG.

Mesh size WCIP/HDG-P0 WCIP/HDG-P1

1 2.74x10−2 - 2.76x10−2 -

1/2 1.92x10−2 0.5114 1.95x10−2 0.5048

1/4 1.34x10−2 0.5173 1.37x10−2 0.5080

1/8 9.34x10−3 0.5254 9.59x10−3 0.5121

1/16 6.44x10−3 0.5373 6.70x10−3 0.5174

TABLE IV
MICROSTRIP LINE: RELATIVE DISCRETIZATION ERROR IN L2-NORM ON

J-CURRENT WITH WCIP/FDTLM AND WCIP/FEM.

Mesh size WCIP/FDTLM WCIP/FEM-Q1

1 2.76x10−2 - 2.77x10−2 -

1/2 1.95x10−2 0.5044 1.95x10−2 0.5037

1/4 1.37x10−2 0.5073 1.37x10−2 0.5064

1/8 9.61x10−3 0.5111 9.65x10−3 0.5097

1/16 6.72x10−3 0.5160 6.76x10−3 0.5139

the discontinuity between metal and dielectric) in TE case

whatever method used in domain 2, with very close relative

discretization errors between hybrid methods. Furthermore,

convergence orders are the same between hybrid methods

WCIP/HDG-P0 and WCIP/HDG-P1, probably because of the

low regularity of the solution. These results motivate the

polynomial adaptivity when there are metal and dielectric

discontinuities at the interface.

C. Diffraction of a guided mode on a microstrip line printed

on an inhomogeneous substrate

On Fig. 2b, a microstrip line is printed on a substrate of

permittivity εr,2, surrounded by two layers of permittivity εr,1.

We take here εr,2 = 5 and εr,1 = 1, i.e. vacuum. Our reference

is obtained meshing hybrid method WCIP/FEM-Q1 with N =
210. Relative discretization errors are provided in Table V and

VI. For the E-field, convergence order is close to 1 and for

the J-current, it is between 0.5 and 1.

In order to observe the influence of GMRES on the number

of iterations needed to solve the linear system (4), a compari-
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TABLE V
MICROSTRIP LINE ON INHOMOGENEOUS SUBSTRATE: RELATIVE

DISCRETIZATION ERROR IN L2-NORM ON E-FIELD.

Mesh size WCIP/FEM-Q1 WCIP/FDTLM

Relative error Order Relative error Order

1 2.22x10−2 - 2.48x10−2 -

1/2 1.25x10−2 0.8308 1.34x10−2 0.8824

1/4 6.50x10−3 0.9388 6.87x10−3 0.9689

1/8 3.26x10−3 0.9959 3.40x10−3 1.0145

1/16 1.50x10−3 1.1164 1.56x10−3 1.1222

TABLE VI
MICROSTRIP LINE ON INHOMOGENEOUS SUBSTRATE: RELATIVE

DISCRETIZATION ERROR IN L2-NORM ON J-CURRENT.

Mesh size WCIP/FEM-Q1 WCIP/FDTLM

Relative error Order Relative error Order

1 2.11x10−2 - 2.06x10−2 -

1/2 1.43x10−2 0.5615 1.39x10−2 0.5725

1/4 9.37x10−3 0.6126 8.97x10−3 0.6296

1/8 5.82x10−3 0.6879 5.47x10−3 0.7126

1/16 3.31x10−3 0.8137 3.07x10−3 0.8366

TABLE VII
ITERATION NUMBER ACCORDING TO SOLVER.

Mesh size WCIP/FEM-Q1 WCIP/FDTLM

GMRES BICGSTAB GMRES BICGSTAB

1 12 12 12 12

1/2 27 30 25 26

1/4 48 51 46 49

1/8 66 80 63 90

1/16 84 147 82 128

son with another iterative method (BICGSTAB [8]) is achieved

in Table VII. We can conclude that GMRES requires less

iterations, in particular for fine meshes.

D. Diffraction of a guided mode on a perfect sheet with

WCIP 2D/HDG 3D

We present preliminary results which correspond to the test

case already considered in subsection III-A but now in 3D.

Here TE and TM modes are coupled. Furthermore, the FMT

is quite different from the 2D case but the linear system (4)

is unchanged. Geometry of domain 2 is therefore a cube of

side 1.27cm meshed in a structured way with tetrahedra in

domain 2. Σ is a surface meshed with rectangles that are called

pixels. The connection between meshes is achieved taking A2

values at the center of the pixels on z = 0. Each A2 value is

consequently imposed on the hypotenuse of two neighboring

triangles. We calculate in Table VIII relative discretization

error on surface on E-field when a TE10 mode is injected at

f0 = 16GHz. As in 2D case, analytical solution is available and

it is the reference. Only non-zero tangential component is dealt

with, i.e. Ey. Initial mesh is characterized by 48 tetrahedra.

Convergence order for the E-field is between 2 en 3 when

surface relative discretization error is calculated.

IV. CONCLUSION

In this work, we have realized a feasibility study of the

hybridization technique between the WCIP and other volumic

TABLE VIII
SURFACE RELATIVE DISCRETIZATION ERROR IN L2-NORM ON E-FIELD

Mesh size Ey

Relative error Order

1 1.15x10−2 -

1/2 1.59x10−3 2.8502

1/4 2.23x10−4 2.8346

1/8 3.62x10−5 2.6260

methods. A convergence order of 2 has been emphasized in a

canonical case whatever the hybrid method (FEM-Q1, HDG

or FDTLM) and using HDG-P2 does not improve convergence

order. The insertion of a microstrip line between both domains

is also relevant, because the 3 methods provide similar results,

namely a convergence order of 1 for E-field and an order

of 0.5 for electric current for a TE1 mode in excitation.

We manage to tackle the intrinsic inhomogeneity problem

of the WCIP comparing hybrid methods WCIP/FEM-Q1 and

WCIP/FDTLM. The test case was a microstrip line printed

on an inhomogeneous substrate. Convergence orders of 1 for

E-field and between 0.5 and 1 for J-current were found. It con-

stitutes the basis for 3D work. Consequently, we implemented

the same procedure for the hybridization between WCIP-2D

and HDG-3D, with a preliminary validation considering the

vacuum case. It yielded a convergence order is between 2

and 3, which is in accordance with expectations from 2D

results. These results are rather promising for considering more

complex 3D cases, namely calculations on electric currents on

planar circuits enforcing electronic specific functions.
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