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A rigorous proof of the Bohr-van Leeuwen theorem
in the semiclassical limit.

October 1, 2015

Baptiste Savoie∗

Abstract

The original formulation of the Bohr-van Leeuwen (BvL) theorem states that, in a uniform
magnetic field and in thermal equilibrium, the magnetization of an electron gas in the classical
Drude-Lorentz model vanishes identically. This stems from classical statistics which assign
the canonical momenta all values ranging from −∞ to ∞ what makes the free energy density
magnetic-field-independent. When considering a classical (Maxwell-Boltzmann) interacting
electron gas, it is usually admitted that the BvL theorem holds upon condition that the
potentials modeling the interactions are particle-velocities-independent and do not cause the
system to rotate after turning on the magnetic field. From a rigorous viewpoint, when treating
large macroscopic systems one expects the BvL theorem to hold provided the thermodynamic
limit of the free energy density exists (and the equivalence of ensemble holds). This requires
suitable assumptions on the many-body interactions potential and on the possible external
potentials to prevent the system from collapsing or flying apart. Starting from quantum
statistical mechanics, the purpose of this article is to give, within the linear-response theory,
a proof of the BvL theorem in the semiclassical limit when considering a dilute electron gas
in the canonical conditions subjected to a class of translational invariant external potentials.
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1 Introduction & the main result.

1.1 An historical review.

To highlight the significant role the BvL theorem played in the understanding of the origins of
magnetism, J.H. van Vleck characterized, in his Nobel lecture [55] in 1977, the works of N. Bohr at
the basis of the BvL theorem as ’perhaps the most deflationary publication of all time in Physics ’.
Through a brief historical review, let us list the main works which gave rise to the BvL theorem.

In 1905, P. Langevin published in [31, 32] his ’microscopic theory’ of magnetism to account for
dia- and paramagnetism phenomena observed in ions/molecules gases. His theory is based on clas-
sical statistical mechanics and electrodynamics. Considering that matter is formed by electrons
in stable periodic motion (the mutual actions between electrons assure the mechanical stability),
he supposed two ad hoc assumptions: the molecules contain at least one closed electron orbit
with a fixed magnetic moment out of any external field, and, the different orbits in each molecule
have such a moment and orientations that their resultant moment may vanish or not. From those
assumptions, Langevin calculated the mean variation of the magnetic moment of electrons mov-
ing in closed orbits under the influence of an external constant magnetic field. This led to the
so-called Langevin formula in [32, pp. 89] for the diamagnetic susceptibility of electrons. Also, he
recovered the analytic expression of the Curie’s empirical law for paramagnetic molecules gases in
[32, pp. 119]. We mention that Langevin’s theory was the trigger of a series of articles discussing
his assumptions/results, and in that sense, it was at the root of the BvL theorem.

In all likelihood, N. Bohr was the first one to point out that a classical free electron gas in
thermal equilibrium can display no magnetic effects. The results derived in his PhD dissertation
from 1911 are the basis for the BvL theorem. Among other things, Bohr was interested in the
influence of a magnetic field on the motion of free electrons in metals within the Drude-Lorentz
model (see Sec. 1.2 for the assumptions of the model). His conclusion can be stated as follows: ’a
piece of metal in electric and thermal equilibrium will not possess any magnetic properties what-
ever due to the presence of free electrons’, see [40, pp. 380]. To come to such a conclusion, he
showed that whenever a state of equilibrium exists, the presence of magnetic forces does not affect
the classical statistical distribution of the electrons. Since the electron velocities in any arbitrary
volume element are equally distributed in all directions, then no magnetic effects can arise from
such a volume element.

On the 1910’s, a series of works came in response to Langevin’s theory of magnetism. Essen-
tially, the purpose consisted in computing within the framework of classical statistical mechanics
the thermal average resultant magnetic moment (and then the thermal average magnetic suscepti-
bility via the linear response theory) of various sorts of molecules taking into account specific kinds
of collisions. The case of free electrons in metals has been considered as well. For a review, we
refer to [52, Sec. X]. It seems that H.-A. Lorentz derived a result backing up the Bohr conclusions.

In 1921, H.J. van Leeuwen published the article [52] that will be taken later on as the seminal
paper for the BvL theorem. In response to Langevin’s theory, [52, Sec. II-VII] are devoted to
magnetism of molecules gases in thermal equilibrium. Considering molecules carrying either a
current or charges placed in an external constant magnetic field, she computed the thermal aver-
age magnetization (i.e. resultant magnetic moment per unit-volume) and susceptibility within the
framework of classical statistical mechanics. The results heavily depend on the type of collisions
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considered, and also on the permissible values of the canonical momenta associated with the de-
grees of freedom of a single molecule in a given configuration. In some cases, she recovered some of
the Langevin results (temperature independence of the diamagnetic susceptibility, Curie’s law for
the paramagnetic susceptibility), for some others the magnetization vanishes. An attempt to find
sufficient conditions leading to a vanishing magnetization for arbitrary molecules is given in [52,
Sec. IX]. [52, Sec. VIII] deals with the magnetic response of free electrons in metals within the
Drude-Lorentz (DL) model (see Sec. 1.2 for the assumptions). Essentially, van Leeuwen derived a
result in the direction of Bohr conclusions. In the presence of a constant magnetic field, she showed
that, whenever a state of equilibrium exists, the thermal average magnetization of the electron
gas in the DL model vanishes. Additionally, if the collisions between electrons are not neglected,
then it may happen that the system of electrons rotates with a constant angular velocity (as an
equilibrium state) after turning on the magnetic field. In that case, the magnetization does not
vanish, and corresponds to induced current (as a result of the Larmor precession theorem).

The apparent contradiction between the Langevin and Bohr-van Leeuwen results is one of the
main factors which led to the emergence of quantum mechanics in the 1920’s. Quantum mechanics
will remove this paradox: the Langevin assumptions (stationary of the electron orbits and perma-
nence of magnetic moments) are of a quantum nature. Furthermore, it will provide the framework
to explain the origins of dia- and paramagnetism phenomena observed in solids and molecules/ions
gases. Below, we list the most important works within the framework of quantum mechanics.

In 1927, W. Pauli investigated in [43] the induced magnetization arising from the coupling
between the spin magnetic moment and an external constant magnetic field. Considering a free
electron gas obeying Fermi-Dirac statistics, he found that the spin contribution to the magnetic
susceptibility in the weak-field limit and in the low-temperature regime is purely paramagnetic
and temperature-independent to first-order. The formula is known as Pauli susceptibility formula.

In 1929, J.H. van Vleck revisited in [53, 54] Langevin’s theory of magnetism within the frame-
work of quantum mechanics. For a brief summary of his works, we refer to [48, Sec. 1.1].

In 1930, L. Landau investigated in [29] the induced magnetization arising from the ’helical
motion’ of electrons induced by the Zeeman Hamiltonian in an external constant magnetic field.
Considering a free electron gas confined in a box, and obeying Fermi-Dirac statistics while disre-
garding the spin, he found that the bulk value (i.e. independent of the boundary effects) of the
orbital susceptibility in the weak-field limit and in the low-temperature regime is to first-order
purely diamagnetic and temperature-independent. The formula, known as Landau susceptibility
formula, is exactly one-third the Pauli susceptibility formula in absolute value. Thus, diamag-
netism of free electrons gas arises from the quantization of the radii of the helical paths, and it
is a weak phenomenon. Besides, Landau pointed out the existence of another contribution whose
magnitude oscillates with the magnetic field: the so-called de Haas-van Alphen effect discovered
experimentally the same year. We mention that the Landau’s article generated a huge amount of
papers during about 40 years in which the influence of the walls of the box on the bulk value of the
orbital susceptibility is discussed. Indeed, the contribution coming from the boundary effects is
expected to be strongly paramagnetic and it has been treated in [29] by a semiclassical argument.
The corrections to the bulk value have been computed in low/high-temperatures regime for various
shapes of boxes, and various confining potentials modeling the boundary of the box. For a review,
we refer to [51, 1].

1.2 The BvL theorem, a comprehensive overview.

1.2.1 The original statement.

From [52], the BvL theorem can be stated as follows:

(S1). In a constant magnetic field and in thermal equilibrium, the magnetization of an electron
gas in the classical Drude-Lorentz (DL) model is identically zero.

The DL model, originally introduced to investigate the properties of metals, is based on classical
kinetic theory of gases, see e.g. [56, Sec. 1.2]. Within this model, the valence electrons are treated
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as an ideal gas of free particles surrounding the ion cores. The latter occupy a small volume of the
metal. The electrons are assimilated to solid spheres and the ion cores are assimilated to heavy rigid
spheres in thermal equilibrium which may vibrate when collisions occur. Only the collisions with
ion cores are considered, and the collisions are instantaneous and elastic. During collisions, the
electrons transfer energy and momentum. Between successive collisions, the electrons have random
thermal motions and the interactions electron-electron are neglected. The electrons are assumed
to achieve thermal equilibrium with their surroundings only through collisions with ion cores, and
their velocity distribution in thermal equilibrium follows the Maxwell-Boltzmann distribution. Let
us turn to the ’proof’ of statement (S1) in [52, Sec. VIII]. Consider a 3-dimensional electron gas
in the DL model. The metal has a large extent (in the DL model, it often has an infinite extent).
The electrons are subjected to a constant magnetic field B. We choose it parallel to the third
direction of R3, i.e. B := Be3 with B > 0 and we use the symmetric gauge A(x) := 1

2B × x
s.t. B = ∇ × A(x). We assume that the system has achieved thermal equilibrium and that
an equilibrium state exists. Let Ω be an arbitrary macroscopic element volume of the metal
containing an assembly of N electrons. To lighten the derivation, we assimilate the electrons to
point-particles and the presence of fixed scatters is disregarded. From the fundamental law of
dynamics, an electron moves in the presence of the magnetic field along a circular helix whose
axis is parallel to the magnetic field. Considering the projection of the helical orbits on a plane
orthogonal to the field, the projected orbits are circular. The magnetic moment of the j-th particle
projected along e3 reads as:

µj,3 = µj ·e3 := − e

2mc
Lj ·e3 =

e

2c
(xj,2vj,1−xj,1vj,2) = − 1

B

e

c
vj ·A(xj), j ∈ {1, . . . , N}, (1.1)

where Lj := xj × (mvj) is the gauge-invariant (or kinetic) angular momentum of the j-th particle.
Here and hereafter, e, m and c denote respectively the elementary charge, the electron rest mass
and the speed of light in vacuum. xj = (xj,1, xj,2, xj,3) and vj = (vj,1, vj,2, vj,3) are respectively
the position and velocity vectors of the j-th particle. The Lagrangian of the system is defined as:

L ({xj}, {vj};B) :=

N∑

j=1

(
1

2
mv2

j + µj ·B
)

=

N∑

j=1

(
1

2
mv2

j −
e

c
vj ·A(xj)

)
. (1.2)

The classical Hamiltonian is obtained by performing a Legendre-transform of the Lagrangian:

H ({xj}, {pj};B) :=

N∑

j=1

pj · vj − L ({xj}, {vj};B) =

N∑

j=1

1

2m

(
pj +

e

c
A(xj)

)2
, (1.3)

with: pj,l = pj · el :=
∂L
∂vj,l

({xj}, {vj};B) = mvj,l −
e

c
Al(xj), l = 1, 2, 3,

where pj,l stands for the canonical momentum of the j-th particle projected along the l-th direction.
The thermal average magnetization (along the third direction) in Ω with volume V(Ω) reads as:

1

V(Ω)

∫

Ω

dx1 · · ·
∫

Ω

dxN

∫

R3

dp1 · · ·
∫

R3

dpN

N∑

j=1

µj,3({xj}, {vj}) e−βH({xj},{pj};B)

∫

Ω

dx1 · · ·
∫

Ω

dxN

∫

R3

dp1 · · ·
∫

R3

dpN e−βH({xj},{pj};B)
, (1.4)

where β := (kBT )
−1 is the ’inverse’ temperature and kB denotes the Boltzmann constant. The

integral over each one of the components of the canonical momenta pj runs from −∞ to ∞
in accordance with classical statistics. Inserting (1.1) into (1.4) and remarking that vj,l =
∂pj,l

H({xj}, {pj};B), then the expression in the numerator of (1.4) consists of a sum of 2N
terms whose a generical term is:

e

2cβ

∫

ΩN

dx1 · · · dxN

∫

R3N

dp1 · · · dpN xj,l1∂pj,l2
e−βH({xj},{pj};B), (l1, l2) ∈ {1, 2}2, l1 6= l2.
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In view of (1.3), performing the integrations over the pj,ls gives a null value. Therefore, the
thermal average magnetization in (1.4) vanishes identically. Such a derivation is independent of
the choice of the macroscopic element volume Ω.

What about when considering the ’true’ DL model? In that case, the configuration space Ω
has to be slightly modified since the distances between pairs of particles and between particles
and scatters remain larger than a certain constant (both are assimilated to solid spheres). Also,
the Hamiltonian in (1.3) has to be supplemented with the condition that the particles undergo an
elastic collision when colliding with the ion cores. The rest of the derivation remains unchanged.
Besides, if one initially considers the electron gas in the whole of the metal, then one has to assume
that the gas is confined in a container Λ with reflecting walls in accordance with classical kinetic
theory. Such a confinement can be modeled by a potential energy Uc satisfying Uc(x) = 0 if x ∈ Λ,
Uc(x) = ∞ otherwise. Elastic and specular reflections are assured, and then no kinetic energy is
lost. It follows that the permissible values for the canonical momenta still run from −∞ to ∞,
and the thermal average magnetization vanishes identically. As pointed out in [55, Sec. 26], such
a result is not sensitive to the shape of the container, and to the smoothness of the boundary.

Turning to the interpretation of the BvL theorem, we reproduce the text in [36]: ’The orbits
of a cloud of electrons in space give no net current density in bulk, but build a surface current
orthogonal to the magnetic field. Only the outer electrons feed this diamagnetic field, but since
their ratio to the total number vanishes for larger and larger clouds, in thermodynamic limit no
magnetization results. If the motion of several electrons is confined in a box, a current also develops
along the boundary due to electrons that bounce on it. This current density is opposite and exactly
cancels the surface current due to electrons that do not hit the walls. Thus paramagnetic and
diamagnetic terms compensate and again, no magnetization survives’. See also [55, Sec. 26].

1.2.2 The modern formulations: Assessing the assumptions.

So far, we have focused on the original formulation of the BvL theorem. We now turn to the
modern formulations usually dealing with the classical (Maxwell-Boltzmann) electron gas apart
from the DL model. The BvL theorem is thought of as a basic result and it can be found in any
textbook working with magnetic phenomenon. Some state it only for the classical ideal electron
gas, see e.g. [37, pp. 256]. The statement that is often taken as a reference is the following one,
see [34, Sec. 1.6]:

(S2). At any finite temperature, and in all finite applied electric or magnetic fields, the net
magnetization of a collection of classical electrons in thermal equilibrium vanishes identically.

The statements encountered in literature are generally much deeper. For instance [42, Sec. 4.3]:

(S3). In classical mechanics, there can be no magnetization.

Of the same type, we can cite: In classical statistics, there are no macroscopic magnetic properties
of matter, see [30, Sec. 52], or the phenomenon of diamagnetism does not exist in classical physics,
see [24, p. 168]. Written in this way, statements of type (S3) can lead to some misunderstanding.
Indeed, it is known that the BvL theorem breaks down if the system of classical charged particles
uniformly rotates (as an equilibrium state) after turning on the magnetic field. A textbook model
leading to such a situation and involving the Larmor precession theorem is discussed in [17, Sec.
34.5]. Such classical systems exhibit a non-zero induced magnetization, and therefore diamag-
netism occurs. See [41] for related discussions. The proof given in literature for statements (S2),
(S3) and (S3)-like is standard, and is nothing but a variant of the Van Leeuwen’s derivation. We
shall reproduce the arguments in the next paragraph. In [42, Sec. 4.3] and [34, Sec. 1.6], a classical
non-relativistic interacting electron gas is considered. The many-body interactions and possible
interactions with external electric fields are modeled by an arbitrary potential energy. However,
no assumptions are made regarding the potential energy. In view of the above counterexample
(uniformly rotating systems), the question of validity of the BvL theorem for classical interacting
systems should be addressed. The aim of the two following paragraphs is to give necessary and/or
sufficient conditions on the potential energies assuring the BvL theorem to hold. We successively
treat the case of finite systems and infinite systems (thermodynamic behavior).

5



1.2.2.1 Case of finite systems. Consider a 3-dimensional assembly of N classical electrons
(assimilated to point-particles) confined in a container Λ, say a cube centered at the origin, with
reflecting walls. We assume that the electrons interact with each other, and also that each electron
interacts with an external electric field modeling the underlying medium. The confinement is
modeled by Uc defined as previously, and we denote by Uint and Uel the many-body interactions
and electric potential energy respectively. All the involved potential energies are assumed to be
independent of the particle-velocities. Besides, the system is plunged into a constant magnetic
field B. We choose it as B := Be3, with B > 0 and we use the symmetric gauge A(x) := 1

2B×x.
We suppose that the interactions do not cause the system to rotate after turning on the magnetic
field, and that the degrees of freedom are only translational. We also assume that the system is in
thermal equilibrium with a heat bath. Under such conditions, a stationary state (in equilibrium)
occurs. The Lagrangian and Hamiltonian in (1.2) and (1.3) have respectively to be replaced by:

L̃({xj}, {vj};B) :=

N∑

j=1

(
1

2
mv2

j + µj ·B− Uel(xj)− Uc(xj)

)
− Uint(x1, . . . ,xN ), (1.5)

H̃({xj}, {pj};B) :=

N∑

j=1

(
1

2m

(
pj +

e

c
A(xj)

)2
+ Uel(xj) + Uc(xj)

)
+ Uint(x1, . . . ,xN ). (1.6)

We now give the derivation at a formal level, the convergence issues will be discussed afterwards.
In the canonical ensemble of classical statistical mechanics, the free energy density is given by:

F(β,N,V(Λ);B) := − 1

V(Λ)

1

β
ln (Z(β,N,V(Λ);B)) ,

where Z(β,N,V(Λ);B) denotes the classical canonical partition function defined as:

Z(β,N,V(Λ);B) :=
1

h3NN !

∫

Λ

dx1 · · ·
∫

Λ

dxN

∫

R3

dp1 · · ·
∫

R3

dpN e−βH̃({xj},{pj};B). (1.7)

We added the correction factor h−3N (N !)−1, where h is the Planck’s constant, to make the classical
partition function dimensionless (while making it agree with the quantum behavior in the high-
temperature limit). The integral over each one of the components of the pjs runs from −∞ to ∞
in accordance with classical statistics. The canonical magnetization is defined as:

M(β,N,V(Λ);B) := −∂F
∂B

(β,N,V(Λ);B) =
1

V(Λ)

1

β

∂

∂B
ln (Z(β,N,V(Λ);B)) . (1.8)

To make the connection with the derivation given below statement (S1), the quantity in (1.4) is
nothing but (1.8). Indeed, the quantity in (1.1) can be rewritten as −(∂BH)({xj}, {pj};B). Next,
remark that the classical partition function is invariant under a transformation from canonical
momentum pj,l to kinetic momentum vj,l (the Jacobian of the transformation is equal to 1). Ergo,
the vector potential disappears from the Boltzmann factor, and (1.7) can be rewritten as:

Z(β,N,V(Λ);B) = Z(β,N,V(Λ);B = 0) = λ−3N
β Zconf(β,N,V(Λ)), (1.9)

where λβ denotes the thermal de Broglie wavelength and Zconf the so-called configuration integral :

Zconf(β,N,V(Λ)) :=
1

N !

∫

ΛN

dx1 · · ·dxN e−β
∑N

j=1 Uel(xj)e−βUint(x1,...,xN ). (1.10)

Here, we got rid of
∑N

j=1 Uc(xj) following the convention. The free energy density then reads as:

F(β,N,V(Λ);B) = F(β,N,V(Λ);B = 0) = − 1

V(Λ)

1

β
ln
(
λ−3N
β Zconf(β,N,V(Λ))

)
. (1.11)

Provided that (1.10) exists (in the Lebesgue-sense), the free energy density in (1.11) is well-defined
and B-independent. Due to (1.8), the canonical magnetization vanishes identically. Note that,
using the same method as above, it is argued in [34] that a potential deriving from the Coulomb
force can be considered. But for such a potential, (1.10) is not defined. For the existence of (1.10),
Uint and Uel have to be bounded from below.
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1.2.2.2 Case of infinite systems (thermodynamic behavior). The derivation in Sec.
1.2.2.1 applies to finite systems in which boundary effects usually play a significant role. Turning
to large macroscopic systems, the thermodynamic description is obtained in statistical mechanics
by considering the bulk limit or thermodynamic limit (TL), i.e. taking the limit of an infinitely
large system with a finite particle density: N → ∞, V(Λ) → ∞ while ρ = NV(Λ)−1 > 0 is held
fixed. In this limit, the surface effects disappear and we are left with the bulk properties. Whenever
the thermodynamic limit exists and depends only on the intensive quantities, then the system
has the extensive property which means that the thermodynamic quantities are asymptotically
proportional to the system size. We stress the point that the existence of the TL depends on the
nature of the interactions involved. Indeed, if the interaction potentials decrease fast enough such
that the interactions for a particle mainly come from the first neighbors, then increasing N while
keeping the density fixed has ’almost’ no effect on the bulk, and physical properties are ’almost’
independent of N . However, this is not true anymore if the potential for a particle is dominated
by the influence of far away particles. Such a situation may occur when long-range interactions
are involved (by long-range, it is generally understood that the interaction potentials behave at
long distance like O(|x|−η), 0 < η < 3). Note that systems with long-range interactions are
known to exhibit peculiar behaviors: they can be spatially inhomogeneous, the TL may not exist
and the additivity of energy is usually broken. Getting back to the thermodynamic description,
proving mathematically the existence of the limit Λ ↑ Rd in some sense (typically, by considering
a sequence of convex and bounded domains whose the surface areas do not increase too rapidly
compared to their volume) while NV(Λ)−1 is held fixed, is however not sufficient to establish
a complete connection with thermodynamics. In addition, one has to show the consistency of
the thermodynamic quantities defined by means of the various ensembles (i.e., the equivalence
problem), and also the thermodynamic stability. Both are interrelated. The thermodynamic
stability is a result of the convexity of the free energy density w.r.t. the density of particle ρ. We
refer to [38, Sec. 4] for further details.

When considering large macroscopic systems, it follows from the foregoing that the result of
the BvL theorem holds whenever the TL of (1.11) exists and the equivalence of ensemble holds.
Let us give some generical assumptions leading to this situation. We shall distinguish three cases.

(i) Uint 6= 0 and Uel = 0.

On the basis of physical considerations, the two following assumptions are required: (h1) Uint

is symmetric in the N variables xj (identical particles assumption); (h2) Uint is invariant under
translations. We also suppose: (h3) The configuration integral in (1.10) exists as a Lebesgue-
integral. Clearly, assumptions (h1)-(h3) are not sufficient to assure the existence of the TL. On
the one hand, the attraction forces could be so strong that the system collapses into a bounded
region of R3 as the number of particles increases. This occurs when the TL of (1.11) diverges to
−∞. On the other hand, the repulsion forces could decrease so little with increasing separation
that the TL of (1.11) diverges to ∞. To avoid the first situation, Uint has to satisfy the stability
condition (C1), i.e. there exists c ≥ 0 s.t. ∀N ≥ 1 and ∀xj ∈ R3, Uint(x1, . . . ,xN ) ≥ −Nc. To
avoid the second situation, Uint has to satisfy the temperedness (or ’weak-tempering’) condition
(C2). If Uint is a pair-interaction potential, i.e. of type Uint(x1, . . . ,xN ) = 1

2

∑
i<j Φ(xi−xj) with

Φ Lebesgue-mesurable with values in R∪{∞}, then (C2) amounts to the condition that the pair-
potential Φ is a short-range potential : there exists λ > 3, R0 > 0 and C ≥ 0 s.t. Φ(x) ≤ C|x|−λ

for |x| ≥ R0. We refer to [46, Sec. 3.1] for a precise definition of (C2) for general many-body
interaction potentials, and to [46, Sec. 3.2] for a series of criteria assuring (C1). We also refer
to [20, Sec. 4] for further discussions on these conditions. Under assumptions (h1)-(h3) and
(C1)-(C2), it is proven in [46, Sec. 3.3] that the TL of (1.11) exists when the limit Λ ↑ R3 is
taken in the Fisher-sense, see [46, Def. 2.1.2]. Note that the factor 1/N ! in (1.10) is absolutely
necessary to obtain such a result. Moreover, the equivalence between ensembles holds (and ergo,
the thermodynamic stability follows). In the presence of hard cores (i.e. when Uint takes the value
∞ for the excluded configurations), the TL of (1.11) is a convex function w.r.t. ρ if ρ is less than
a critical value (the so-called ’close-packing’ density).

(ii) Uint = 0 and Uel 6= 0.
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In that case, (1.11) can be decomposed into two contributions:

F(β,N,V(Λ);B = 0) = − 1

βV(Λ)
ln

(
1

N !

(
V(Λ)λ−3

β

)N)
+ Fel(β,N,V(Λ)), (1.12)

where the first term in the r.h.s. is nothing but the free energy density of the ideal electron gas
and Fel the contribution arising from the external potential defined as:

Fel(β,N,V(Λ)) := − N

βV(Λ)
ln

(
1

V(Λ)

∫

Λ

dx e−βUel(x)

)
. (1.13)

In view of (1.13), whenever limΛ↑R3 V(Λ)−1
∫
Λ dx e−βUel(x) exists and is non-zero, the TL of (1.12)

exists. This requires Uel to be bounded from below otherwise the system collapses. Note that if
Uel → ∞ when |x| ↑ ∞ then the TL diverges to ∞ (the system flies apart). Now, let us turn
to the generical situations. There are two: either the external potential is homogeneous or weak-
inhomogeneous. The first situation corresponds to translational invariant potentials. Since the
case of Uel = cste is obvious, then consider that Uel is periodic, say over an infinite regular lattice in
R3 with unit-cell Γ. This models perfect crystalline solids. Whenever e−βUel is Lebesgue-integrable
over Γ, limΛ↑R3 V(Λ)−1

∫
Λ dx e−βUel(x) = V(Γ)−1

∫
Γ dx e−βUel(x) and thus the TL of (1.12) exists.

The second situation corresponds to slowly varying potentials. A widespread model is as follows.
Consider a sequence of domains {ΛL}L≥1 obtained by an isotropic dilatation of a bounded subset
Λ1 ⊂ R3, i.e. Λ = ΛL := {x : x = Ly, y ∈ Λ1}. On ΛL, set Uel,L(x) := Uel(L

−1x) with Uel initially
defined on Λ1. When L is large enough, then the potential is slowly varying on ΛL. Let {NL}L≥1

be any sequence of integers s.t. NLV(ΛL)
−1 = N1V(Λ1)

−1 = ρ > 0. Consider now the sequence
{F(β,NL,V(ΛL))}L≥1 with F(β,NL,V(ΛL)) defined as in (1.12). Whenever e−βUel is Lebesgue-
integrable over Λ1, then limL↑∞ V(ΛL)

−1
∫
ΛL

dx e−βUel,L(x) = V(Λ1)
−1
∫
Λ1

dx e−βUel(x) and the

sequence {F(β,NL,V(ΛL))}L≥1 converges. Therefore, the TL of (1.12) exists. We mention that
there exists another approach to treat weak-inhomogeneous systems. Suppose that the external
potential is s.t. the confining container Λ can be divide into subregions small enough to allow the
potential energy to be ’almost’ constant in them, and in the same time, large enough so that the
subregions are macroscopic and statistically independent from each other. All the parts have to
be in relative thermal equilibrium, i.e. having a unique temperature. This situation is usually
obtained by considering macroscopic fields. We will get back on it in the next paragraph. In view
of the latter situation, one would be tempted to use the TL description on each subregion since
they are ’almost’ homogeneous, and then to derive a barometric formula giving the value of the TL
for each macroscopic position. However, this method fails since the subregions are not individual
closed systems. The grand-canonical ensemble lends itself better to this kind of description.

(iii) Uint, Uel 6= 0.

This situation is considered in [22, 21]. Let us start with [22]. Uint is a pair-interaction potential
of type

∑
i<j Φ(xi − xj) where Φ = q + γ3K(γ· ), with γ a positive parameter. q is a hard-core

potential (then the electrons are assimilated to spherical hard-cores) of short-range type obeying:
q(x) = q(−x) ∀x ∈ R3, q(x) = ∞ for |x| < r0 and |q(x)| < C|x|−3−ǫ for |x| ≥ r0. Here C, r0, ǫ
are positive constants. K obeys the assumptions of [12, Thm. 1]; its range is proportional to
γ−1. Note that q and K both satisfy the stability and temperedness conditions (C1)-(C2). Uel is
given by ψ(γ· ) where ψ is periodic over an infinite cubic lattice, uniformly bounded and Riemann-
integrable over any bounded region of R3. Gates et al. were interested in the van der Waals limit
of the bulk free energy density consisting in taking the limit γ → 0 in the TL. Although the above
assumptions are chosen to address the van der Waals limit existence question, the authors mention
that whenever Uel is periodic and bounded from below, the TL of the free energy density exists
and the equivalence between the canonical and grand-canonical ensembles holds. They refer to
[12, Thm. 1] and mention that the proof can be readapted to include such external potentials.
Subsequently, we turn to [21]. Uint is typically a many-body interactions potential satisfying
the conditions of stability and temperedness (C1)-(C2). The Uels considered are typically step
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potentials and uniform limits of sequences of steps potentials. Let us go further into details. A
step potential φr of r steps is defined as φr(x) =

∑r
i=1 aiχΛi

(x) on a bounded subset Λ ⊂ R3

where ai ∈ R, {Λi}ri=1 is a partition of Λ into r disjoint subregions s.t. ∪r
i=1Λi = Λ, and χΛi

is the
characteristic function of Λi. It is assumed that each Λi has a connected interior, V(Λi)V(Λ)

−1 =
ωi with ωi ∈ R and V(Λi) → ∞ in the Fisher-sense. Consider a sequence of such step potentials
denoted by {(Λα, φr,α)}α, where each φr,α is paired with one member of an expanding sequence
of domains {Λα}α. The sequence {(Λα, φr,α)}α is obtained from an initial pair (Λ0, φr,0) (φr,0
is a step function defined on a bounded domain Λ0) by means of an isotropic expansion, that

is Λα := {x : x = α
1
3y, y ∈ Λ0} and φr,α(x) = φr,0(α

− 1
3x). Then V(Λα) = αV(Λ0) and

V(Λα) → ∞ in the Fisher-sense as α → ∞. Let {N(Λα)}α be any sequence of positive integers
s.t. N(Λα)V(Λα)

−1 → ρ0 = N(Λ0)V(Λ0)
−1 as V(Λα) → ∞. Define the sequence of free energy

density {F(β,N(Λα),V(Λα))}α with F(β,N(Λα),V(Λα)) as in (1.11) (but with φr,α instead of
Uel in (1.10)). Here is the first result in [21, Thm. 2.1]. Provided Uint satisfies in addition the
asymptotically additive condition in [21, Def. 2.1 (ii)], then the sequence {F(β,N(Λα),V(Λα))}α
converges when α → ∞. The same result holds if one considers instead a sequence {(Λα, φα)}α
constructed as above, where φα is a uniform limit of a sequence of step potentials. Moreover,
under the same assumptions a general expression for the TL is derived in [21, Coro. 5.1] from
which the equivalence between the canonical and grand-canonical ensembles is proven.
Finally, we refer to [33] for the treatment of macroscopic fields in the grand-canonical ensemble.

1.2.3 Questioning the validity for classical interacting systems.

All the above discussions lean on the assumption that the involved interaction potential energies
are independent of the particle velocities. This feature allowed us to get rid of the magnetic field
via a change of variables in the classical translational partition function. In [15, 16], Essén et al.
have recently revisited classical diamagnetism, and discussed the validity of the BvL theorem. In
particular, they consider a classical charged particles system described by the so-called Darwin
Lagrangian in [15, Eq. (13)] (instead of (1.5)) which takes into account the internal magnetic fields
generated by the moving charged particles of the system itself. Although there is no close formula
for the Darwin Hamiltonian, an expression for the second-order Hamiltonian can be found in [14,
Eq. (1)]. Note that the internal magnetic potential vectors depend on the particle velocities. From
formal arguments, Essén et al. show that the BvL theorem breaks down whenever one takes into
account, through the Darwin magnetic interactions, the internal magnetic fields produced by the
moving particles. In this condition, classical charged particles systems do exhibit diamagnetism.

1.3 The motivations of the paper.

In the light of Sec. 1.2, handling the presence of an external magnetic field acting on a classical
charged particles system in thermal equilibrium does not cause any difficulty in the framework
of classical statistical mechanics since the magnetic field simply disappears from the translational
partition function after a change of variables. When dealing with large macroscopic systems, the
proof of the BvL theorem therefore reduces to proving the existence of the thermodynamic limit for
the zero-field free energy density. As pointed out, this requires suitable assumptions on the poten-
tial energies considered. An alternative proof of the BvL theorem would be to use the framework
of quantum statistical mechanics. Provided the thermodynamic limit of the magnetization exists,
say for a confined electron gas obeying Fermi-Dirac statistics placed in a weak uniform magnetic
field and in the canonical situation, one expects to recover the result of the BvL theorem (at least,
within the linear-response theory) by taking the semiclassical limit ~ → 0 (here, ~ is seen as a
parameter). Due to the presence of the magnetic field, proving the thermodynamic limit of the
magnetization and magnetic susceptibility is mathematically a tricky problem to address. Indeed,
singular terms appear in the thermodynamic limit arising from the linear growth of the magnetic
vector potential. An interesting problem to tackle would consist in recovering the result of the
BvL theorem in the semiclassical limit when considering an external electric potential obeying for
instance assumptions of same type as those in [22]. This paper takes place in this direction.
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The system we consider is typically a 3-dimensional confined non-relativistic electron gas, obey-
ing Fermi-Dirac statistics and placed in a non-zero external uniform magnetic field. The particles
are subjected to external electric fields modeled by a class of translational invariant potentials.
After thermal equilibrium is achieved, we assume that the gas is sufficiently diluted so that the
many-body interactions can be neglected. The dynamics of a single-particle is described by the
usual Pauli Hamiltonian. Theorem 1.1 is our main result. Under suitable assumptions on the
external potential, see assumptions (Ap)-(Ar) pp. 11, we derive an asymptotic expansion for the
bulk zero-field canonical magnetic susceptibility in the semiclassical limit. The asymptotic holds
for any ’inverse’ temperature β > 0. The leading term is quadratic in the ’Planck’s constant’, inde-
pendent of the external potential, and moreover, coincides with the leading term of the asymptotic
expansion in the high-temperature regime. Since the bulk zero-field canonical magnetic suscep-
tibility vanishes identically when performing the limit ~ → 0, the result of the BvL theorem is
recovered within the linear-response theory. A series of remarks placed below Theorem 1.1 discuss
the assumptions, the results and the link with some well-known related results in literature.

In Mathematical-Physics literature, a few works deal with the magnetic response of an elec-
tron gas in the semiclassical limit, see e.g. [18, 19, 7]. In [7], Combescure et al. investigated the
semiclassical limit of the bulk grand-canonical orbital magnetization and susceptibility in weak
magnetic field and in various regimes of temperature. To make the connection between our present
work and theirs, we shall summarize their main results. The system considered is a n-dimensional
non-relativistic electron gas obeying Fermi-Dirac statistics while neglecting the spin, and placed in
a magnetic field. The particles interacts with a confining potential obeying the growth condition:
V (x) ≥ c0(1+ |x|2) s

2 for some s, c0 > 0. The vector potential and electric potential are assumed to
be smooth functions whose the derivatives satisfy suitable assumptions. When the temperature is
large compared to ~, typically in the regimes β ≤ ~ǫ−

2
3 and ~1−ǫ ≤ T ≤ ~

2
3−ǫ for some ǫ > 0, they

prove that the magnetization and orbital susceptibility in weak magnetic field admit a complete
asymptotic expansion in powers of ~. By performing successively the limits β ↑ ∞ and ~ ↓ 0
in the leading term of the asymptotic expansion derived in the regime β ≤ ~ǫ−

2
3 , they recover

the Landau orbital susceptibility formula for the 2-dimensional free electron gas. Turning to the
regime of temperatures of the same order as ~ (’mesoscopic regime’), typically ~β ∈ [σ0, σ1] with
σ1 > σ0 > 0, they introduce a ’smeared out’ magnetization and orbital susceptibility (different
from the ’true’ quantities). They prove that these two quantities in weak magnetic field can be
split into two parts: ’an average part’ having a complete asymptotic expansion in ~, and an ’os-
cillating part’ in ~. The oscillating part is identified with the contribution of the periodic orbits
of the classical motion, and it is a generalization of the de Haas-van Alphen oscillations.

For completeness’ sake, we mention that the rigorous study of orbital magnetism and more
generally of diamagnetism, have been the subject of numerous works. We list below the main ones
among them. The first rigorous proof of the Landau susceptibility formula for the free electron gas
came as late as 1975, due to Angelescu et al. in [1]. Then in 1990, Helffer et al. developed for the
first time in [23] a rigorous theory based on the Peierls substitution and considered the connection
with the diamagnetism of Bloch electrons and the de Haas-van Alphen effect. These and many
more results were reviewed in 1991 by G. Nenciu in [39]. In 2012, Briet et al. gave for the first time
in [5] a rigorous justification of the Landau-Peierls approximation for the bulk zero-field orbital
susceptibility of Bloch electron gases. Recently, the present author revisited the atomic orbital
magnetism in [48] and gave a rigorous derivation of the diamagnetic Larmor contribution and the
’complete’ orbital Van Vleck paramagnetic contribution in the tight-binding approximation.

1.4 The setting and the main result.

Consider a 3-dimensional quantum gas composed of a large number of non-relativistic identical
and indistinguishable particles, with charge q 6= 0, mass m = 1 and spin 1

2 , obeying Fermi-Dirac
statistics. The Fermi gas is confined in a box, and the system is placed in an external non-
zero constant magnetic field together with an external periodic potential. This latter may model
the electric potential created by an ideal lattice of fixed ions in crystalline ordered solids. The
effects arising from the spin-orbit coupling are disregarded. Furthermore, the interactions between
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particles are neglected (strongly diluted gas assumption) and the gas is at thermal equilibrium.
Let us make our assumptions more precise. The gas is confined in a cubic box ΛL := (−L

2 ,
L
2 )

3

with L > 0, centered at the origin of coordinates. We denote its Lebesgue-measure by |ΛL|. We
consider a uniform magnetic field B := Be3, e3 := (0, 0, 1) parallel to the third direction of the
canonical basis of R3. We choose the symmetric gauge, i.e. the magnetic vector potential is defined
by A(x) := 1

2B×x = Ba(x), a(x) := 1
2 (−x2, x1, 0) so that B = ∇×A(x) and ∇·A(x) = 0. In the

following, we denote by b := q
c
B ∈ R the cyclotron frequency. The electric potential V : R3 → R

(hereafter, we use the same notation to denote the electric potential energy) satisfies:

(Ap). V is periodic with respect to the Z3-lattice.

(Ar). V is globally Hölder-continuous with exponent θ ∈ (0, 1], i.e. there exists a real C > 0 s.t.

sup
(x,y)∈R

6

x 6=y

|V (x) − V (y)|
|x− y|θ ≤ C <∞. (1.14)

The choice of the assumptions (Ap) and (Ar) are discussed below Theorem 1.1, see Remark 1.2.
Hereafter, we denote by Ω = (− 1

2 ,
1
2 )

3 the unit-cell centered at the origin of coordinates (which
corresponds to the Wigner-Seitz cell of the Z3-lattice), and we denote by |Ω| its Lebesgue-measure.

Let us first introduce the Hamiltonian determining the dynamics of a particle of spin 1
2 . Denote

hL := L2(ΛL). The underlying Hilbert-space is the space of spinors hL ⊕ hL ≡ L2(ΛL;C
2). In

the absence of relativistic corrections, the Pauli operator takes into account the energy interaction
−µS · B (the so-called Stern-Gerlach term) between the spin magnetic moment µS := gκS and
the magnetic field B. Here κ := q

2c and g is the Landé g-factor. Without loss of generality, we
assume that g ≤ 2 in the following (note that g = 2 in the case of the electrons). Then define on
C∞
0 (ΛL)⊕ C∞

0 (ΛL) the family of Pauli-like operators:

Hh,L(b) :=
1

2
(−ih∇− ba)2Id −

g

4
hbσ3 + V Id =

(
H−

h,L(b) 0

0 H+
h,L(b)

)
= H−

h,L(b)⊕H+
h,L(b), (1.15)

where σ3 :=
(
1 0
0 −1

)
stands for the ’third’ Pauli matrix, Id the identity operator on hL ⊕ hL, and:

H∓
h,L(b) :=

1

2
(−ih∇− ba)2 ∓ g

4
hb+ V, h > 0, b ∈ R. (1.16)

For any h > 0 and b ∈ R, (1.15) extends to a family of self-adjoint and semi-bounded operators for
any L ∈ (0,∞), denoted again by Hh,L(b), with domain D(Hh,L(b)) = D(H−

h,L(b)) ⊕D(H+
h,L(b)).

Under our conditions, D(H s
h,L(b)) := H1

0(ΛL) ∩ H2(ΛL), s ∈ {−,+}. This definition corresponds

to choose Dirichlet boundary conditions on ∂ΛL. Moreover, since the inclusion H1
0(ΛL) →֒ L2(ΛL)

is compact, then H s
h,L(b) has a purely discrete spectrum with an accumulation point at infinity.

The same holds true for Hh,L(b) since σ(Hh,L(b)) = σ(H−
h,L(b))∪ σ(H+

h,L(b)). Hereafter, we denote

by {λs,(j)
h,L (b)}j≥1, the set of eigenvalues of H s

h,L(b) counting multiplicities and in increasing order.

When ΛL fills the whole space, define on C∞
0 (R3)⊕ C∞

0 (R3) the Pauli-like operator:

Hh(b) :=

(
H−

h
(b) 0
0 H+

h
(b)

)
= H−

h
(b)⊕H+

h
(b), (1.17)

where:

H∓
h
(b) :=

1

2
(−ih∇− ba)2 ∓ g

4
hb+ V, h > 0, b ∈ R. (1.18)

By [49, Thm. B.13.4], ∀h > 0 and ∀b ∈ R, (1.17) is essentially self-adjoint and its self-adjoint
extension, denoted again by Hh(b), is bounded from below. Due to the assumption (Ap), it only
has essential spectrum. Moreover, the following inequality holds ∀L > 0, ∀b ∈ R and ∀h > 0:

−‖V ‖∞ ≤ h
|b|
2

(
1− g

2

)
− ‖V ‖∞ ≤ Eh(b) ≤ inf σ (Hh,L(b)) , Eh(b) := inf σ (Hh(b)) , (1.19)
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‖V ‖∞ := supx∈(− 1
2 ,

1
2 ]
|V (x)|. The lower bound for Eh(b) stems from the variational principle, the

upper bound from the min-max principle, see [45, Sec. XIII.1]. Remind that we assumed g ≤ 2.
Next, we introduce the Hamiltonian determining the dynamics of N confined Fermions of spin

1
2 with identical spin projection m 1

2
= s 1

2 , s ∈ {−,+}. Denoting by
∧

the antisymmetric tensor

product, let hN,a
L :=

∧N
1 hL be the antisymmetric N -particles Hilbert space. It is a subspace of

hNL :=
⊗N

1 hL ∼= L2(ΛN
L ), and consists of those functions odd under interchange of coordinates. In

view of (1.16), for any L > 0 and any integer N ≥ 2, define on
∧N

1 D(H s
h,L(b)) ⊂ hN,a

L the family
of operators:

H
s (N)
h,L (b) := H s

h,L(b)⊗ Id ⊗ · · · ⊗ Id + · · ·+ Id ⊗ · · · ⊗ Id ⊗H s
h,L(b), h > 0, b ∈ R, (1.20)

where the r.h.s. of (1.20) consists of ’N terms’ and Id denotes the identity operator on hL. By [44,
Thm. VIII.33], ∀h > 0 and ∀b ∈ R, (1.20) extends to a family of self-adjoint and semi-bounded

operators ∀L ∈ (0,∞), denoted again by H
s (N)
h,L (b). We denote by D(H

s (N)
h,L (b)) its domain.

Then, we turn to the second quantization ofH s
h,L(b). Let FL(hL) := C⊕⊕N≥1 h

N
L be the Fermi

Fock space. Here, ⊕ denotes the direct sum in the sense of Hilbert spaces, i.e. the completion of
the algebraic direct sum. Let FaL(hL) := C⊕⊕N≥1 h

N,a
L be the antisymmetric Fermi Fock space.

From (1.20) and by setting H
s (1)
h,L (b) := H s

h,L(b), introduce in FaL(hL) the family of operators:

dΓ
(
H s

h,L(b)
)
:= 0⊕

⊕

N≥1

H
s (N)
h,L (b), h > 0, b ∈ R. (1.21)

From [44, pp. 302], ∀h > 0, ∀b ∈ R and ∀L ∈ (0,∞), (1.21) is essentially self-adjoint on the domain

{Ψ = (Ψ(0),Ψ(1), . . .) ∈ FaL(hL) : Ψ(n) = 0 for n large enough, andΨ(n) ∈ D(H
s (n)
h,L (b)) for each n}.

Its self-adjoint closure, denoted again by dΓ(H s
h,L(b)), is the second quantization of H s

h,L(b). Also,

define in FaL(hL) the number operator as the second quantization of the identity Id on hL:

dΓ (Id) := 0⊕
⊕

N≥1

N, (1.22)

acting in any hN,a
L as the multiplication with N . Its self-adjoint closure is denoted again by

dΓ(Id). On the same way, introduce also the second quantization of Hh,L(b) = H−
h,L(b)⊕H+

h,L(b)

and Id = Id ⊕ Id in FaL(hL ⊕ hL) denoted respectively by dΓ(Hh,L(b)) and dΓ(Id).

Let us now define some quantities related to the confined Fermi gas of spin 1
2 introduced above

within the framework of quantum statistical mechanics. In the grand-canonical ensemble, let
(β, z, |ΛL|) be the fixed external parameters. Here β := (kBT )

−1 > 0 is the ’inverse’ temperature
(kB is the Boltzmann constant) and z := eβµ > 0 (µ ∈ R is the chemical potential) is the fugacity.
When dealing with the canonical ensemble, (β, ρ, |ΛL|) are the fixed external parameters, with
ρ > 0 the density of particles. The number of particles is related to the density by NL = ρ|ΛL|.
For any L > 0, β > 0, z > 0, b ∈ R and h > 0, the grand-canonical partition function reads as,
see e.g. [3]:

Ξh,L(β, z, b) := Tr
FaL(hL⊕hL)

{
e−β[dΓ(Hh,L(b))−µdΓ(Id)]

}
. (1.23)

From (1.21) and (1.22), introduce under the conditions of (1.23):

Ξs
h,L(β, z, b) := Tr

FaL(hL)

{
e−β[dΓ(Hs

h,L(b))−µdΓ(Id)]
}
, s ∈ {−,+}. (1.24)

By the exponential law for Fock spaces, see e.g. [11, Sec. 5.6], (1.23) can be rewritten as:

Ξh,L(β, z, b) =
∏

s∈{−,+}

Ξs
h,L(β, z, b) =

∏

s∈{−,+}

∞∏

j=1

(
1 + ze−βλ

s,(j)
h,L

(b)
)
. (1.25)
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The product over the index s in (1.25) reflects the fact that, in the grand-canonical formalism,
the Fermi gas of spin 1

2 is treated as two independent subsystems of Fermions with identical
spin projection m 1

2
, but with opposite sign: m 1

2
= − 1

2 and m 1
2
= 1

2 . Ergo, the grand-canonical
quantities associated to the Fermi gas are obtained by superposing the contributions coming from
each one of the subsystems treated separately. From now on, we define the grand-canonical
quantities only for the Fermi gas of spin 1

2 with identical spin projection m 1
2
= s 1

2 , s ∈ {−,+}.
For any L > 0, β > 0, z > 0, b ∈ R and h > 0, the finite-volume grand-canonical pressure and
density of particles are respectively defined by, see e.g. [3, 1]:

P s
h,L(β, z, b) :=

1

β|ΛL|
ln
(
Ξs

h,L(β, z, b)
)
=

1

β|ΛL|

∞∑

j=1

ln
(
1 + ze−βλ

s,(j)
h,L

(b)
)
, (1.26)

ρs
h,L(β, z, b) := βz

∂P s
h,L

∂z
(β, z, b) =

1

|ΛL|

∞∑

j=1

ze−βλ
s,(j)
h,L

(b)

1 + ze−βλ
s,(j)
h,L

(b)
. (1.27)

Since the semigroups {e−βHs
h,L(b), β > 0}, s ∈ {−,+} are trace-class ∀L > 0, ∀h > 0 and ∀b ∈ R,

see [4, Eq. (2.12)], then (1.25) is well-defined by [3, Prop. 5.2.22]. Therefore, the series in (1.26)
and (1.27) are absolutely convergent. Under the same conditions, µ 7→ P s

h,L(β, e
βµ, b) is a convex

function on R and b 7→ P s
h,L(β, z, b) is an even function on R. Moreover, from [4, Thm. 1.1 (i)],

∀L > 0, ∀β > 0, ∀b ∈ R and ∀h > 0, P s
h,L(β, · , b) admits an analytic extension to the complex

domain D(Es
h
(b)) := C \ (−∞,−eβE

s
h(b)] with Es

h
(b) := inf σ(H s

h
(b)). We denote by P̂ s

h,L(β, · , b)
the analytic continuation of P s

h,L(β, · , b) to D(Es
h
(b)). Furthermore, ∀L > 0, ∀β > 0 and ∀h > 0,

P s
h,L(β, · , · ) is jointly real analytic in (z, b) ∈ (0,∞)×R. This allows us to define the finite-volume

grand-canonical magnetization and magnetic susceptibility respectively as the first and second
derivative of the pressure w.r.t. the intensity B of the magnetic field, see e.g. [1, Prop. 2]:

Ms (GC)
h,L (β, z, b) :=

(q
c

) ∂P s
h,L

∂b
(β, z, b),

X s (GC)
h,L (β, z, b) :=

(q
c

)2 ∂2P s
h,L

∂b2
(β, z, b).

Note that, for each one of the quantities defined above, the contributions corresponding to s = +
and s = − are identical when the magnetic field vanishes, see (1.16).

When ΛL fills the whole space (i.e. in the limit L ↑ ∞), the thermodynamic limits of the four
grand-canonical quantities defined above generically exist, see e.g. [6, Thms. 1.1 & 1.2] and [5,
Sec. 3.1]. Denoting ∀β > 0, ∀z > 0, ∀b ∈ R and ∀h > 0 the bulk grand-canonical pressure by:

P s
h (β, z, b) := lim

L↑∞
P s

h,L(β, z, b), (1.28)

then under the same conditions, we have the following point-wise convergences:

ρs
h(β, z, b) := βz

∂P s
h

∂z
(β, z, b) = lim

L↑∞
βz
∂P s

h,L

∂z
(β, z, b), (1.29)

Ms (GC)
h

(β, z, b) :=
(q
c

) ∂P s
h

∂b
(β, z, b) = lim

L↑∞

(q
c

) ∂P s
h,L

∂b
(β, z, b), (1.30)

X s (GC)
h

(β, z, b) :=
(q
c

)2 ∂2P s
h

∂b2
(β, z, b) = lim

L↑∞

(q
c

)2 ∂2P s
h,L

∂b2
(β, z, b), (1.31)

and the convergences are compact w.r.t. (β, z, b) ∈ (0,∞)×(0,∞)×R. Hence, the limit L ↑ ∞ com-
mutes with the first derivative (resp. the first two derivatives) of the pressure w.r.t. the fugacity z
(resp. w.r.t. the cyclotron frequency b). Note that under the conditions of (1.28), µ 7→ P s

h
(β, eβµ, b)

is convex on R as point-wise limit of a sequence of convex functions and b 7→ P s
h
(β, z, b) is even on

R as point-wise limit of a sequence of even functions. Moreover, from [4, Thm. 1.1 (ii)], ∀β > 0,
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∀b ∈ R and ∀h > 0, P s
h
(β, · , b) admits an analytic extension to the domain D(Es

h
(b)). Further,

∀β > 0 and ∀h > 0, P s
h
(β, · , · ) is jointly smooth in (z, b) ∈ (0,∞)× R, see [47].

Getting back to the Fermi gas of spin 1
2 , the bulk grand-canonical quantities are obtained by

adding the two contributions corresponding to s = − and s = +. Hereafter, we denote by Ph ,

ρh , M(GC)
h

and X (GC)
h

respectively the bulk grand-canonical pressure, density, magnetization and
magnetic susceptibility of the Fermi gas.

Next, we switch to the canonical conditions (still within the grand-canonical ensemble) and we
assume that the density of particles of the Fermi gas of spin 1

2 ρ > 0 is a fixed external parameter.
Denote ∀β > 0, ∀ρs > 0, ∀b ∈ R and ∀h > 0 by zs

h
(β, ρs , b) ∈ (0,∞) the unique solution of:

ρs
h(β, z, b) = ρs > 0, s ∈ {−,+}. (1.32)

The inversion of the relation between the bulk density and the fugacity z relies on the fact that
∀β > 0, ∀b ∈ R and ∀h > 0, z 7→ ρs

h
(β, z, b) is a strictly increasing function on (0,∞) and actually

defines a C∞-diffeomorphism of this interval into itself, see [47, 5]. Since ρ−
h
(β, z, 0) = ρ+

h
(β, z, 0)

when the magnetic field vanishes, then z−
h
(β, ρs , 0) = z+

h
(β, ρs , 0). By setting ρ = ρ− + ρ+ > 0

and ρ− = ρ+, we hereafter denote ∀β > 0 and ∀h > 0 by zh(β,
ρ
2 , 0) > 0 the unique solution of:

ρ = ρh(β, z, 0), ρh(β, z, 0) := ρ−
h
(β, z, 0) + ρ+

h
(β, z, 0) = 2ρs

h(β, z, 0). (1.33)

From (1.30) and (1.31), the bulk grand-canonical magnetization and magnetic susceptibility of the
Fermi gas of spin 1

2 at fixed density ρ > 0 are respectively defined ∀β > 0, ∀b ∈ R and ∀h > 0 as:

M(GC)
h

(β, ρ, b) := M− (GC)
h

(
β, ρ−, b

)
+M+(GC)

h

(
β, ρ+, b

)
, (1.34)

X (GC)
h

(β, ρ, b) := X− (GC)
h

(
β, ρ−, b

)
+ X+(GC)

h

(
β, ρ+, b

)
, (1.35)

where we set ρ = ρ− + ρ+, ρs > 0 and with:

Ms (GC)
h

(β, ρs , b) := Ms (GC)
h

(β, zs
h(β, ρ

s , b), b) , s ∈ {−,+}, (1.36)

X s (GC)
h

(β, ρs , b) := X s (GC)
h

(β, zs
h(β, ρ

s , b), b) . (1.37)

Since b 7→ P s
h
(β, z, b) is an even function on R, then when the magnetic field vanishes:

M(GC)
h

(β, ρ, 0) = 0; (1.38)

and when ρ− = ρ+ in addition, (1.35) becomes:

X (GC)
h

(β, ρ, 0) = X (GC)
h

(
β, zh

(
β,
ρ

2
, 0
)
, 0
)
= 2X s (GC)

h

(
β, zh

(
β,
ρ

2
, 0
)
, 0
)
. (1.39)

The above procedure is the usual one which allows one to mimic the canonical conditions
within the grand-canonical ensemble, see e.g. [1]. We emphasize that, in thermodynamic limit the
grand-canonical quantities at fixed density ρ may not coincide with the corresponding quantities
defined in the canonical ensemble for the corresponding density ρ.

Before stating our main result involving (1.39), we go back to the ’true’ canonical ensemble.
For any L > 0, β > 0, b ∈ R and h > 0 the canonical partition function of the confined Fermi gas
with identical spin projection m 1

2
= s 1

2 at fixed density ρs > 0 is defined as, see e.g. [46]:

Z s
h,L(β, ρ

s , b) := Tr
h
N s

L
,a

L

{
e−βH

s (N s
L

)

h,L
(b)

}
, N s

L := ρs |ΛL|, s ∈ {−,+}. (1.40)

It is related to the grand-canonical partition function in (1.24) via, see e.g. [24]:

Ξs
h,L(β, z, b) =

∞∑

n=0

znTr
h
n,a
L

{
e−βH

s (n)
h,L

(b)
}
.
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Furthermore, under the conditions of (1.40) the canonical partition function can be rewritten from
the finite-volume grand-canonical pressure in (1.26) as follows, see e.g. [8, Eq. (2.27)]:

Z s
h,L(β, ρ

s , b) =
1

2iπ

∫

C

dζ
1

ζ



exp

(
β
ρs P̂

s
h,L(β, ζ, b)

)

ζ




N s
L

, (1.41)

where C is any positively oriented simple closed contour surrounding the origin and avoiding
the cut (−∞,−eβE

s
h(b)], and P̂ s

h,L(β, · , b) is the analytic continuation of P s
h,L(β, · , b) to D(Es

h
(b)).

Note that the canonical partition function associated to the Fermi gas of spin 1
2 reads as, see e.g.

[46, 24]:

Zh,L(β, ρ, b) := Tr∧NL
1 (hL⊕hL)

{
e−βdΓ(Hh,L(b))

}
, NL := ρ|ΛL|, (1.42)

where
∧NL

1 (hL⊕hL) is the NL-fold antisymmetric tensor product of hL⊕hL. Since
∧NL

1 (hL⊕hL) ∼=
⊕NL

N+
L
=0

h
N

+
L
,a

L ⊗ h
NL−N

+
L
,a

L with N+
L +N−

L = NL, then (1.42) can be rewritten in terms of (1.40).

For any L > 0, β > 0, b ∈ R and h > 0 the free energy density of the confined Fermi gas with
identical spin projection m 1

2
= s 1

2 at fixed density ρs > 0 is defined as, see e.g. [46, 24]:

F s
h,L(β, ρ

s , b) := − 1

β|ΛL|
ln
(
Z s

h,L(β, ρ
s , b)

)
, s ∈ {−,+}. (1.43)

From [4, Coro. 3.9], ∀L > 0, ∀β > 0, ∀ρs > 0 and ∀h > 0, b 7→ F s
h,L(β, ρ

s , b) is an even and
real analytic function on R. This latter feature allows us to define the finite-volume canonical
magnetization and magnetic susceptibility respectively as the first and second derivative of the
free energy density w.r.t. the intensity B of the magnetic field, see e.g. [4, Eq. (3.17)]:

Ms (C)
h,L (β, ρs , b) := −

(q
c

) ∂F s
h,L

∂b
(β, ρs , b),

X s (C)
h,L (β, ρs , b) := −

(q
c

)2 ∂2F s
h,L

∂b2
(β, ρs , b). (1.44)

We are now ready to state the main result of this paper:

Theorem 1.1. Suppose that the assumptions (Ap) and (Ar) hold.

(i). For any β > 0 and ρs > 0, s ∈ {−,+} there exists 0 < ĥ ≤ 1 s.t. ∀h ∈ (0, ĥ], the canonical
zero-field magnetic susceptibility of the Fermi gas of spin 1

2 with identical spin projection m 1
2
= s 1

2
admits the thermodynamic limit. Moreover, for such hs the thermodynamic limit coincides with
the bulk grand-canonical zero-field magnetic susceptibility defined in (1.37) (with b = 0) for the
corresponding density, i.e.

X s (C)
h

(β, ρs , 0) := lim
L↑∞

X s (C)
h,L (β, ρs , 0) = X s (GC)

h
(β, ρs , 0) . (1.45)

(ii). For any β > 0, ρ > 0 with ρ = ρ− + ρ+ and ρs > 0, and 0 < h ≤ ĥ denote:

X (C)
h

(β, ρ, 0) := X− (C)
h

(
β, ρ−, 0

)
+ X+(C)

h

(
β, ρ+, 0

)
= X (GC)

h
(β, ρ, 0) . (1.46)

By setting ρ− = ρ+, (1.46) admits the following asymptotic expansion in the semiclassical limit:

X (C)
h

(β, ρ, 0) = X
(orbit)

h
(β, ρ) + X

(spin)
h

(β, ρ) + o(h2) when h ↓ 0, (1.47)

and the leading terms read as:

X
(orbit)

h
(β, ρ) := −1

3

( q
2c

)2
ρβh2, (1.48)

X
(spin)

h
(β, ρ) :=

g2

4

( q
2c

)2
ρβh2. (1.49)
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Remark 1.2 (Comments on the assumptions (Ap) and (Ar)). Let us first discuss (Ap).
Except for particular systems, proving the existence of the thermodynamic limit requires some
invariance properties for the infinite-volume Hamiltonian. In our conditions, (1.17) is invariant
under the magnetic translations of the lattice, see e.g. [39, Sec. V]. In [6], the existence of the
thermodynamic limit of the derivatives w.r.t. b and z of the grand-canonical pressure is proven for
singular R3-ergodic random field potentials, see [6, Sec. 1.3]. This kind of potentials covers the
periodic and almost-periodic case. Note that such invariance assumptions are also required when
proving the existence of the integrated density of states, see e.g. [25]. Besides, we emphasize that
our analysis does not imply any restriction on the Bravais-lattice provided that it is non-degenerate.
Considering the Z3-lattice simply allows us to dodge a number of technical difficulties arising from
the shape of the Wigner-Seitz cell. Subsequently, we turn to (Ar). If θ = 1, (1.14) corresponds to
the global Lipschitz-continuity. This implies that V is differentiable almost everywhere on R3 (i.e.
outside a set of Lebesgue-measure zero) with essentially bounded first derivatives. Note that θ = 1
covers the case of continuously differentiable functions on R3 with globally bounded derivative. If
0 < θ < 1, V may be nowhere differentiable (think of the Weierstrass function). Finally, we
mention that (Ap) and (Ar) together imply that V is bounded and continuous on R3.

Remark 1.3 (Equivalence of ensembles). Theorem 1.1 (i) reflects the equivalence between
the grand-canonical and canonical ensembles. In fact, we prove in Proposition 3.7 that ∀β > 0,
∀b ∈ R and for suitable values of ρs , limL↑∞(∂lbF s

h,L)(β, ρ
s , b), l = 0, 1, 2 exists and identifies

with (∂lb(P
s
h
)∗)(β, ρs , b), where (P s

h
)∗ is the Legendre-transform of the bulk pressure defined in

(3.22). While Ms (C)
h

(β, ρs , b) := limL↑∞ Ms (C)
h,L (β, ρs , b) = −( q

c
)(∂b(P

s
h
)∗)(β, ρs , b) coincides with

Ms (GC)
h

(β, ρs , b), X s (C)
h

(β, ρs , b) = −( q
c
)2(∂2b (P

s
h
)∗)(β, ρs , b) coincides with X s (GC)

h
(β, ρs , b) only

when the magnetic field vanishes, see Lemma 3.5. Otherwise, there is an additional term which
generically does not cancel, see the proof of Lemma 3.5 along with Remark 4.1. We stress the point
that these equivalence properties are established for a certain regime of the density ρ. The restric-
tion on ρ can be removed in zero-magnetic field provided that h is small enough. In particular, we

prove that ∀β > 0, ∀ρs > 0 and for h sufficiently small, Ms (C)
h

(β, ρs , 0) = Ms (GC)
h

(β, ρs , 0) = 0.

Remark 1.4 (Removing the condition on the ρss in Theorem 1.1 (ii)). Theorem 1.1 (ii)
is stated with the condition ρ− = ρ+ in (1.46). This restriction can be removed since we work in
zero-magnetic field. The asymptotic expansion in (1.47) with leading terms (1.48)-(1.49) still hold
true when ρ− 6= ρ+ obeying ρ− + ρ+ = ρ. Imposing such a restriction on the ρss allows us to deal
with only one fugacity (see (1.39)) instead of two (see (1.35)-(1.37)) when proving (1.47).

Remark 1.5 (Connection with the BvL theorem within the linear-response theory).
For any L > 0, β > 0, ρ > 0, b ∈ R and h > 0 define the finite-volume grand-canonical magnetiza-

tion at fixed density M(GC)
h,L (β, ρ, b) as in (1.34)-(1.36) but with zs

h,L(β, ρ
s, b), s ∈ {−,+} denoting

the unique solution of the equation ρs
h,L(β, z, b) = ρs , see (1.27). In [47], it is proven that, under

the same conditions, b 7→ M(GC)
h,L (β, ρ, b) is a real analytic function on R. Therefore, it admits in

a neighborhood of b = 0 a convergent Taylor series expansion in powers of b. In Physics literature,
see e.g. [30, Sec. 52], it is common to truncate the series to the first-order as an approximation:

mLRT
h,L (β, ρ, b) := M(GC)

h,L (β, ρ, 0) + X (GC)
h,L (β, ρ, 0)b = X (GC)

h,L (β, ρ, 0)b, (1.50)

where we used that b 7→ P s
h,L(β, z, b) is an even function. (1.50) is often referred to as the magne-

tization formula in the linear-response theory. From Theorem 1.1 (i), for h sufficiently small:

mLRT
h (β, ρ, b) := lim

L↑∞
mLRT

h,L (β, ρ, b) = X (C)
h

(β, ρ, 0)b.

From Theorem 1.1 (ii), one recovers the result of the BvL theorem within the linear-response theory
by performing the semiclassical limit h ↓ 0. Note that the same result still holds if one defines the
’LRT’-magnetization from the canonical ensemble, see also Remark 1.3.
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Remark 1.6 (Bloch electrons in the semiclassical limit: free electrons behavior). The
leading term in (1.47) is made up of two terms: a diamagnetic contribution in (1.48) arising from
the particle ’motions’ induced by the Zeeman Hamiltonian, and a paramagnetic contribution in
(1.49) arising from the particle spin through the Stern-Gerlach term. Such a decomposition holds
since the spin-orbit coupling has been disregarded. We emphasize that the external potential is not
involved in both contributions. This goes in the direction of a result stated by Kohn et al. in [28]:
for weak potentials, the correction to the bulk zero-field magnetic susceptibility is second-order in
the potential. In the case of electrons, the gas is globally paramagnetic, and we recover the relation:

X
(orbit)

h
(β, ρ) = −1

3
X

(spin)
h

(β, ρ).

Therefore, the Bloch electron gas in the semiclassical limit behaves to first-order like the free
electron gas. Concerning the remainder term in (1.47), we prove that it behaves like O(h2+θ(1−α)),
with θ ∈ (0, 1] appearing in (1.14) and 0 < α < 1. Its properties are discussed in Sec. 1.6.

Remark 1.7 (Recovering the well-known results in the high-temperature regime).
In Physics literature, the diamagnetic contribution in (1.48) corresponds to the high-temperature
Landau susceptibility of free electrons, and the paramagnetic contribution in (1.49) to the Curie
susceptibility of free spins. Both are usually derived from Maxwell-Boltzmann statistics justified in
the high-temperature regime or low-particle density regime, see e.g. [37, Eq. (5-2.1)] along with
[37, Eq. (5-3.11)]. This means that, in the semiclassical limit, the Fermi-Dirac distribution can
be approximated to first-order with the (classical) Maxwell-Boltzmann distribution.
We point out that, from our analysis, we can derive the asymptotic behavior of the bulk zero-field
magnetic susceptibility at fixed density ρ > 0 in the regime of high-temperature:

X (C)
h

(β, ρ, 0) = X
(orbit)

h
(β, ρ) + X

(spin)
h

(β, ρ) + o(β) when β ↓ 0,

which follows from (1.47) by setting β = 1, then by replacing h with (
√
βh).

1.5 A brief outline of the proof of Theorem 1.1–The contents.

In Sec. 2, we start with a technical result involving the operator in (2.1). It is obtained from
(1.17)-(1.18) by moving the semiclassical parameter h into the argument of the potential via the
unitary transformation (2.2). On this way, the potential in (2.1) is hZ3-periodic. Then for h small
enough, it is slowly varying with period h−1. From this feature, we develop a geometric pertur-
bation theory to write down an approximation for the resolvent operator in (2.4). To achieve
that, we chop up for h < 1 sufficiently small the dilated unit cell Ωh := (− 1

2h
, 1
2h
)3 in disjoint

closed cubic boxes centered at points in h−αZ3 and with side length h−α, 0 < α < 1. Since the
potential is slowly varying, the key-idea consists in approximating to first-order the resolvent in
(2.4) by the operator in (2.18) which is a sum of terms, each locally approximating (H̃h − ξ)−1

(i.e. kind of ’local’ resolvent with an operator having a constant potential, see (2.17)). By the
use of cutoff functions, each ’local’ resolvent is localized on a small number of cubic boxes. The
key-identity is (2.21), and it is the starting-point of our analysis. We prove that the operator norm
‖(H̃h − ξ)−1 −Rh(ξ)‖ behaves like O(hθ(1−α)), θ ∈ (0, 1] in (1.14). We emphasize that the Hölder
continuity of V is used when estimating the operator norm of (2.20), see (2.39) and (2.35)-(2.36).
We end Sec. 2 by giving a series of estimates on kernels and norms we use throughout the paper.

Sec. 3 is devoted to the proof of Theorem 1.1. In Sec. 3.1, we focus on a preliminary result:
Proposition 3.1 in which we write down an asymptotic expansion in the semiclassical limit of the
fugacity which is the unique solution of the equation (1.33). The starting-point in the proof of
(3.1) is the formula (3.6) for the bulk grand-canonical zero-field density of particles derived in
[6]. By using the unitary transformation in (2.2), the formula in (3.6) can be rewritten as (3.10)
involving the resolvent (H̃h − ξ)−1. Next, we use the results of Sec. 2 to derive an asymptotic ex-
pansion in the semiclassical limit. From the identity in (2.21) and due to (2.38)-(2.39), we expect
the contribution obtained by replacing (H̃h − ξ)−1 in (3.10) with Rh(ξ) to give rise to the leading
term in the expansion. This is in fact the case, see Lemmas 3.3-3.4 whose the proofs lie in Sec.
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4.1. After rewriting this leading term to isolate the main h-dependent contribution, we arrive at
Proposition 3.2. To conclude the proof of (3.1), it remains to solve a fixed-point equation (3.19).

In Sec. 3.2, we prove Theorem 1.1 (i). The proof relies on Proposition 3.7 along with Propo-
sition 3.1. In Proposition 3.7, we show that the thermodynamic limit of the free energy density
of the Fermi gas of spin 1

2 with identical spin projection m 1
2
= s 1

2 at fixed density ρs > 0 and its
two derivatives w.r.t. b at b = 0 identify respectively with the Legendre transform of the bulk
grand-canonical pressure of the Fermi gas of spin 1

2 with identical spin projection m 1
2
= s 1

2 in

(3.22) and its two derivatives w.r.t. b at b = 0. We emphasize that Proposition 3.7 only holds
for a certain regime of density. But from the asymptotic expansion in (3.1), this condition on the
density is fulfilled provided that h is sufficiently small. The proof of (i) finally follows from the
identifications in Lemma 3.5. The proof of Proposition 3.7 lies in Sec. 4.2 and it is based on the
Darwin-Fowler method in [24, Sec. 9.1]. Such a method has already been used in [8] to treat the
free spin-0 Bose gas. When applying it to the Fermi gas, a limiting condition on the density is
required. However, this is enough for the application we have in mind.

In Sec. 3.3, we prove Theorem 1.1 (ii). From Theorem 1.1 (i) together with (1.39), the only
thing we have to do is derive an asymptotic expansion in the semiclassical limit of the bulk grand-
canonical zero-field magnetic susceptibility (orbital and spin contributions). This is contained in
Proposition 3.8. The proof of (ii) directly follows from Proposition 3.8 along with Proposition 3.1.
The starting-point in the proof of (3.29) (resp. (3.30)) is the formula (3.34) (resp. (3.35)) for the
bulk grand-canonical zero-field orbital (resp. spin) susceptibility obtained from [6]. We emphasize
that such a two-terms decomposition holds since the spin-orbit coupling is disregarded. By using
the unitary transformation in (2.2), the formulas in (3.34)-(3.35) can be rewritten respectively
as (3.41)-(3.42) involving the resolvent (H̃h − ξ)−1. In Sec. 3.3.2, we use the results of Sec. 2
to derive a first asymptotic expansion in the semiclassical limit, see Proposition 3.9. From the
identity in (2.21) and due to (2.38)-(2.39), we expect the contribution obtained by replacing each
resolvent (H̃h − ξ)−1 (even the ones in (3.37)-(3.38) in the kernels sense) with Rh(ξ) to give rise to
the leading term in the expansion. This is in fact the case, see Lemmas 3.11-3.13 whose the proofs
lie in Sec. 4.3. The rest of the proof consists in isolating the main h-dependent contribution from
(3.44)-(3.45). The procedure is a bit technical and it is contained in Sec. 3.3.3.

1.6 Concluding remarks and a few open problems.

As mentioned in Remark 1.6, we show in the proof of Theorem 1.1 (ii) that the remainder in
the asymptotic expansion (1.47) behaves like O(h2+θ(1−α)), with θ ∈ (0, 1] in (1.14) and α ∈ (0, 1)
an arbitrary parameter coming from the geometric perturbation theory in Sec. 2. Note that
2+θ(1−α) approaches the value 2 when θ approaches 0 independently of α (or when θ = 1 and α
approaches 1). We emphasize that our method allows us to write down an explicit expression for
the remainder. However, such an expression contains a large number of terms depending on the
cutting of the unit-cell that we use in the geometric perturbation theory (hence the α-dependence).
In particular, the remainder term involves the operator in (2.20) which appears in the identity
(2.21). (1.14) plays a crucial role when estimating the operator norm of (2.20), see (2.35)-(2.36).
If the potential V belongs to Cp(R3;R), p ≥ 1 and has globally bounded derivatives, then one can
use the Taylor’s formula with integral remainder to rewrite the difference of potentials in (2.20).
In that way, the remainder of the asymptotic expansion in (1.47) will involve the derivatives of V ,
and its behavior will be of order O(h3−α). We expect the optimal behavior to be O(h3), and we
believe that a more refined geometric perturbation might allow us to remove the α-dependence.

In Physics literature, Jennings et al. were interested in [26] in the expansion in powers of
Planck’s constant of the bulk zero-field orbital susceptibility for a 3-dimensional non-interacting
electron gas obeying either Maxwell-Boltzmann statistics in the high-temperature limit, or Fermi-
Dirac statistics in the low-temperature limit. Considering a confining smooth potential barrier U
of arbitrary shape (but with bounded high-order derivatives), the two-lowest-order terms in the
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expansion in powers of Planck’s constant for the Maxwell-Boltzmann electron gas read as:

−1

3

( q
2c

)2
ρβ~2 +

1

3

( q
2c

)2 1

60

∫
dx e−βU(x)

(
∂2U

∂x21
(x) +

∂2U

∂x22
(x)

)

∫
dx e−βU(x)

ρβ3~4. (1.51)

If U is periodic, the integrations are over the Wigner-Seitz cell. Note that the first term corresponds
to (1.48). The method they use consists in expanding the Maxwell-Boltzmann factor involved in
the partition function in powers of ~ via the Wigner-Kirkwood expansion, see [27]. We mention
that D. Bivin showed in [2] that (1.51) represents the first two terms in the expansion for the bulk
zero-field orbital susceptibility in the high-temperature limit for a certain type of potentials.

Finding a ’wider’ class of potentials than the one covered by assumptions (Ap)-(Ar) for which
the conclusion of the BvL theorem holds true, and deriving the second lowest-order term in the
expansion (1.47) which holds for any ’inverse’ temperature β > 0, are both challenging problems.

2 An approximation of the resolvent via a geometric per-

turbation theory.

In the whole of this section, we suppose that assumptions (Ap) and (Ar) hold.
Here, we are interested in the self-adjoint realization in L2(R3;C2) of the family of operators:

H̃h :=

(
H̃h 0

0 H̃h

)
= H̃h ⊕ H̃h , H̃h :=

1

2
(−i∇)2 + V (h · ), h > 0, (2.1)

defined originally on C∞
0 (R3;C2). Since the period of the dilated potential is h−1 (keep in mind

that V is chosen Z3-periodic), then the potential is slowly varying if h is sufficiently small.
Define on L2(R3;C2) the family {Uh , h > 0} of unitary operators by:

(UhΨ)(x) := h
3
2Ψ(hx), x ∈ R3, Ψ ∈ L2(R3;C2). (2.2)

Then, under the transformation (2.2), the operator H̃h in (2.1) and Hh(0) in (1.17) are unitarily
equivalent. Using the shorthand notation Hh = Hh(0), one has for any h > 0:

Uh Hh U
−1
h

= H̃h . (2.3)

The aim of this section consists in using a geometric perturbation theory to obtain a series of
approximations for the resolvent operator (H̃h − ξ)−1, ξ ∈ ̺(H̃h) on L

2(R3;C2):

(
H̃h − ξ

)−1

:=

(
(H̃h − ξ)−1 0

0 (H̃h − ξ)−1

)
=
(
H̃h − ξ

)−1

⊕
(
H̃h − ξ

)−1

. (2.4)

Let us turn to the geometric perturbation theory, for further applications see [9, 10, 48].
For any h > 0, let Ωh := (− 1

2h
, 1
2h
)3 be the dilated unit cell centered at the origin of coordinates.

For any 0 < α < 1 and h ∈ (0, 1], we cover Ωh with disjoint closed cubic boxes parallel to the
coordinate axis, centered at points in h−αZ3, and with side length h−α. Denote by E the set of
centers of those cubes which have common points with Ωh . Note that Card(E ) = O(h3α−3) for h

small enough. Denote by C(γ, r) the cube centered at γ ∈ E with side length r ≥ h−α. In the
following, for 0 < α < 1 kept fixed, by h sufficiently small, we mean:

0 < h ≤ h0 with h0 = h0(α) ≤ 1 s.t. C
(
0, 69h

−α
0

)
( Ωh0 . (2.5)

Let us introduce some well-chosen families of smooth cutoff functions.
Let {τh,γ}γ∈E , h ∈ (0, h0] be a partition of unity of Ωh satisfying:

Supp (τh,γ) ⊂ C
(
γ, 2h−α

)
, 0 ≤ τh,γ ≤ 1; (2.6)

∑

γ∈E

τh,γ(x) = 1, ∀x ∈ Ωh . (2.7)
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Moreover, there exists a constant C > 0 s.t.

∀h ∈ (0, h0], ∀γ ∈ E , ‖Dsτh,γ‖∞ ≤ Ch |s|α, ∀ |s| ≤ 2, s ∈ N3.

Also let {τ̂h,γ}γ∈E and {ˆ̂τh,γ}γ∈E , h ∈ (0, h0] satisfying:

Supp (τ̂h,γ) ⊂ C
(
γ, 4h−α

)
, τ̂h,γ(x) = 1 if x ∈ C

(
γ, 3h−α

)
, 0 ≤ τ̂h,γ ≤ 1;

Supp
(
ˆ̂τh,γ

)
⊂ C

(
γ, 6h−α

)
, ˆ̂τh,γ(x) = 1 if x ∈ C

(
γ, 5h−α

)
, 0 ≤ ˆ̂τh,γ ≤ 1. (2.8)

Moreover, there exists another constant C > 0 s.t.

∀h ∈ (0, h0], ∀γ ∈ E , max
{
‖Dsτ̂h,γ‖∞ ,

∥∥∥Ds ˆ̂τh,γ

∥∥∥
∞

}
≤ Ch |s|α, ∀|s| ≤ 2, s ∈ N3. (2.9)

From the above definitions, we have the following identities:

∀h ∈ (0, h0], ∀γ ∈ E , τ̂h,γτh,γ = τh,γ , (2.10)

ˆ̂τh,γ τ̂h,γ = τ̂h,γ ; (2.11)

and moreover, under the same conditions, there exists another constant C > 0 s.t. ∀1 ≤ |s| ≤ 2:

max
{
dist (Supp (Dsτ̂h,γ) , Supp (τh,γ)) , dist

(
Supp

(
Ds ˆ̂τh,γ

)
, Supp (τh,γ)

)}
≥ Ch−α. (2.12)

Next, introduce a series of operators which will be used to approximate, for h small enough, the
resolvent operator (H̃h − ξ)−1 on L2(R3;C2), with ξ ∈ ̺(H̃h) away from the interval [inf σ(H̃h),∞).
Since (2.3) leads to ̺(H̃h) = ̺(Hh), then we can restrict to ξ ∈ C \ [−‖V ‖∞,∞) due to (1.19).
Moreover, in view of (2.4), it is enough to restrict our analysis to (H̃h − ξ)−1 on L2(R3).

Introduce the self-adjoint realization in L2(R3) of the family of reference operators:

H̃
(ref)
h,γ :=

1

2
(−i∇)2 + V (h · )ˆ̂τh,γ +

(
1− ˆ̂τh,γ

)
V
(

hh
−α

γ
)
, h ∈ (0, h0], γ ∈ E , (2.13)

defined originally on C∞
0 (R3). Define ∀h ∈ (0, h0] and ∀ξ ∈ C \ [−‖V ‖∞,∞) on L2(R3):

Rh(ξ) :=
∑

γ∈E

τ̂h,γ

(
H̃

(ref)
h,γ − ξ

)−1

τh,γ . (2.14)

Note an important thing. Due to the property (2.11), then ∀h ∈ (0, h0] and ∀γ ∈ E :

(
H̃h − ξ

)
τ̂h,γ =

(
H̃

(ref)
h,γ − ξ

)
τ̂h,γ .

Since Ran(Rh(ξ)) ⊂ Dom(H̃h) by standard arguments, then (below [· , · ] denotes the commutator):

(
H̃h − ξ

)
Rh(ξ) =

∑

γ∈E

τ̂h,γτh,γ +
∑

γ∈E

[
H̃

(ref)
h,γ , τ̂h,γ

] (
H̃

(ref)
h,γ − ξ

)−1

τh,γ = 1+Wh(ξ),

where we used (2.10) then (2.7) in the second equality, and ∀h ∈ (0, h0] and ∀ξ ∈ C\ [−‖V ‖∞,∞):

Wh(ξ) :=
∑

γ∈E

{
−1

2
(∆τ̂h,γ)− (∇τ̂h,γ) · ∇

}(
H̃

(ref)
h,γ − ξ

)−1

τh,γ . (2.15)

Since Wh(ξ) is bounded on L2(R3), see [6, Lem. 5.1], this means in the bounded operators sense:

(
H̃h − ξ

)−1

= Rh(ξ)−
(
H̃h − ξ

)−1

Wh(ξ). (2.16)
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Below, we show that the operator norm ‖(H̃h − ξ)−1 −Rh(ξ)‖ grows slower than any power of h .
Afterwards, let us continue with another approximation for the operator Rh(ξ) in (2.14).

Introduce the self-adjoint realization in L2(R3) of the family of operators with constant potential:

H̃
(cste)
h,γ :=

1

2
(−i∇)2 + V (h1−α

γ), h ∈ (0, h0], γ ∈ E , (2.17)

defined originally on C∞
0 (R3). Define ∀h ∈ (0, h0] and ∀ξ ∈ C \ [−‖V ‖∞,∞) on L2(R3):

Rh(ξ) :=
∑

γ∈E

τ̂h,γ

(
H̃

(cste)
h,γ − ξ

)−1

τh,γ . (2.18)

By making use of the second resolvent equation, Rh(ξ) in (2.14) can be rewritten as:

Rh(ξ) = Rh(ξ) + Wh(ξ), (2.19)

where ∀h ∈ (0, h0] and ∀ξ ∈ C \ [−‖V ‖∞,∞):

Wh(ξ) :=
∑

γ∈E

τ̂h,γ

(
H̃

(ref)
h,γ − ξ

)−1 {
ˆ̂τh,γ

(
V (h1−α

γ)− V (h · )
)}(

H̃
(cste)
h,γ − ξ

)−1

τh,γ . (2.20)

Below, we prove that the operator norm of Wh(ξ) behaves like O(hθ(1−α)), θ ∈ (0, 1], see (2.39).
Gathering (2.16) and (2.19) together, then we get in the bounded operators sense on L2(R3):

(
H̃h − ξ

)−1

= Rh(ξ) + Wh(ξ)−
(
H̃h − ξ

)−1

Wh(ξ). (2.21)

We end this paragraph by giving a series of estimates we will use throughout this paper.
Let us recall that from [49, Thm. B.7.2], for any ξ ∈ ̺(H̃h) the resolvent operator (H̃h − ξ)−1 is an
integral operator with integral kernel (H̃h − ξ)−1(· , · ) jointly continuous on R6 \D, D := {(x,y) ∈
R6 : x = y} standing for the diagonal. The same holds true for the integral kernel (Hh −ξ)−1(· , · ).
Below, for any ζ ∈ C and real number ℓ > 0, we use the shorthand notation:

ℓζ := ℓ(1 + |ζ|)−1. (2.22)

Lemma 2.1. For every η > 0, there exists a constant ϑ = ϑ(η) > 0 and a polynomial p(· ) s.t.
∀h > 0, ∀ξ ∈ C satisfying dist(ξ, σ(Hh)) ≥ η (or dist(ξ, σ(H̃h)) ≥ η) and ∀(x,y) ∈ R6 \D:

max

{∣∣∣(Hh − ξ)
−1

(x,y)
∣∣∣ ,
∣∣∣∣
(
H̃h − ξ

)−1

(x,y)

∣∣∣∣
}

≤ p(|ξ|)e
−ϑξ|x−y|

|x− y| , (2.23)

max

{∣∣∣∇x (Hh − ξ)
−1

(x,y)
∣∣∣ ,
∣∣∣∣∇x

(
H̃h − ξ

)−1

(x,y)

∣∣∣∣
}

≤ p(|ξ|)e
−ϑξ|x−y|

|x− y|2 . (2.24)

Proof. (2.23) and (2.24) follow from [49, Thm. B.7.2] and [6, Lem. 2.4] respectively. �

In view of the definitions (2.13) and (2.17), we straightforwardly get:

Lemma 2.2. Let 0 < α < 1 and h0 = h0(α) ≤ 1 as in (2.5). For every η > 0, there exists
a constant ϑ = ϑ(η) > 0 and a polynomial p(· ) s.t. ∀h ∈ (0, h0], ∀γ ∈ E , ∀ξ ∈ C satisfying
dist(ξ, [−‖V ‖∞,∞)) ≥ η and ∀(x,y) ∈ R6 \D:

max

{∣∣∣∣
(
H̃

(ref)
h,γ − ξ

)−1

(x,y)

∣∣∣∣ ,
∣∣∣∣
(
H̃

(cste)
h,γ − ξ

)−1

(x,y)

∣∣∣∣
}

≤ p(|ξ|)e
−ϑξ|x−y|

|x− y| , (2.25)

max

{∣∣∣∣∇x

(
H̃

(ref)
h,γ − ξ

)−1

(x,y)

∣∣∣∣ ,
∣∣∣∣∇x

(
H̃

(cste)
h,γ − ξ

)−1

(x,y)

∣∣∣∣
}

≤ p(|ξ|)e
−ϑξ|x−y|

|x− y|2 . (2.26)
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Remark 2.3. Since the potential in (2.17) is nothing but a constant, then the Green function of

the operator H̃
(cste)
h,γ is explicitly known. It reads on R6 \D as, see e.g. [50, Sec. 7.4]:

(
H̃

(cste)
h,γ − ξ

)−1

(x,y) =
1

2π

e−ςh,γ (ξ)|x−y|

|x− y| , ςh,γ(ξ) :=
√
−2(ξ − V (h1−αγ)). (2.27)

Finally, we have (the θ appearing in the below lemma corresponds to the θ in (1.14)):

Lemma 2.4. Let 0 < α < 1 and h0 = h0(α) ≤ 1 as in (2.5). For every η > 0, there exists a
constant ϑ = ϑ(η) > 0 and a polynomial p(· ) s.t. ∀h ∈ (0, h0], ∀θ ∈ (0, 1] and ∀ξ ∈ C satisfying
dist(ξ, [−‖V ‖∞,∞)) ≥ η:

∀(x,y) ∈ R6 \D, max {|(Rh(ξ))(x,y)| , |(Rh(ξ))(x,y)|} ≤ p(|ξ|)e
−ϑξ|x−y|

|x− y| , (2.28)

max {|∇x(Rh(ξ))(x,y)| , |∇x(Rh(ξ))(x,y)|} ≤ p(|ξ|)e
−ϑξ|x−y|

|x− y|2 ; (2.29)

∀(x,y) ∈ R6, |(Wh(ξ)) (x,y)| ≤ p(|ξ|)e−ϑξh
−α

e−ϑξ|x−y|, (2.30)

|(Wh(ξ)) (x,y)| ≤ p(|ξ|)hθ(1−α)e−ϑξ|x−y|. (2.31)

Proof. Let 0 < α < 1 and η > 0 be fixed. In view of (2.14) and (2.18), (2.28) follows from (2.25).
Here, we used the estimate (2.9) uniform in γ ∈ E , along with the fact that:

∀x ∈ R3,
∑

γ∈E

τh,γ(x) ≤ C, (2.32)

for some h-independent constant C ≥ 1. Indeed, the sum is zero if x ∈ R3 \ (∪γ∈E Supp(τh,γ)) and
equals 1 if x ∈ Ωh , see (2.6)-(2.7). If x ∈ (∪γ∈E Supp(τh,γ)) \ Ωh , it is bounded since only a finite
number of cutoff functions overlap. Next, we turn to (2.29). ∀h ∈ (0, h0], we have on R6 \D:

∇x(Rh(ξ))(x,y) =

∑

γ∈E

{
(∇τ̂h,γ) (x)

(
H̃

(ref)
h,γ − ξ

)−1

(x,y) + τ̂h,γ(x)∇x

(
H̃

(ref)
h,γ − ξ

)−1

(x,y)

}
τh,γ(y).

Then (2.29) follows from (2.25)-(2.26) combined with (2.34) below, (2.9) and (2.32). In view of
(2.18), the same holds true for |∇x(Rh(ξ))(· , · )|. Next, we turn to (2.30). From (2.12) along with
(2.25)-(2.26), there exists a constant ϑ > 0 and a polynomial p(· ) s.t. ∀h ∈ (0, h0] and ∀γ ∈ E :

∀(x,y) ∈ R6, max

{∣∣∣∣(∆τ̂h,γ) (x)
(
H̃

(ref)
h,γ − ξ

)−1

(x,y)τh,γ(y)

∣∣∣∣ ,
∣∣∣∣(∇τ̂h,γ) (x) · ∇x

(
H̃

(ref)
h,γ − ξ

)−1

(x,y)τh,γ(y)

∣∣∣∣
}

≤ p(|ξ|)e−ϑξh
−α

e−ϑξ|x−y|. (2.33)

In view of (2.15), we obtain under the conditions of (2.33):

∀(x,y) ∈ R6, |(Wh(ξ)) (x,y)| ≤ 2p(|ξ|)h−α(3α−1−3)e−ϑξh
−α

e−ϑξ|x−y|,

where we used that Card(E ) = O(h3α−3) to get rid of the sum. (2.30) follows from the estimate:

∀µ > 0, ∀ν > 0, tνe−µt ≤
(
2ν

eµ

)ν

e−
µ
2 t, t ≥ 0. (2.34)
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Finally, let us prove (2.31). For any h ∈ (0, h0], the kernel of Wh(ξ) in (2.20) reads on R6 as:

(Wh(ξ)) (x,y) =
∑

γ∈E

∫

R3

dz τ̂h,γ(x)
(
H̃

(ref)
h,γ − ξ

)−1

(x, z)

×
{
ˆ̂τh,γ(z)

(
V (h1−α

γ)− V (hz)
)}(

H̃
(cste)
h,γ − ξ

)−1

(z,y)τh,γ(y).

(2.35)

From (1.14) followed by (2.8), there exist two constants C,C
′

> 0 independent of h and γ s.t.

∀z ∈ Supp
(
ˆ̂τh,γ

)
,
∣∣V (h1−α

γ)− V (hz)
∣∣ ≤ Ch

θ
∣∣h−α

γ − z
∣∣θ ≤ C

′

h
θ(1−α). (2.36)

It remains to use (2.9), then (2.25) together with [6, Lem. A.2], and finally (2.32). �

Remark 2.5. From Lemmas 2.2-2.4 along with the Shur-Holmgren criterion, ∀h ∈ (0, h0]:

max
{∥∥(Hh − ξ)−1

∥∥ ,
∥∥∥(H̃h − ξ)−1

∥∥∥ , ‖Rh(ξ)‖ , ‖∇Rh(ξ)‖ , ‖Rh(ξ)‖ , ‖∇Rh(ξ)‖
}
≤ p(|ξ|), (2.37)

‖Wh(ξ)‖ ≤ p(|ξ|)e−ϑξh
−α

, (2.38)

‖Wh(ξ)‖ ≤ p(|ξ|)hθ(1−α), (2.39)

for another constant ϑ > 0 and polynomial p(· ) both independent of h ∈ (0, h0].

Remark 2.6. Let (I2(L
2(R3)), ‖ · ‖I2) be the Banach space of Hilbert-Schmidt operators on

L2(R3). Under the conditions of Lemma 2.2, we have ∀h ∈ (0, h0] and ∀γ ∈ E :

max

{∥∥∥∥τ̂h,γ

(
H̃

(℘)
h,γ − ξ

)−1
∥∥∥∥
I2

,

∥∥∥∥
(
H̃

(℘)
h,γ − ξ

)−1

τh,γ

∥∥∥∥
I2

}
≤ p(|ξ|)h− 3

2α, ℘ = ref or cste, (2.40)

max

{∥∥∥∥(∆τ̂h,γ)
(
H̃

(ref)
h,γ − ξ

)−1

τh,γ

∥∥∥∥
I2

,

∥∥∥∥(∇τ̂h,γ) · ∇
(
H̃

(ref)
h,γ − ξ

)−1

τh,γ

∥∥∥∥
I2

}
≤ p(|ξ|)e−ϑξh

−α

,

for some constant ϑ > 0 and polynomial p(· ) both independent of h ,γ.

3 Proof of Theorem 1.1.

3.1 A preliminary result.

The main result of this paragraph gives an asymptotic expansion in the semiclassical limit for
the unique solution of the equation (1.33):

Proposition 3.1. Suppose that the assumptions (Ap) and (Ar) hold.
For any 0 < α < 1, 0 < θ ≤ 1, β > 0 and ρ > 0, it holds:

zh

(
β,
ρ

2
, 0
)
=

1

2
ρ|Ω|(2πβ) 3

2

(∫

Ω

dx e−βV (x)

)−1

h
3 +O

(
h
3+θ(1−α)

)
. (3.1)

The rest of this section is devoted to the proof of Proposition 3.1.
We start by writing down a suitable expression for the bulk density of the Fermi gas of spin 1

2 .
In the grand-canonical situation, let β := (kBT )

−1 > 0 and z := eβµ > 0. In view of (1.19), let
Cβ be the counter-clockwise oriented simple contour around the interval [−‖V ‖∞,∞) defined as:

Cβ :=

{
ℜξ ∈ [δ,∞), ℑξ = ± π

2β

}
∪
{
ℜξ = δ, ℑξ ∈

[
− π

2β
,
π

2β

]}
, (3.2)

δ := −‖V ‖∞ − 1. (3.3)
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The closed subset surrounding by Cβ is a strict subset of D := {ζ ∈ C : ℑζ ∈ (−π
β
, π
β
)}, the

holomorphic domain of the Fermi-Dirac distribution function fFD(β, z; ξ) := ze−βξ(1 + ze−βξ)−1.
Note that fFD(β, z; · ) admits an exponential decay on Cβ , i.e. there exists a constant c > 0 s.t.

∀β > 0, ∀ξ ∈ Cβ , |fFD(β, z; ξ)| ≤ cze−βℜξ. (3.4)

The function f(β, z; ξ) := ln(1 + ze−βξ) satisfying (∂ξf)(β, z; ξ) = −βfFD(β, z; ξ) also obeys (3.4).
The bulk density reads ∀β > 0, ∀z > 0, ∀b ∈ R and ∀h > 0 as, see e.g. [5, Eq. (2.2)]:

ρh(β, z, b) =
1

|Ω|
i

2π
TrL2(R3;C2)

{
χΩId

(∫

Cβ

dξ fFD(β, z; ξ)(Hh(b)− ξ)−1

)
χΩId

}
, (3.5)

where χΩId = χΩ ⊕ χΩ denotes the multiplication operator by the indicator function of the unit
cell Ω on L2(R3;C2), and (Hh (b)− ξ)−1 the resolvent operator of Hh(b) in (1.17):

(Hh (b)− ξ)−1 :=

(
(H−

h
(b)− ξ)−1 0
0 (H+

h
(b)− ξ)−1

)
= (H−

h
(b)− ξ)−1 ⊕ (H+

h
(b)− ξ)−1,

with H∓
h
(b) defined in (1.18). Under the conditions of (3.5), we have:

ρh(β, z, b) = ρ−
h
(β, z, b) + ρ+

h
(β, z, b),

ρs
h(β, z, b) :=

1

|Ω|
i

2π
TrL2(R3)

{
χΩ

(∫

Cβ

dξ fFD(β, z; ξ)(H s
h(b)− ξ)−1

)
χΩ

}
, s ∈ {−,+}.

When the magnetic field vanishes, we have H+
h
(0) = H−

h
(0) =: Hh and then:

ρh(β, z, 0) = 2ρs
h(β, z, 0) =

2

|Ω|
i

2π
TrL2(R3)

{
χΩ

(∫

Cβ

dξ fFD(β, z; ξ)(Hh − ξ)−1

)
χΩ

}
. (3.6)

Performing an integration by parts w.r.t. the ξ-variable, the r.h.s. of (3.6) can be rewritten as:

ρh(β, z, 0) =
2

β|Ω|
i

2π

∫

Cβ

dξ f(β, z; ξ)

∫

Ω

dx (Hh − ξ)−2(x,x). (3.7)

Here, we used that (Hh − ξ)−2 is locally trace-class on L2(R3) since (Hh − ξ)−1 is locally Hilbert-
Schmidt on L2(R3). Note that the integral kernel (Hh − ξ)−2(· , · ) is jointly continuous on R6

and its diagonal part is uniformly bounded by some polynomial in |ξ|, see the estimate in (2.23)
combined with [6, Lem. A.1 & A.2]. Therefore, (3.7) is well-defined due to (3.4).

Next, let us rewrite the r.h.s. of (3.6) in a more convenient way. In Sec. 2, we gave an
approximation of the resolvent operator (H̃h − ξ)−1 via a geometric perturbation theory. Remind
that under the transformation (2.2), the operators H̃h and Hh := Hh(b = 0) are unitarily equivalent.
Since:

Uh (Hh − ξ)
−1

U
−1
h

=
(

H̃h − ξ
)−1

, (3.8)

UhχΩIdU
−1
h

= χΩh
Id, (3.9)

where Ωh := (− 1
2h
, 1
2h
)3 denotes the dilated unit cube centered at the origin of coordinates, then

under the conditions of (3.6), the bulk zero-field density of particles can be rewritten as:

ρh(β, z, 0) =
2

|Ω|
i

2π
TrL2(R3)

{
χΩh

(∫

Cβ

dξ fFD(β, z; ξ)
(
H̃h − ξ

)−1
)
χΩh

}
. (3.10)

The continuation of the proof consists in using the approximation (2.21) in order to isolate the
main h-dependent contribution from (3.10). Due to (2.21) along with (2.38)-(2.39), we expect the
contribution involving only the operator Rh(ξ) defined in (2.18) to give rise to the leading term
in the asymptotic expansion. This is in fact the case, and furthermore:
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Proposition 3.2. For any 0 < α < 1, 0 < θ ≤ 1, β > 0 and z > 0, it holds:

ρh(β, z, 0) =
2

(2πh)3|Ω|

∫

Ω

dx

∫

R3

dk
ze−β( 1

2k
2+V (x))

1 + ze−β( 1
2k

2+V (x))
+O

(
zh

−3+θ(1−α)
)
. (3.11)

The proof of Proposition 3.2 is based on the two following lemmas whose proof lie in Sec. 4.1:

Lemma 3.3. Let 0 < α < 1 and h0 = h0(α) ≤ 1 as in (2.5). Let Cβ, β > 0 as in (3.2). Then:
(i). ∀N > 0 there exists a polynomial p(· ) s.t. ∀h ∈ (0, h0] and ∀ξ ∈ Cβ:

∣∣∣∣TrL2(R3)

{
χΩh

(
H̃h − ξ

)−1

Wh(ξ)χΩh

}∣∣∣∣ ≤ p(|ξ|)hN . (3.12)

(ii). There exists another polynomial p(· ) s.t. ∀θ ∈ (0, 1], ∀h ∈ (0, h0] and ∀ξ ∈ Cβ:
∣∣TrL2(R3) {χΩh

Wh(ξ)χΩh
}
∣∣ ≤ p(|ξ|)h−3+θ(1−α). (3.13)

Lemma 3.4. For any 0 < α < 1, 0 < θ ≤ 1, β > 0 and z > 0, it holds:

2

|Ω|
i

2π
TrL2(R3)

{
χΩh

(∫

Cβ

dξ fFD(β, z; ξ)Rh(ξ)

)
χΩh

}
=

2

(2πh)3|Ω|

∫

Ω

dx

∫

R3

dk
ze−β( 1

2k
2+V (x))

1 + ze−β( 1
2k

2+V (x))
+O

(
zh

−3+θ(1−α)
)
. (3.14)

Proof of Proposition 3.2. From (3.10) along with (2.21), then ∀β > 0, ∀z > 0 and ∀h ∈ (0, h0]:

ρh(β, z, 0) =
2

|Ω|
i

2π
TrL2(R3)

{
χΩh

(∫

Cβ

dξ fFD(β, z; ξ)Rh(ξ)

)
χΩh

}

+
2

|Ω|
i

2π

∫

Cβ

dξ fFD(β, z; ξ)TrL2(R3)

{
χΩh

[
Wh(ξ)−

(
H̃h − ξ

)−1

Wh(ξ)

]
χΩh

}
. (3.15)

Now, (3.11) follows from Lemma 3.4, together with (3.12)-(3.13) combined with (3.4). �

We are now ready for:
Proof of Proposition 3.1. For any β > 0 and z ≥ 0, define ∀h > 0 the following quantity:

Rh(β, z) := β(∂zP̂h)(β, z, 0), (3.16)

where P̂h(β, · , b) denotes the analytic continuation of the bulk grand-canonical pressure of the
Fermi gas of spin 1

2 Ph(β, · , b) to the domain C \ (−∞,−eβEh(b)] with Eh(b) := inf σ(Hh(b)), see
[6, Thm. 1.1 (ii)]. Thus, z 7→ Rh(β, z) is continuous. Besides, one can prove that Rh(β, · ) never
vanishes on [0,∞) and it is a strictly decreasing function. These features are used in the following.

From (3.11) together with (3.16), introduce ∀β > 0, ∀z ≥ 0 and ∀h > 0:

Θh(β, z) := Rh(β, z)−
2

|Ω|(2πh)3

∫

Ω

dx

∫

R3

dk
e−β( 1

2k
2+V (x))

1 + ze−β( 1
2k

2+V (x))
. (3.17)

Let ρ > 0 be fixed. For any h > 0, let zh(β) = zh(β,
ρ
2 , 0) > 0 be the unique solution of the

equation ρ = ρh(β, z, 0) = zRh(β, z). Under the conditions of Proposition 3.1, by (3.17) we have:

∀h > 0, zh(β) = Gh (β, zh(β)) , (3.18)

with for any u ∈ R+:

Gh(β, u) :=
ρ

Rh(β, u)
=

1

2

ρ|Ω|(2πh)3

∫

Ω

dx

∫

R3

dk
e−β( 1

2k
2+V (x))

1 + ue−β( 1
2k

2+V (x))
+

|Ω|(2πh)3

2
Θh(β, u)

. (3.19)
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Therefore, zh(β) obeys a fixed-point equation. Let us continue by giving a series of estimates. Let
0 < α < 1, 0 < θ ≤ 1. From (3.11), there exists a constant c = c(β) > 0 s.t.

∀h ∈ (0, h0], ∀z ≥ 0, |Θh(β, z)| ≤ ch−3+θ(1−α). (3.20)

In view of (3.18)-(3.19) together with (3.20), we then expect zh(β) to behave like O(h3). Next,
we need to estimate (∂zΘh)(β, · ). In Sect. 4.1, we give an explicit expression of Θh(β, · ). It is in
fact the sum of the second term in the r.h.s. of (3.15) and the second term in the r.h.s. of (4.5)
but with the function ξ 7→ e−βξ(1 + ze−βξ)−1 = z−1fFD(β, z; ξ) instead of ξ 7→ fFD(β, z; ξ). From
these expressions, we can prove that there exists another constant c = c(β) > 0 s.t.

∀h ∈ (0, h0], ∀z ≥ 0, |(∂zΘh)(β, z)| ≤ ch−3+θ(1−α). (3.21)

From (3.19) and (3.20)-(3.21), then for every κ > 0, there exists a constant cκ(β, ρ) > 0 s.t.

∀h ∈ (0, h0] and small enough, sup
u∈[0,κ]

|(∂uGh)(β, u)| ≤ cκ(β, ρ)h
3.

Therefore, supu∈[0,κ] |(∂uGh)(β, u)| < 1 for h sufficiently small. Hence, for such h ’s, Gh(β, · ) is a
contraction, and then zh(β) must belong to the interval [0, κ]. It remains to use the iteration
procedure provided by the Banach fixed-point theorem to obtain the leading term in (3.1). �

3.2 Proof of Theorem 1.1 (i).

Let us introduce the Legendre-transform of the bulk grand-canonical pressure in (1.28) for the
Fermi gas of spin 1

2 with identical spin projection ms = s 1
2 . It is defined ∀β > 0, ∀ρs > 0, ∀b ∈ R

and ∀h > 0 as:

(P s
h )

∗(β, ρs , b) : = sup
µ∈R

(
ρsµ− P s

h

(
β, eβµ, b

))

=
ρs

β
log (zs

h(β, ρ
s , b))− P s

h (β, z
s
h(β, ρ

s , b), b) , s ∈ {−,+},
(3.22)

where zs
h
(β, ρs , b) > 0 denotes the unique solution of the equation ρs

h
(β, z, b) = ρs . The quantity

in (3.22) is well-defined since R ∋ µ 7→ P s
h
(β, eβµ, b) is a convex function, see below (1.31).

We start with the following lemma whose proof lies in the Appendix, see Sec. 4.2:

Lemma 3.5. For any β > 0, ρs > 0, h > 0, R ∋ b 7→ (P s
h
)∗(β, ρs , b) is a C∞-function. Moreover:

−
(q
c

) ∂(P s
h
)∗

∂b
(β, ρs , b) = Ms (GC)

h
(β, ρs , b), b ∈ R, s ∈ {−,+}, (3.23)

−
(q
c

)2 ∂2(P s
h
)∗

∂b2
(β, ρs , 0) = X s (GC)

h
(β, ρs , 0). (3.24)

Remark 3.6. We emphasize that an identity of type (3.24) generically does not hold in non-
vanishing magnetic field. For further details, see Remark 4.1.

Subsequently, we switch to the ’true’ canonical ensemble. In (1.43), we introduced the finite-
volume free energy density F s

h,L of the Fermi gas of spin 1
2 with identical spin projection ms = s 1

2
at fixed density ρs > 0. Remind that Es

h
(b) := inf σ(H s

h
(b)), s ∈ {−,+}. The proof of Theorem

1.1 (i) is based on the following:

Proposition 3.7. For any β > 0, b ∈ R, h > 0 and ρs ∈ (0, ρs
h
(β, eβE

s
h(b), b)), it holds:

F s
h (β, ρ

s , b) := lim
L↑∞

F s
h,L(β, ρ

s , b) = (P s
h )

∗(β, ρs , b), (3.25)

Ms (C)
h

(β, ρs , b) := − lim
L↑∞

(q
c

) ∂F s
h,L

∂b
(β, ρs , b) = −

(q
c

) ∂(P s
h
)∗

∂b
(β, ρs , b), (3.26)

X s (C)
h

(β, ρs , b) := − lim
L↑∞

(q
c

)2 ∂2F s
h,L

∂b2
(β, ρs , b) = −

(q
c

)2 ∂2(P s
h
)∗

∂b2
(β, ρs , b). (3.27)
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The proof of Proposition 3.7 lies in Appendix, see Sec. 4.2. We are now ready for:
Proof of Theorem 1.1 (i). Let β > 0 and ρs > 0 be fixed. In view of (3.27) along with (3.24),
the only thing we have to prove is that for h > 0 sufficiently small:

ρs = ρs
h (β, z

s
h(β, ρ

s , 0), 0) < ρs
h

(
β, eβE

s
h(0), 0

)
.

To do so, we need an asymptotic expansion of zs
h(β, ρ

s , 0) for h > 0 sufficiently small. By mimicking
the proof of (3.1), it suffices to replace the factor ρ/2 by ρs in the leading term of the asymptotic

expansion in (3.1). Due to (1.19), then there exists a ĥ = ĥ(β, ρs , ‖V ‖∞) > 0 s.t.

∀h ∈ (0, ĥ], zs
h (β, ρ

s , 0) ≤ e−β‖V ‖∞

2
< e−β‖V ‖∞ ≤ eβE

s
h(0).

It remains to use that ∀h > 0, z 7→ ρs
h
(β, z, 0) is a strictly increasing function on (0,∞). �

3.3 Proof of Theorem 1.1 (ii).

The main result of this paragraph gives an asymptotic expansion in the semiclassical limit for
the bulk zero-field magnetic susceptibility under the grand-canonical conditions.
From now on, we drop the superscript ’(GC)’ when dealing with the bulk magnetic susceptibility.

Let us introduce the (complete) Fermi-Dirac function fν : (−1,∞) → R with ν > 0. Denoting
by Γ(· ) the usual Euler Gamma function, it is defined as, see e.g. [35]:

∀u > −1, fν(u) :=
1

Γ(ν)

∫ ∞

0

dt
u

et + u
tν−1. (3.28)

Proposition 3.8. Suppose that the assumptions (Ap) and (Ar) hold.
For any 0 < α < 1, 0 < θ ≤ 1, β > 0 and z > 0, we have the asymptotic expansion:

Xh(β, z, 0) = X̃
(orbit)

h
(β, z, 0) + X̃

(spin)
h

(β, z, 0) +O
(
zh−1+θ(1−α)

)
,

with:

X̃
(orbit)

h
(β, z, 0) := −

(q
c

)2 1√
β|Ω|

1

h

1

6(2π)
3
2

∫

Ω

dx f 1
2

(
ze−βV (x)

)
, (3.29)

X̃
(spin)

h
(β, z, 0) :=

(q
c

)2 1√
β|Ω|

1

h

g2

4

1

2(2π)
3
2

∫

Ω

dx f 1
2

(
ze−βV (x)

)
. (3.30)

From Proposition 3.8 together with Proposition 3.1, we can turn to:
Proof of Theorem 1.1 (ii). Let 0 < α < 1 and 0 < θ ≤ 1 be fixed. For any β > 0 and ρ > 0,
let zh(β) := zh(β,

ρ
2 , 0) > 0 be the unique solution of the equation ρh(β, z, 0) = ρ.

From (1.39) and by using the results of Proposition 3.8, one has:

Xh (β, ρ, 0) = X̃
(orbit)

h
(β, ρ, 0) + X̃

(spin)
h

(β, ρ, 0) +O
(
zh(β)h

−1+θ(1−α)
)
,

X̃
(℘)

h
(β, ρ, 0) := X̃

(℘)
h

(β, zh(β), 0) , ℘ = orbit or spin.

It remains to use the asymptotic in (3.1) along with the following one derived from (3.28):

f 1
2
(u) = u− 1√

2
u2 +O

(
u3
)
. �

The rest of this section is devoted to the proof of Proposition 3.8. It requires three steps.
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3.3.1 A formula for the bulk grand-canonical zero-field magnetic susceptibility.

In the grand-canonical situation, let β > 0 and z > 0. Let Cβ be the contour around the
interval [−‖V ‖∞,∞) defined in (3.2). The closed subset surrounding by Cβ is a strict subset of
D := {ζ ∈ C : ℑζ ∈ (−π

β
, π
β
)}, the holomorphic domain of ξ 7→ f(β, z; ξ) := ln(1 + ze−βξ). Note

that f(β, z; · ) admits an exponential decay on Cβ , i.e. there exists a constant c > 0 s.t.

∀β > 0, ∀ξ ∈ Cβ , |f(β, z; ξ)| ≤ cze−βℜξ. (3.31)

For any h > 0 and ξ ∈ ̺(Hh), introduce on L2(R3;C2) the operators Th,j(ξ), with j = 1, 2:

Th,j(ξ) :=

(
Th,j(ξ) 0

0 Th,j(ξ)

)
= Th,j(ξ)⊕ Th,j(ξ), j = 1, 2, (3.32)

where the operators Th,j(ξ) on L
2(R3) are generated via their kernel respectively defined as:

∀(x,y) ∈ R6 \D, Th,1(x,y; ξ) := a(x− y) · (ih∇x)(Hh − ξ)−1(x,y),

Th,2(x,y; ξ) :=
1

2
a2(x− y)(Hh − ξ)−1(x,y).

Above, we used the notation Hh = Hh(0), and Hh = H+
h
(0) = H−

h
(0) in (1.18).

The bulk zero-field magnetic susceptibility reads ∀β > 0, ∀z > 0 and ∀h > 0 as:

Xh(β, z, 0) = X (orbit)
h

(β, z, 0) + X (spin)
h

(β, z, 0), (3.33)

X (orbit)
h

(β, z, 0) :=
(q
c

)2 2

β|Ω|
i

2π

∫

Cβ

dξ f(β, z; ξ)

× TrL2(R3;C2)

{
χΩId (Hh − ξ)

−1
[Th,1(ξ)Th,1(ξ)− Th,2(ξ)]χΩId

}
,

(3.34)

X (spin)
h

(β, z, 0) :=
(q
c

)2(gh

4

)2
2

β|Ω|
i

2π

∫

Cβ

dξ f(β, z; ξ)TrL2(R3;C2)

{
χΩId (Hh − ξ)−3 χΩId

}
,

(3.35)

where χΩId = χΩ ⊕ χΩ denotes the multiplication operator by the indicator function of the unit
cell Ω on L2(R3;C2) and (Hh − ξ)−1 the resolvent operator of Hh = Hh(0) in (1.17):

(Hh − ξ)−1 :=

(
(H−

h
− ξ)−1 0
0 (H+

h
− ξ)−1

)
= (H−

h
− ξ)−1 ⊕ (H+

h
− ξ)−1. (3.36)

The derivation of the orbital contribution in (3.34) is the main purpose of [6], and it is based
on the so-called gauge invariant magnetic perturbation theory. The same method can be applied
when taking into account the Stern-Gerlach term in the Hamiltonian (i.e. the interaction between
the spin and the magnetic field), and allows us to derive (3.35) when the magnetic field vanishes.
Actually, we can prove the following formula: for any β > 0, z > 0, b ∈ R and h > 0,

Xh(β, z, b) = X−
h
(β, z, b) + X+

h
(β, z, b),

X−
h
(β, z, b) :=

(q
c

)2 2

β|Ω|
i

2π

∫

Cβ

dξ f(β, z; ξ)TrL2(R3){χΩR
−
h
(b; ξ)[T−

h,1(b; ξ)T
−
h,1(b; ξ)−T−

h,2(b; ξ)+

− gh

4
T−

h,1(b; ξ)R
−
h
(b; ξ)− gh

4
R−

h
(b; ξ)T−

h,1(b; ξ) +
(gh)2

16
R−

h
(b; ξ)R−

h
(b; ξ)]χΩ},

X+
h
(β, z, b) :=

(q
c

)2 2

β|Ω|
i

2π

∫

Cβ

dξ f(β, z; ξ)TrL2(R3){χΩR
+
h
(b; ξ)[T+

h,1(b; ξ)T
+
h,1(b; ξ)−T+

h,2(b; ξ)+

+
gh

4
T+

h,1(b; ξ)R
+
h
(b; ξ) +

gh

4
R+

h
(b; ξ)T+

h,1(b; ξ) +
(gh)2

16
R+

h
(b; ξ)R+

h
(b; ξ)]χΩ},
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where we set Rs
h
(b; ξ) := (H s

h
(b)− ξ)−1 and where the operators T s

h,j(b; ξ) on L
2(R3) are generated

via their kernel respectively defined as:

∀(x,y) ∈ R6 \D, T s
h,1(x,y; b, ξ) := a(x− y) · (ih∇x + ba(x))(H s

h (b)− ξ)−1(x,y),

T s
h,2(x,y; b, ξ) :=

1

2
a2(x− y)(H s

h (b)− ξ)−1(x,y).

We point out that the spin contribution to the bulk magnetic susceptibility is made up of three
kinds of terms in non-vanishing magnetic field, and two of them involve the coupling between the
linear part of the Zeeman Hamiltonian and the Stern-Gerlach term. Note that the decomposition
into an orbital and a spin contribution is made possible since the spin-orbit coupling has been
disregarded. Getting back to (3.33), from (3.36) and (3.32), we have under the same conditions:

X (orbit)
h

(β, z, 0) =
(q
c

)2 4

β|Ω|
i

2π

∫

Cβ

dξ f(β, z; ξ)

× TrL2(R3)

{
χΩ (Hh − ξ)−1 [Th,1(ξ)Th,1(ξ) − Th,2(ξ)]χΩ

}
,

X (spin)
h

(β, z, 0) =
(q
c

)2 (gh)2

4

1

β|Ω|
i

2π

∫

Cβ

dξ f(β, z; ξ)TrL2(R3)

{
χΩ (Hh − ξ)−3 χΩ

}
.

Next, let us rewrite the contributions in (3.34)-(3.35) in a more convenient way, i.e. involving
the resolvent operator (H̃h − ξ)−1. In Sec. 2, we gave an approximation of (H̃h − ξ)−1. For the
need, introduce on L2(R3;C2) for any h > 0 and ξ ∈ ̺(H̃h), the operators T̃h,j(ξ), with j = 1, 2:

T̃h,j(ξ) :=

(
T̃h,j(ξ) 0

0 T̃h,j(ξ)

)
= T̃h,j(ξ)⊕ T̃h,j(ξ), j = 1, 2,

where the operators T̃h,j(ξ) on L
2(R3) are generated via their kernel respectively defined as:

∀(x,y) ∈ R6 \D, T̃h,1(x,y; ξ) := a(x − y) · (i∇x)(H̃h − ξ)−1(x,y), (3.37)

T̃h,2(x,y; ξ) :=
1

2
a2(x − y)(H̃h − ξ)−1(x,y). (3.38)

Since |a(x− y)| ≤ |x− y|, then under the conditions of Lemma 2.1 (see the notation in (2.22)):

∀(x,y) ∈ R6 \D, max
{∣∣∣T̃h,j(x,y; ξ)

∣∣∣ , |Th,j(x,y; ξ)|
}
≤ p(|ξ|)e

−ϑξ|x−y|

|x− y| , (3.39)

for some constant ϑ > 0 and polynomial p(· ). (3.39) follows from (2.23)-(2.24) and (2.34). From
the unitary transformation in (2.2), Th,j(ξ) and T̃h,j(ξ) are related to each other through:

Uh Th,j(ξ)U
−1
h

= h
j
T̃h,j(ξ), j = 1, 2, (3.40)

where we used (3.8), which leads in the kernels sense to:

∀(x,y) ∈ R6 \D,
(
H̃h − ξ

)−1

(x,y) = h
3 (Hh − ξ)

−1
(hx, hy) , h > 0.

From (3.34)-(3.35) together with (3.8), (3.9) and (3.40), the bulk grand-canonical zero-field orbital
and spin susceptibilities can be rewritten respectively as:

X (orbit)
h

(β, z, 0) =
(q
c

)2
4h2 1

β|Ω|
i

2π

∫

Cβ

dξ f(β, z; ξ)

× TrL2(R3)

{
χΩh

(
H̃h − ξ

)−1 [
T̃h,1(ξ)T̃h,1(ξ)− T̃h,2(ξ)

]
χΩh

}
,

(3.41)

X (spin)
h

(β, z, 0) =
(q
c

)2 (gh)2

4

1

β|Ω|
i

2π

∫

Cβ

dξ f(β, z; ξ)TrL2(R3)

{
χΩh

(
H̃h − ξ

)−3

χΩh

}
. (3.42)
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Note that ∀h > 0, the operators (H̃h − ξ)−3, (H̃h − ξ)−1T̃h,j(ξ) and (H̃h − ξ)−1(T̃h,j(ξ))
2 are locally

trace-class on L2(R3) with trace-norm bounded above by some polynomial in |ξ| (by unitary
equivalence, the same holds true for the corresponding operators without the tilde). This results
from the fact that (H̃h − ξ)−1 and T̃h,j(ξ) are both locally Hilbert-Schmidt, see the estimates in
(2.23) and (3.39). Due to (3.31), (3.41)-(3.42) (and then (3.34)-(3.35)) are therefore well-defined.

3.3.2 Isolating the main h-dependent contribution.

Here we use the same strategy as the one leading to Proposition 3.2, i.e. we use the approxi-
mation (2.21) in order to isolate the main h-dependent contributions from (3.41)-(3.42). As it was
the case for the bulk zero-field density of particles, we expect the contributions involving only the
operator Rh(ξ) (i.e. obtained from (3.41)-(3.42) by replacing (H̃h − ξ)−1 with Rh(ξ), including
the ones in (3.37)-(3.38)) to give rise to the leading terms in the asymptotic expansion.
We will see below that this is in fact the case.

Introduce ∀0 < α < 1, ∀h ∈ (0, h0] and ∀γ ∈ E , the operator T̃
(cste)
h,γ;2 (ξ) on L2(R3) generated

via its kernel which reads as (remind that H̃
(cste)
h,γ is defined in (2.17)):

∀(x,y) ∈ R6 \D, T̃
(cste)
h,γ;2 (x,y; ξ) :=

1

2
a2(x− y)

(
H̃

(cste)
h,γ − ξ

)−1

(x,y). (3.43)

The following proposition identifies a first main h-dependent contribution to the bulk grand-
canonical zero-field orbital and spin susceptibilities in (3.41)-(3.42) respectively:

Proposition 3.9. For any 0 < α < 1, 0 < θ ≤ 1, β > 0 and z > 0, it holds:

X (orbit)
h

(β, z, 0) = −
(q
c

)2
4h2 1

β|Ω|
i

2π

∫

Cβ

dξ f(β, z; ξ)

× TrL2(R3)



χΩh



∑

γ1∈E

(
H̃

(cste)
h,γ1

− ξ
)−1

τh,γ1

∑

γ2∈E

T̃
(cste)
h,γ2;2

(ξ)τh,γ2


χΩh



+O

(
zh−1+θ(1−α)

)
,

(3.44)

X (spin)
h

(β, z, 0) =
(q
c

)2 (gh)2

4

1

β|Ω|
i

2π

∫

Cβ

dξ f(β, z; ξ)

× TrL2(R3)



χΩh




3∏

l=1

∑

γl∈E

(
H̃

(cste)
h,γl

− ξ
)−1

τh,γl


χΩh



+O

(
zh−1+θ(1−α)

)
. (3.45)

Remark 3.10. At this point, we expect the main h-dependent contributions coming from (3.44)
and (3.45) to behave like O(h−1). Let us give the main arguments for the orbital case. Since the
kernel in (3.43) obeys an estimate of type (2.25) (use that |a(x−y)| ≤ |x−y| followed by (2.34)),

then the Hilbert-Schmidt norm of T̃
(cste)
h,γ;2 (ξ)τh,γ obeys an estimate of type (2.40). Moreover, when

keeping γ1 fixed, only a finite number of γ2’s have an overlapping support. This means that the
double sum in (3.44) only contains cste× h3α−3 non-zero terms. Therefore, the trace-norm obeys:

∥∥∥∥∥∥

∑

γ1∈E

(
H̃

(cste)
h,γ1

− ξ
)−1

τh,γ1

∑

γ2∈E

T̃
(cste)
h,γ2;2

(ξ)τh,γ2

∥∥∥∥∥∥
I1

≤ p(|ξ|)h−3,

for some h-independent polynomial p(· ). From (2.40) and the foregoing, one proves similarly:
∥∥∥∥∥∥

3∏

l=1

∑

γl∈E

(
H̃

(cste)
h,γl

− ξ
)−1

τh,γl

∥∥∥∥∥∥
I1

≤ p(|ξ|)h−3.
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Before turning to the proof of Proposition 3.9, let us introduce some new operators on L2(R3).
Let 0 < α < 1. In view of (2.16) and (2.19), define ∀h ∈ (0, h0] the operators Th,j(ξ) and Th,j(ξ),
j = 1, 2 on L2(R3) generated via their kernel respectively defined as:

∀(x,y) ∈ R6 \D, Th,1(x,y; ξ) := a(x − y) · (i∇x) (Rh(ξ))(x,y) ,

Th,2(x,y; ξ) :=
1

2
a2(x− y) (Rh(ξ)) (x,y),

Th,1(x,y; ξ) := a(x − y) · (i∇x) (Rh(ξ)) (x,y), (3.46)

Th,2(x,y; ξ) :=
1

2
a2(x− y) (Rh(ξ)) (x,y). (3.47)

Since |a(x− y)| ≤ |x− y| and by using (2.28)-(2.29), then under the conditions of Lemma 2.4:

∀(x,y) ∈ R6 \D, max {|Th,j(x,y; ξ)| , |Th,j(x,y; ξ)|} ≤ p(|ξ|)e
−ϑξ|x−y|

|x− y| , j = 1, 2, (3.48)

for some constant ϑ > 0 and polynomial p(· ) both h-independent. Here ϑξ := ϑ(1 + |ξ|)−1. Note
that, due to the estimate in (3.48), the operators Th,j(ξ) and Th,j(ξ), j = 1, 2 are locally Hilbert-
Schmidt with H-S norms bounded above by some h-independent polynomial in |ξ|.

The proof of Proposition 3.9 is based on the three following lemmas whose proofs lie in Sect.
4.3. Remind that ∀0 < α < 1, h0 = h0(α) ≤ 1 is defined via (2.5), and the contour Cβ in (3.2).

Lemma 3.11. ∀α ∈ (0, 1), ∀N > 0, there exists a polynomial p(· ) s.t. ∀h ∈ (0, h0] and ∀ξ ∈ Cβ:
∣∣∣∣TrL2(R3)

{
χΩh

(
H̃h − ξ

)−3

χΩh

}
− TrL2(R3)

{
χΩh

(Rh(ξ))
3
χΩh

}∣∣∣∣ ≤ p(|ξ|)hN . (3.49)

∣∣∣∣TrL2(R3)

{
χΩh

(
H̃h − ξ

)−1 [
T̃h,1(ξ)T̃h,1(ξ)− T̃h,2(ξ)

]
χΩh

}

− TrL2(R3) {χΩh
Rh(ξ) [Th,1(ξ)Th,1(ξ)− Th,2(ξ)]χΩh

}
∣∣∣∣ ≤ p(|ξ|)hN . (3.50)

Lemma 3.12. ∀0 < α < 1 there exists a polynomial p(· ) s.t. ∀θ ∈ (0, 1], ∀h ∈ (0, h0] and ∀ξ ∈ Cβ :
∣∣∣TrL2(R3)

{
χΩh

(Rh(ξ))
3
χΩh

}
− TrL2(R3)

{
χΩh

(Rh(ξ))
3
χΩh

}∣∣∣ ≤ p(|ξ|)h−3+θ(1−α). (3.51)

∣∣TrL2(R3) {χΩh
Rh(ξ) [Th,1(ξ)Th,1(ξ)− Th,2(ξ)]χΩh

}
−TrL2(R3) {χΩh

Rh(ξ) [Th,1(ξ)Th,1(ξ)− Th,2(ξ)]χΩh
}
∣∣ ≤ p(|ξ|)h−3+θ(1−α). (3.52)

Lemma 3.13. ∀α ∈ (0, 1), ∀N > 0 there exists a polynomial p(· ) s.t. ∀h ∈ (0, h0] and ∀ξ ∈ Cβ:

∣∣∣∣∣∣
TrL2(R3)

{
χΩh

(Rh(ξ))
3 χΩh

}
− TrL2(R3)



χΩh




3∏

l=1

∑

γl∈E

(
H̃

(cste)
h,γl

− ξ
)−1

τh,γl


χΩh





∣∣∣∣∣∣
≤ p(|ξ|)hN ,

(3.53)
∣∣TrL2(R3) {χΩh

Rh(ξ)Th,1(ξ)Th,1(ξ)χΩh
}
∣∣ ≤ p(|ξ|)hN . (3.54)

∣∣∣∣∣TrL2(R3) {χΩh
Rh(ξ)Th,2(ξ)χΩh

}−

TrL2(R3)



χΩh



∑

γ1∈E

(
H̃

(cste)
h,γ1

− ξ
)−1

τh,γ1

∑

γ2∈E

T̃
(cste)
h,γ2;2

(ξ)τh,γ2


χΩh





∣∣∣∣∣ ≤ p(|ξ|)hN . (3.55)
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Remark 3.14. All the estimates given in Lemmas 3.11-3.12-3.13 still hold true when removing
the characteristic functions χΩh

from the traces, for further details see Remark 4.4.

Proof of Proposition 3.9. Let α ∈ (0, 1) and θ ∈ (0, 1]. From (3.41) (resp. (3.42)) and by using
(3.50)-(3.52)-(3.54) (resp. (3.49)-(3.51)) followed by (3.31), then ∀β > 0, ∀z > 0 and ∀h ∈ (0, h0]:

Xh(β, z, 0) = X̌ (orbit)
h

(β, z, 0) + X̌ (spin)
h

(β, z, 0) +O
(
zh−1+θ(1−α)

)
,

X̌ (orbit)
h

(β, z, 0) := −
(q
c

)2 4h2

β|Ω|
i

2π

∫

Cβ

dξ f(β, z; ξ)TrL2(R3) {χΩh
Rh(ξ)Th,2(ξ)χΩh

} ,

X̌ (spin)
h

(β, z, 0) :=
(q
c

)2 (gh)2

4

1

β|Ω|
i

2π

∫

Cβ

dξ f(β, z; ξ)TrL2(R3)

{
χΩh

(Rh(ξ))
−3 χΩh

}
.

To obtain (3.44) (resp. (3.45)), it remains to use (3.55) (resp. (3.53)) and (3.31) again. �

3.3.3 Isolating the main h-dependent contribution - Continuation and end.

From Proposition 3.9, we can now turn to the end of the proof of Proposition 3.8. We split the
proof into two parts dealing respectively with the bulk zero-field orbital and spin susceptibility.

• Proof of (3.29).

Set κo := ( q
c
)2 4

|Ω| . In view of (3.44), denote ∀0 < α < 1, ∀β > 0, ∀z > 0 and ∀h ∈ (0, h0]:

X̃ (orbit)
h

(β, z) := −h2κo

β

i

2π

∫

Cβ

dξ f(β, z; ξ)

×
∫

Ωh

dx

∫

R3

dz
∑

γ1∈E

(
H̃

(cste)
h,γ1

− ξ
)−1

(x, z)τh,γ1(z)
∑

γ2∈E

T̃
(cste)
h,γ2;2

(z,x; ξ)τh,γ2(x). (3.56)

Splitting the integral w.r.t. z into two parts, introduce under the conditions of (3.56):

X̃ (orbit)
h,r1

(β, z) := X̃ (orbit)
h

(β, z) + h2κo

β

i

2π

∫

Cβ

dξ f(β, z; ξ)

×
∫

Ωh

dx

∫

Ωh

dz
∑

γ1∈E

(
H̃

(cste)
h,γ1

− ξ
)−1

(x, z)τh,γ1(z)
∑

γ2∈E

T̃
(cste)
h,γ2;2

(z,x; ξ)τh,γ2(x).

Remind that the above kernels are explicitly known, see (2.27) (and (3.43)). Replacing the two
above kernels with their explicit expression, then using the obvious identity which holds on R6:

e−ςh,γ(ξ)|x−y| = e−
√

−2(ξ−V (hx))|x−y| +
(
e−ςh,γ (ξ)|x−y| − e−

√
−2(ξ−V (hx))|x−y|

)
, (3.57)

let us introduce under the conditions of (3.56):

X̃ (orbit)
h,r2

(β, z) := X̃ (orbit)
h

(β, z)− X̃ (orbit)
h,r1

(β, z)

+ h2 κo

2(2π)2
1

β

i

2π

∫

Cβ

dξ f(β, z; ξ)

∫

Ωh

dx

∫

Ωh

dz
e−2

√
−2(ξ−V (hx))|x−z|

|x− z|2 a2(x− z).

Finally, define under the conditions of (3.56):

X̃ (orbit)
h,r3

(β, z) := h2 κo

8π2

1

β

i

2π

∫

Cβ

dξ f(β, z; ξ)

∫

Ωh

dx

∫

R3\Ωh

dz
e−2

√
−2(ξ−V (hx))|x−z|

|x− z|2 a2(x− z).
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From the foregoing, one arrives ∀0 < α < 1, ∀β > 0, ∀z > 0 and ∀h ∈ (0, h0] at the decomposition:

X̃ (orbit)
h

(β, z) = X̃
(orbit)

h
(β, z) + X̃ (orbit)

h,r1
(β, z) + X̃ (orbit)

h,r2
(β, z) + X̃ (orbit)

h,r3
(β, z), with:

X̃
(orbit)

h
(β, z) := −h

2 κo

8π2

1

β

i

2π

∫

Cβ

dξ f(β, z; ξ)

∫

Ωh

dx

∫

R3

dz
e−2

√
−2(ξ−V (hx))|x−z|

|x− z|2 a2(x− z).

(3.58)

Now, we need the following lemma whose proof is placed in Appendix, see Sec. 4.4.

Lemma 3.15. For any 0 < α < 1, 0 < θ ≤ 1, β > 0 and z > 0, it holds:

X̃ (orbit)
h,r1

(β, z) + X̃ (orbit)
h,r2

(β, z) = O
(

h−1+θ(1−α)
)
,

X̃ (orbit)
h,r3

(β, z) = O
(

hN
)
, ∀N > 0.

It remains to prove that (3.58) is nothing but the leading term in (3.29). By performing some
change of variables, and by using this explicit calculation:

∫

R3

dz
e−2h

−1
√

−2(ξ−V (x))|x−z|

|x− z|2
[
(z1 − x1)

2 + (z2 − x2)
2
]
= 2π

4

3

h3

8
√
2 (− (ξ − V (x)))

3
2

,

then it follows that (3.58) can be rewritten under the same conditions as:

X̃
(orbit)

h
(β, z) = −1

h

κo

96
√
2π

1

β

i

2π

∫

Ω

dx

∫

C̃β

dξ ln(1 + ze−βV (x)e−βξ) (−ξ)−
3
2 ,

where C̃β denotes the contour defined as in (3.2) but with δ̃ := −1 instead of the δ in (3.3). Next,
by performing an integration by parts w.r.t. ξ, followed by the change of variable t := βξ:

X̃
(orbit)

h
(β, z) = −1

h

κo

48
√
2π

1√
β

i

2π

∫

Ω

dx

(
i

2π

)∫

Ĉ1

dt
ze−βV (x)

et + ze−βV (x)
(−t)− 1

2 , (3.59)

where Ĉ1 denotes the contour defined as in (3.2) with β = 1 and δ̂ = −β instead of the δ in (3.3).
It remains to use the following rewriting of the Fermi-Dirac function, see [35, Eqs. (A.3)-(A.5)]:

∀u ≥ 0, fν(u) = −Γ(1− ν)

2iπ

∫

Hl

dt
u

et + u
(−t)ν−1 with ν > 0 and ν /∈ N∗, (3.60)

where Hl stands for a Hankel-type contour. Gathering (3.59) and (3.60) together, one arrives at:

X̃
(orbit)

h
(β, z) = −1

h

κo

48
√
2Γ(12 )π

1√
β

∫

Ω

dx f 1
2

(
ze−βV (x)

)
, κo =

(q
c

)2 4

|Ω| . �

• Proof of (3.30).

Set κs := ( q
c
)2 g2

4|Ω| . In view of (3.45), denote ∀0 < α < 1, ∀β > 0, ∀z > 0 and ∀h ∈ (0, h0]:

X̃ (spin)
h

(β, z) := h2κs

β

i

2π

∫

Cβ

dξ f(β, z; ξ)

∫

Ωh

dz0

∫

R3

dz1

∫

R3

dz2
∑

γ1∈E

(
H̃

(cste)
h,γ1

− ξ
)−1

(z0, z1)

× τh,γ1(z1)
∑

γ2∈E

(
H̃

(cste)
h,γ2

− ξ
)−1

(z1, z2)τh,γ2(z2)
∑

γ3∈E

(
H̃

(cste)
h,γ3

− ξ
)−1

(z2, z0)τh,γ3(z0). (3.61)
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Splitting the integrals w.r.t. zl, l = 1, 2 into two parts, introduce under the conditions of (3.61):

X̃ (spin)
h,r1

(β, z) := X̃ (spin)
h

(β, z)− h2κs

β

i

2π

∫

Cβ

dξ f(β, z; ξ)×

∫

Ωh

dz0 · · ·
∫

Ωh

dz2

2∏

l=0

∑

γl+1∈E

(
H̃

(cste)
h,γl+1

− ξ
)−1

(zl, zl+1)τh,γl+1
(zl+1), z3 := z0.

Replacing the three above kernels with their explicit expression in (2.27), then by using (3.57), let
us introduce under the conditions of (3.61):

X̃ (spin)
h,r2

(β, z) := X̃ (spin)
h

(β, z)− X̃ (spin)
h,r1

(β, z)

− h2 κs

(2π)3
1

β

i

2π

∫

Cβ

dξ f(β, z; ξ)

∫

Ωh

dz0 · · ·
∫

Ωh

dz2

2∏

l=0

e−
√

−2(ξ−V (hz0))|zl−zl+1|

|zl − zl+1|
, z3 = z0.

Finally, introduce under the conditions of (3.61):

X̃ (spin)
h,r3

(β, z) := X̃ (spin)
h

(β, z)− X̃ (spin)
h,r1

(β, z)− X̃ (spin)
h,r2

(β, z)

− h
2 κs

8π3

1

β

i

2π

∫

Cβ

dξ f(β, z; ξ)

∫

Ωh

dz0

∫

R3

dz1

∫

R3

dz2

2∏

l=0

e−
√

−2(ξ−V (hz0))|zl−zl+1|

|zl − zl+1|
, z3 = z0.

From the foregoing, one arrives ∀0 < α < 1, ∀β > 0, ∀z > 0 and ∀h ∈ (0, h0] at the decomposition:

X̃ (spin)
h

(β, z) = X̃
(spin)

h
(β, z) + X̃ (spin)

h,r1
(β, z) + X̃ (spin)

h,r2
(β, z) + X̃ (spin)

h,r3
(β, z), with:

X̃
(spin)

h
(β, z) := h2 κs

8π3

1

β

i

2π

∫

Cβ

dξ f(β, z; ξ)

×
∫

Ωh

dz0

∫

R3

dz1

∫

R3

dz2

2∏

l=0

e−
√

−2(ξ−V (hz0))|zl−zl+1|

|zl − zl+1|
, z3 = z0. (3.62)

Now, we need the following lemma whose proof is placed in Appendix, see Sec. 4.4.

Lemma 3.16. For any 0 < α < 1, 0 < θ ≤ 1, β > 0 and z > 0, it holds:

X̃ (spin)
h,r1

(β, z) + X̃ (spin)
h,r2

(β, z) = O
(

h−1+θ(1−α)
)
,

X̃ (spin)
h,r3

(β, z) = O
(

hN
)
, ∀N > 0.

It remains to prove that (3.62) is nothing but the leading term in (3.30). By performing some
change of variables, then by using that (below, we set z3 = z0):

∫

R3

dz1

∫

R3

z2

2∏

l=0

e−2h
−1
√

−2(ξ−V (z0))|zl−zl+1|

|zl − zl+1|
=

√
π(2π)

3
2

h3

4 (− (ξ − V (z0)))
3
2

,

it follows that (3.62) can be rewritten under the same conditions as:

X̃
(spin)

h
(β, z) =

1

h

√
πκs

4(2π)
3
2

1

β

i

2π

∫

Ω

dx

∫

C̃β

dξ ln(1 + ze−βV (x)e−βξ) (−ξ)−
3
2 .

Next, by performing an integration by parts w.r.t. ξ, followed by the change of variable t := βξ:

X̃
(spin)

h
(β, z) =

1

h

√
πκs

2(2π)
3
2

1√
β

i

2π

∫

Ω

dx

(
i

2π

)∫

Ĉ1

dt
ze−βV (x)

et + ze−βV (x)
(−t)− 1

2 , (3.63)

where Ĉ1 is the contour as in (3.59). Gathering (3.63) and (3.60) together, one arrives finally at:

X̃
(spin)

h
(β, z) =

1

h

√
πκs

2Γ(12 )(2π)
3
2

1√
β

∫

Ω

dx f 1
2

(
ze−βV (x)

)
, κs =

(q
c

)2 g2

4|Ω| . �
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4 Appendix.

Throughout this section, (I2(L
2(R3)), ‖ · ‖I2) and (I1(L

2(R3)), ‖ · ‖I1) denote the Banach
space of Hilbert-Schmidt (H-S) and trace-class operators on L2(R3) respectively.

4.1 Proof of Lemmas 3.3-3.4.

When using the estimates from Lemmas 2.2 and 2.4, we set η = min{1, π
2β} > 0, see (3.2).

Proof of Lemma 3.3. Let 0 < α < 1 and β > 0. We start with (i). Since the integral kernels
of (H̃h − ξ)−1 and Wh(ξ) obey (2.23) and (2.30) respectively, then each one is locally H-S. Ergo,
(H̃h − ξ)−1Wh(ξ) is locally trace-class on L2(R3). From (2.23) and (2.30) again, (H̃h − ξ)−1Wh(ξ)
has a jointly continuous integral kernel on R6, see [6, Lem. A.1]. From the foregoing, it follows:

TrL2(R3)

{
χΩh

(
H̃h − ξ

)−1

Wh(ξ)χΩh

}
=

∫

Ωh

dx

((
H̃h − ξ

)−1

Wh(ξ)

)
(x,x).

Under the conditions of Lemma 3.3, there exists a ϑ > 0 and a polynomial p(· ) s.t. ∀h ∈ (0, h0]:

∀(x,y) ∈ R6,

∣∣∣∣
((

H̃h − ξ
)−1

Wh(ξ)

)
(x,y)

∣∣∣∣ ≤ p(|ξ|)e− ϑ
1+|ξ|

h
−α

e−
ϑ

1+|ξ|
|x−y|. (4.1)

This leads to:

∀h ∈ (0, h0], ∀ξ ∈ Cβ ,

∣∣∣∣TrL2(R3)

{
χΩh

(
H̃h − ξ

)−1

Wh(ξ)χΩh

}∣∣∣∣ ≤ p(|ξ|)|Ωh |e−
ϑ

1+|ξ|
h
−α

,

for another h-independent p(· ). It remains to use (2.34) to get rid of the factor |Ωh | = h−3 and
use the following inequality: ∀M > 0 there exists a constant CM > 0 s.t. ∀κ ≥ 0 and ∀t ≥ 0:

e−κt ≤ CM (1 + κt)−M . (4.2)

Next, we turn to (ii). From (2.40) along with (2.36), then under the conditions of Lemma 3.3,
there exists a polynomial p(· ) s.t. ∀θ ∈ (0, 1], ∀h ∈ (0, h0] and ∀ξ ∈ Cβ :

∥∥∥∥∥∥

∑

γ∈E

τ̂h,γ

(
H̃

(ref)
h,γ − ξ

)−1 {
ˆ̂τh,γ

(
V (h1−α

γ)− V (h · )
)}(

H̃
(cste)
h,γ − ξ

)−1

τh,γ

∥∥∥∥∥∥
I1

≤ p(|ξ|)h−3+θ(1−α).

Here we used that Card(E ) = O(h3α−3) to get rid of the sum. Such an estimate still holds true
when sandwiching the sum with two indicator functions χΩh

. Finally, (3.13) follows from:

∣∣TrL2(R3) {χΩh
Wh(ξ)χΩh

}
∣∣ ≤ ‖χΩh

Wh(ξ)χΩh
‖
I1
. �

Proof of Lemma 3.4. Let 0 < α < 1. From (2.18) and by using the Dunford functional calculus
in [13, Sec. VI.3], ∀β > 0, ∀z > 0 and ∀h ∈ (0, h0] it takes place in the bounded operators sense:

i

2π

∫

Cβ

dξ fFD(β, z; ξ)Rh(ξ) =
∑

γ∈E

τ̂h,γfFD

(
β, z; H̃

(cste)
h,γ

)
τh,γ . (4.3)

Next, we need to write down an expression for the kernel of fFD(β, z; H̃
(cste)
h,γ ). Since H̃

(cste)
h,γ has a

constant potential, see (2.17), then performing a Fourier transform leads in the kernels sense to:

∀(x,y) ∈ R6,
(
fFD

(
β, z; H̃

(cste)
h,γ

))
(x,y) =

1

(2π)3

∫

R3

dk
ze−β( 1

2k
2+V (h

1−α
γ))

1 + ze−β( 1
2k

2+V (h1−αγ))
eik·(x−y).
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By setting y = x, the diagonal part is nothing but a constant (in accordance with the fact that

the operator H̃
(cste)
h,γ commutes with the real translations). Now, denote for any β > 0 and z > 0:

∀w ∈ R3, Φ(β, z;w) :=
1

(2π)3

∫

R3

dk
ze−β( 1

2k
2+V (w))

1 + ze−β( 1
2k

2+V (w))
. (4.4)

In view of (4.3) and (4.4), the l.h.s. of (3.14) can be rewritten ∀β > 0, ∀z > 0 and ∀h ∈ (0, h0] as:

2

|Ω|TrL2(R3)

{
χΩh

(
i

2π

∫

Cβ

dξ fFD(β, z; ξ)Rh(ξ)

)
χΩh

}
=

2

|Ω|
1

h3

∫

Ω

dxΦ(β, z;x) +
2

|Ω|
1

h3

∫

Ω

dx
∑

γ∈E

{
Φ
(
β, z; h1−α

γ
)
− Φ(β, z;x)

}
τh,γ

(x
h

)
, (4.5)

where we used (2.7) in the first term of the r.h.s. of (4.5). It remains to prove that the second
term behaves like O(zh−3+θ(1−α)). To do that, we use that the map R3 ∋ w 7→ Φ(β, z;w) is
globally Hölder continuous with exponent θ ∈ (0, 1] as a result of (1.14). Indeed:

∀(w,w0) ∈ R6, |Φ(β, z;w)− Φ(β, z;w0)| ≤ βzeβ‖V ‖∞

(∫

R3

dk e−
1
2βk

2

)
|V (w)− V (w0)| .

From (2.36), for any β > 0 there exists a c = c(β) > 0 s.t. ∀z > 0, ∀h ∈ (0, h0] and ∀γ ∈ E :

∀x ∈ Ω s.t. xh−1 ∈ Supp (τh,γ) ,
∣∣Φ
(
β, z; h1−α

γ
)
− Φ (β, z;x)

∣∣ ≤ czhθ(1−α).

The behavior of the remainder in (3.14) follows from the above estimate along with (2.7). �

4.2 Proof of Lemma 3.5 and Proposition 3.7.

Proof of Lemma 3.5. Let β > 0, ρs > 0 and h > 0 be fixed. Remind that (z, b) 7→ P s
h
(β, z, b) is

jointly smooth on (0,∞)×R, see Sec. 1.4. In view of (3.22), it remains to prove that b 7→ zs
h(β, ρ

s , b)
is a C∞-function. Pick b0 ∈ R, and consider the equation ρs

h
(β, zs

h(β, ρ
s , b0), b0) − ρs = 0. Due to

(1.29), ρs
h
(β, · , · ) − ρs is jointly smooth in (z, b) ∈ (0,∞) × R. Besides, since z 7→ ρs

h
(β, z, b) is

strictly increasing and does not vanish on (0,∞), then (∂zρ
s
h
)(β, zs

h(β, ρ
s , b0), b0) > 0. Therefore,

b 7→ zs
h(β, ρ

s , b) is smooth in a neighborhood I(b0) of b0 by the implicit function theorem, and:

∀b ∈ I(b0),
∂zs

h

∂b
(β, ρs , b) = −∂ρ

s
h

∂b
(β, zs

h(β, ρ
s , b), b)

(
∂ρs

h

∂z
(β, zs

h(β, ρ
s , b), b)

)−1

. (4.6)

This proves the first statement. By using that (∂zP
s
h
)(β, zs

h(β, ρ
s , b), b) = (βzs

h(β, ρ
s , b))−1ρs , then:

∂(P s
h
)∗

∂b
(β, ρs , b) = −∂P

s
h

∂b
(β, zs

h(β, ρ
s , b), b) ,

∂2(P s
h
)∗

∂b2
(β, ρs , b) = −∂

2P s
h

∂b2
(β, zs

h(β, ρ
s , b), b)− ∂zs

h

∂b
(β, ρs , b)

∂2P s
h

∂z∂b
(β, zs

h(β, ρ
s , b), b) .

It remains to use that b 7→ ρs
h
(β, z, b) is an even function as point-wise limit of the sequence of

even functions {ρs
h,L(β, z, · )}L>0. Due to (4.6), this implies that (∂bz

s
h
)(β, ρs , 0) = 0. �

Remark 4.1. From the above proof, we can see that in non-vanishing magnetic field:

−
(q
c

)2 ∂2(P s
h
)∗

∂b2
(β, ρs , b) = X s (GC)

h
(β, ρs , b) +

(q
c

)2 ∂zs
h

∂b
(β, ρs , b)

∂2P s
h

∂z∂b
(β, zs

h(β, ρ
s , b), b) .
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Proof of Proposition 3.7. We start by proving (3.25). For any L > 0, β > 0, ρs > 0, b ∈ R and
h > 0, define the Legendre-transform of the finite-volume grand-canonical pressure in (1.26) as:

(P s
h,L)

∗(β, ρs , b) : = sup
µ∈R

(
ρsµ− P s

h,L

(
β, eβµ, b

))

=
ρs

β
log
(
zs

h,L(β, ρ
s , b)

)
− P s

h,L

(
β, zs

h,L(β, ρ
s , b), b

)
,

(4.7)

where zs
h,L(β, ρ

s , b) > 0 is the unique solution of the equation ρs
h,L(β, z, b) = ρs , see (1.32). In view

of (3.22), one has the following point-wise convergence:

lim
L↑∞

(P s
h,L)

∗(β, ρs , b) = (P s
h )

∗(β, ρs , b), h > 0, β > 0, ρs > 0, b ∈ R. (4.8)

This comes from the convergence in (1.28) which is compact in z, along with, see e.g. [47]:

lim
L↑∞

zs
h,L(β, ρ

s , b) = zs
h(β, ρ

s , b). (4.9)

The starting-point consists in expressing the free energy density in (1.43) in terms of the Legendre
transform in (4.7) from (1.41). The contour appearing in (1.41) has to be included in the holo-

morphic domain C \ (−∞,−eβE
s
h(b)] of z 7→ P̂ s

h,L(β, z, b) while surrounding the origin. Under the
assumptions of Proposition 3.7, we claim that it can be chosen for L large enough as:

C :=
{
zs

h,L(β, ρ
s , b)eiφ, φ ∈ [−π, π]

}
. (4.10)

Indeed, if ρ ∈ (0, ρs
h
(β, eβE

s
h(b), b)), then 0 < zs

h(β, ρ
s , b) < eβE

s
h(b) since z 7→ ρs

h(β, z, b) is strictly
increasing. Now by using (4.9), then one has for L sufficiently large:

zs
h,L(β, ρ

s , b) ≤ zs
h(β, ρ

s , b) + eβE
s
h(b)

2
< eβE

s
h(b).

We emphasize that the restriction set on ρs in Proposition 3.7 allows us to consider a contour of
type (4.10). This feature is important for the following. Performing a change of variable in (1.41),
and expressing zs

h,L(β, ρ
s , b) in terms of (P s

h,L)
∗(β, ρs , b) from (4.7), we get for L large enough:

F s
h,L(β, ρ

s , b) = (P s
h,L)

∗(β, ρs , b) +
ln(N s

L)

2β|ΛL|
− 1

β|ΛL|
ln(As

h,L(β, ρ
s , b)), N s

L := ρs |ΛL|, (4.11)

As
h,L(β, ρ

s , b) :=

√
N s

L

2π

∫ π

−π

dφ eβ
N s

L
ρs (P̂ s

h,L(β,z
s
h,L(β,ρs ,b)eiφ,b)−P s

h,L(β,z
s
h,L(β,ρs ,b),b))e−iN s

Lφ. (4.12)

(4.12) corresponds to [8, Eq. (3.3)], in which the case of a spin-0 Bose gas interacting only with
a constant magnetic field has been treated (for densities smaller than the critical density). Since
the contour in (4.10) is of the same type as [8, Eq. (3.1)], it is enough to mimic the proof of [8,
Thm. 2]. Let us explain the strategy. It consists in taking a well-chosen parametrization of the
contour (4.10) in a neighborhood of φ = 0. To do so, set φs

L := (N s
L)

κ, with κ ∈ (− 1
2 ,− 1

3 ). Then,
the contour can be decomposed into two parts: one corresponding to |φ| ≥ φs

L and the other one
to |φ| ≤ φs

L. The rest of the strategy consists in showing that:

(1) the contribution to As
h,L coming from the region |φ| ≥ φs

L is exponentially small in L.

(2) the contribution to As
h,L coming from the region |φ| ≤ φs

L has a strictly positive limit.

We collect in the following lemma, stated without proof, all the results needed to mimic the
proof of (1) and (2) in [8, pp. 7–10]. The same results are also used in the proof of [8, Thm. 2],
then their proof given in [8] can be easily adapted to our situation. For simplicity’s sake, we set:

P s
h,L

(
zs

h,L

)
= P s

h,L

(
β, zs

h,L(β, ρ
s , b), b

)
, P̂ s

h,L

(
zs

h,Le
iφ
)
= P̂ s

h,L

(
β, zs

h,L(β, ρ
s , b)eiφ, b

)
,

ℜP̂ s
h,L

(
zs

h,Le
iφ
)
:= ℜP̂ s

h,L

(
β, zs

h,L(β, ρ
s , b)eiφ, b

)
, ℑP̂ s

h,L

(
zs

h,Le
iφ
)
:= ℑP̂ s

h,L

(
β, zs

h,L(β, ρ
s , b)eiφ, b

)
,

and similar notation hold for the corresponding bulk quantities (obtained by dropping the ’L’).
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Lemma 4.2. For any h > 0, β > 0, ρs > 0 and b ∈ R:
(i).

lim
L↑∞

∂2ℜP̂ s
h,L

∂φ2
(
zs

h,L

)
=
∂2ℜP̂ s

h

∂φ2
(zs

h) ,

where P̂ s
h
denotes the analytic continuation of the bulk pressure P s

h
(β, · , b) to C \ (−∞,−eβE

s
h(b)].

(ii).

∂jℜP̂ s
h,L

∂φj
(
zs

h,L

)




= P s
h,L

(
zs

h,L

)
, if j = 0,

= 0, if j = 1,
< 0, if j = 2,

;
∂jℑP̂ s

h,L

∂φj
(
zs

h,L

)
=





0, if j = 0,
ρs

β
, if j = 1,

0, if j = 2

.

(iii). [−π, π] ∋ φ 7→ ℜP̂ s
h,L(z

s
h,Le

iφ) is increasing on [−π, 0], decreasing on [0, π].
(iv). There exist two constants Cl = Cl(β, ρ

s , b, h) > 0, l = 1, 2 s.t. for L ≥ 1 sufficiently large:

∂2ℜP̂ s
h,L

∂φ2
(
zs

h,L

)
≤ −C1 < 0, (4.13)

∀φ ∈ [−π, π],
∣∣∣∣∣
∂3P̂ s

h,L

∂φ3
(
zs

h,Le
iφ
)
∣∣∣∣∣ ≤ C2. (4.14)

Let us sketch the proof of (1). Consider the following contribution:

As (r)
h,L (β, ρs , b) :=

√
N s

L

2π

∫ π

φs
L

dφ eβ
N s

L
ρs (P̂ s

h,L(zs
h,Leiφ)−P s

h,L(zs
h,L))e−iN s

Lφ. (4.15)

By Lemma 4.2 (iii), φ 7→ ℜP̂ s
h,L(z

s
h,Le

iφ) decreases on [0, π]. By expanding ℜP̂ s
h,L(z

s
h,Le

iφs
L) by the

Taylor’s formula with integral remainder, then Lemma 4.2 (ii) leads for L sufficiently large to:

∣∣∣As (r)
h,L (β, ρs , b)

∣∣∣ ≤
√
N s

L

2π
(π − φs

L) e
β

N s
L

2ρs (φ
s
L)2

∂2ℜP̂ s
h,L

∂φ2 (zs
h,L)e

β
N s

L
2ρs

∫ φs
L

0 du (φs
L−u)2

∂3ℜP̂ s
h,L

∂φ3 (zs
h,Leiu).

(4.16)
It remains to use (4.13) and (4.14) which lead respectively for L sufficiently large to:

e
β

N s
L

2ρs (φ
s
L)2

∂2ℜP̂ s
h,L

∂φ2 (zs
h,L) ≤ e−

β
2ρs C1(N

s
L)2κ+1

, (4.17)

e
β

N s
L

2ρs

∫ φs
L

0 du (φs
L−u)2

∂3ℜP̂ s
h,L

∂φ3 (zs
h,Leiu) ≤ e

β
6ρs C2(N

s
L)3κ+1

. (4.18)

The other contribution (as in (4.15) but with the integral over [−π,−φs
L]) can be treated similarly.

Next, let us sketch the proof of (2). By expanding P̂ s
h,L(z

s
h,Le

iφ) by the Taylor’s formula with
integral remainder, followed by Lemma 4.2 (ii), then one has for L sufficiently large:

As (mp)
h,L (β, ρs , b) :=

√
N s

L

2π

∫ (N s
L)κ

−(N s
L)κ

dφ e
β

N s
L

2ρs φ
2

∂2ℜP̂ s
h,L

∂φ2 (zs
h,L)e

β
N s

L
2ρs

∫
φ
0

du (φ−u)2
∂3P̂ s

h,L

∂φ3 (zs
h,Leiu). (4.19)

Performing the change of variable t =
√
N s

Lφ, one has for L sufficiently large:

As (mp)
h,L (β, ρs , b) =

1

2π

∫ (N s
L)κ+1

2

−(N s
L
)κ+1

2

dt e
β

2ρs

∂2ℜP̂ s
h,L

∂φ2 (zs
h,L)t

2

e
β

2ρs

∫
t√
N s

L

0 du (t−
√

N s
L
u)

2 ∂3P̂ s
h,L

∂φ3 (zs
h,Leiu).

(4.20)
It remains to use (4.14), and (4.13) along with Lemma 4.2 (i), which lead for L large enough to:

∫ t√
N s

L

0

du
(
t−
√
N s

Lu
)2 ∂3P̂ s

h,L

∂φ3
(
zs

h,Le
iu
)
= O

(
(N s

L)
3κ+1

)
,

lim
L↑∞

∫ (N s
L)κ+1

2

−(N s
L)κ+1

2

dt e
β

2ρs

∂2ℜP̂ s
h,L

∂φ2 (zs
h,L)t

2

=

√√√√−2πρs

β

(
∂2ℜP̂ s

h

∂φ2
(zs

h)

)−1

> 0,
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where the last identity is obtained from the Lebesgue dominated convergence theorem. From the
foregoing, one concludes that for any β > 0, ρs > 0, b ∈ R and h > 0:

As
h(β, ρ

s , b) := lim
L↑∞

As
h,L(β, ρ

s , b) =

√√√√− ρs

2πβ

(
∂2ℜP̂ s

h

∂φ2
(zs

h)

)−1

> 0. (4.21)

In view of (4.11), then (3.25) follows from (4.21) along with (4.8).
Let us turn to the proof of (3.27). We only give the main arguments. In view of (4.11), one

has for any β > 0, ρs > 0, b ∈ R, h > 0 and for L sufficiently large:

∂F s
h,L

∂b
(β, ρs , b)−

∂(P s
h,L)

∗

∂b
(β, ρs , b) = − 1

β|ΛL|

∂As
h,L

∂b
(β, ρs , b)

As
h,L(β, ρ

s , b)
, (4.22)

∂2F s
h,L

∂b2
(β, ρs , b)−

∂2(P s
h,L)

∗

∂b2
(β, ρs , b) = − 1

β|ΛL|

∂2As
h,L

∂b2
(β, ρs , b)

As
h,L(β, ρ

s , b)
+

1

β|ΛL|

(
∂As

h,L

∂b
(β, ρs , b)

)2

(
As

h,L(β, ρ
s , b)

)2 .

(4.23)

Let us prove that there exists a constant C = C(β, ρs , b, h) > 0 s.t. for L sufficiently large:
∣∣∣∣∣
∂lF s

h,L

∂bl
(β, ρs , b)−

∂l(P s
h,L)

∗

∂bl
(β, ρs , b)

∣∣∣∣∣ ≤
C

|ΛL|
, l = 1, 2. (4.24)

From (4.22)-(4.23) and due to (4.21), this means that one has to prove for L large enough that:
∣∣∣∣∣
∂lAs

h,L

∂bl
(β, ρs , b)

∣∣∣∣∣ ≤ C, l = 1, 2. (4.25)

To do that, we need the following lemma stated without proof. The same results are also used
in the proof of [8, Thm. 2]. Below, we use the shorthand notation introduced above Lemma 4.2.

Lemma 4.3. For any h > 0, β > 0, ρs > 0 and b ∈ R:
(i). There exist two constants Cl > 0, l = 1, 2 s.t. for L sufficiently large:

∣∣∣∣
∂l

∂bl

[
P̂ s

h,L

(
zs

h,Le
iφ
)
− P s

h,L

(
zs

h,L

)]∣∣∣∣ ≤ Cl, l = 1, 2.

(ii). There exist four constants C
′

l , C
′′

l > 0, l = 1, 2 s.t. for L sufficiently large:
∣∣∣∣∣
∂l

∂bl

(
∂2P̂ s

h,L

∂φ2
(
zs

h,Le
iφ
)
)∣∣∣∣∣ ≤ C

′

l , l = 1, 2,

∣∣∣∣∣

∫ t√
N s

L

0

du
(
t−
√
N s

Lu
)2 ∂l

∂bl

(
∂3P̂ s

h,L

∂φ3
(
zs

h,Le
iu
)
)∣∣∣∣∣ ≤ C

′′

l

|t|3√
N s

L

, l = 1, 2.

We now prove (4.25). From (4.15) and by using Lemma 4.3 (i), then for L sufficiently large:
∣∣∣∣∣
∂lAs (r)

h,L

∂bl
(β, ρs , b)

∣∣∣∣∣ ≤
(N s

L)
3
2

2π

β

ρs

(
Cl + (l − 1)C2

1

β

ρs
N s

L

)∫ π

φs
L

dφ eβ
N s

L
ρs (ℜP̂ s

h,L(z
s
h,Leiφ)−P s

h,L(z
s
h,L)).

It remains to use the arguments leading to (4.16), and the estimates in (4.17)-(4.18) to conclude
that the contributions as in (4.15) are exponentially small in L. We continue with the contribution
in (4.19). From (4.20) followed by Lemma 4.3 (ii), then for L sufficiently large:

∣∣∣∣∣
∂lAs (mp)

h,L

∂bl
(β, ρs , b)

∣∣∣∣∣ ≤
1

2π

∫ (N s
L)κ+1

2

−(N s
L
)κ+1

2

dt

l∑

k=1

(
β

2ρs

) l
k

(
C

′

kt
2 + C

′′

k

|t|3√
N s

L

) l
k

e
β

2ρs

∂2ℜP̂ s
h,L

∂φ2 (zs
h,L)t

2

eO((N
s
L)3κ+1).
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It remains to use that |t|3 ≤ C(ρs )t2 on [−(N s
L)

κ+ 1
2 , (N s

L)
κ+ 1

2 ] for L large enough, along with:

lim
L↑∞

∫ +∞

−∞

dt t2me
β

2ρs

∂2ℜP̂ s
h,L

∂φ2 (zs
h,L)t

2

= Γ

(
1

2
+m

)(
β

2ρs

)− 1
2−m

(
−∂

2ℜP̂ s
h

∂φ2
(zs

h)

)− 1
2−m

> 0,

for any m ∈ N∗. Gathering the above results together, then (4.25) follows. The proof of (3.27)
follows from (4.24) together with the fact that limL↑∞(∂lb(P

s
h,L)

∗)(β, ρs , b) = (∂lb(P
s
h
)∗)(β, ρs , b),

l = 1, 2. The last statement comes from (4.8), (4.9) and (3.22). �

4.3 Proof of Lemmas 3.11-3.13.

When using the estimates from Lemmas 2.2-2.4, we set η = min{1, π
2β } > 0, see (3.2).

Proof of Lemma 3.11. We start with (3.49). Denote Yh,0(ξ) := TrL2(R3){χΩh
(H̃h − ξ)−3χΩh

}.
By replacing (H̃h − ξ)−1 with the r.h.s. of (2.16) in Yh,0(ξ), then:

Yh,0(ξ) = TrL2(R3) {χΩh
Rh(ξ)Rh(ξ)Rh (ξ)χΩh

}+Qh,0(ξ),

where Qh,0(ξ) consists of seven terms. Let us show that, under the conditions of Lemma 3.11, the
quantity |Qh,0(ξ)| obeys an estimate of type (3.49). To do so, take a generical term from Qh,0(ξ):

qh,0(ξ) := −TrL2(R3)

{
χΩh

Rh(ξ)Rh(ξ)
(
H̃h − ξ

)−1

Wh(ξ)χΩh

}
.

Let 0 < α < 1 be fixed. From (2.28) and (2.30), one has under the conditions of Lemma 2.4:

‖χΩh
Rh(ξ)‖I2

≤ p(|ξ|)
√

|Ωh |, ‖Wh(ξ)χΩh
‖
I2

≤ p(|ξ|)
√
|Ωh |e−ϑξh

−α

, (4.26)

for another h-independent constant ϑ > 0 and polynomial p(· ). From (4.26) along with (2.37),
one concludes that there exists another ϑ > 0 and polynomial p(· ) s.t. ∀h ∈ (0, h0] and ∀ξ ∈ Cβ ,

|qh,0(ξ)| ≤ p(|ξ|)e−ϑξh
−α

. Here we used (2.34) to get rid of the factor |Ωh |. Finally, it remains to
use (4.2). The other terms coming from Qh,0(ξ) can be treated by using similar arguments.

Next, we turn to (3.50). Denote Yh,1(ξ) := TrL2(R3){χΩh
(H̃h−ξ)−1T̃h,1(ξ)T̃h,1(ξ)χΩh

} and Yh,2(ξ) :=

TrL2(R3){χΩh
(H̃h − ξ)−1T̃h,2(ξ)χΩh

}. By replacing (H̃h − ξ)−1 with the r.h.s. of (2.16), one gets:

Yh,1(ξ) =

∫

Ωh

dx (Rh(ξ)Th,1(ξ)Th,1(ξ)) (x,x) +Qh,1(ξ),

Yh,2(ξ) =

∫

Ωh

dx (Rh(ξ)Th,2(ξ)) (x,x) +Qh,2(ξ),

where Qh,1(ξ) and Qh,2(ξ) consist of seven and three terms respectively. Let 0 < α < 1 be fixed.
Let us show that, under the conditions of Lemma 3.11, the quantities |Qh,j(ξ)|, j = 1, 2 obey an
estimate of type (3.50). To do so, take one generical term from Qh,1(ξ) and one from Qh,2(ξ):

qh,1(ξ) :=

∫

Ωh

dx

∫

R3

dz1

∫

R3

dz2 (Rh(ξ)) (x, z1)a(z1 − z2) · ∇z1 (Rh(ξ)) (z1, z2)×

× a(z2 − x) · ∇z2

((
H̃h − ξ

)−1

Wh(ξ)

)
(z2,x),

qh,2(ξ) := −
∫

Ωh

dx

∫

R3

dz (Rh(ξ)) (x, z)
1

2
a2(z− x)

((
H̃h − ξ

)−1

Wh(ξ)

)
(z,x).

From (2.28) and (4.1), there exists a constant ϑ > 0 and a polynomial p(· ) s.t.

∀h ∈ (0, h0], ∀ξ ∈ Cβ , |qh,2(ξ)| ≤ p(|ξ|)e−ϑξh
−α

.
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Here, we used the bound |a(z − x)| ≤ |z − x|, the estimate (2.34) to get rid of a factor |z − x|,
followed by [6, Lem. A.2]. To control the quantity |qh,1(ξ)|, we need the following. From (2.23)
and (2.30), there exists another ϑ > 0 and polynomial p(· ) s.t. ∀h ∈ (0, h0] and ∀ξ ∈ Cβ :

∀(x,y) ∈ R6\D,
∣∣∣∣
∫

R3

dz∇x

(
H̃h − ξ

)−1

(x, z) (Wh(ξ)) (z,y)

∣∣∣∣ ≤ p(|ξ|)e−ϑξh
−α e−ϑξ|x−y|

|x− y| . (4.27)

It follows from (2.28), (2.29), (4.27) combined with [6, Lem. A.2]:

∀h ∈ (0, h0], ∀ξ ∈ Cβ , |qh,1(ξ)| ≤ p(|ξ|)e−ϑξh
−α

,

for another constant ϑ > 0 and polynomial p(· ) both h-independent. Note that, when estimating
|qh,j(ξ)|, we got rid of the factor |Ωh | = h−3 via (2.34). Then, an estimate of type (3.50) follows from
(4.2). The other terms coming from Qh,j(ξ), j = 1, 2 can be treated by using similar arguments. �

Proof of Lemma 3.12. Start with (3.51). Denote Yh,0(ξ) := TrL2(R3){χΩh
Rh(ξ)Rh (ξ)Rh(ξ)χΩh

}.
By replacing Rh(ξ) with the r.h.s. of (2.19) in Yh,0(ξ), then:

Yh,0(ξ) = TrL2(R3) {χΩh
Rh(ξ)Rh(ξ)Rh(ξ)χΩh

}+ Qh,0(ξ),

where Qh,0(ξ) consists of seven terms. Let us show that, under the conditions of Lemma 3.12, the
quantity |Qh,0(ξ)| obeys an estimate of type (3.51). To do so, take a generical term from Qh,0(ξ):

qh,0(ξ) := TrL2(R3) {χΩh
Rh(ξ)Rh(ξ)Wh(ξ)χΩh

} .

Fix α ∈ (0, 1) and θ ∈ (0, 1]. From (2.28) and (2.31), one has under the conditions of Lemma 2.4:

‖χΩh
Rh(ξ)‖I2

≤ p(|ξ|)
√

|Ωh |, ‖Wh(ξ)χΩh
‖
I2

≤ p(|ξ|)
√

|Ωh |hθ(1−α), (4.28)

for another h-independent polynomial p(· ). From (4.28) along with (2.37), one concludes that
there exists another polynomial p(· ) s.t. ∀h ∈ (0, h0] and ∀ξ ∈ Cβ , |qh,0(ξ)| ≤ p(|ξ|)h−3+θ(1−α).
The other terms coming from Qh,0(ξ) can be treated by using similar arguments.
Next, we turn to (3.52). Denote: Yh,1(ξ) := TrL2(R3){χΩh

Rh(ξ)Th,1(ξ)Th,1(ξ)χΩh
} and Yh,2(ξ) :=

TrL2(R3){χΩh
Rh(ξ)Th,2(ξ)χΩh

}. By replacing Rh(ξ) with the r.h.s. of (2.19) in Yh,j(ξ), j = 1, 2:

Yh,1(ξ) =

∫

Ωh

dx (Rh(ξ)Th,1(ξ)Th,1(ξ)) (x,x) + Qh,1(ξ),

Yh,2(ξ) =

∫

Ωh

dx (Rh(ξ)Th,2(ξ)) (x,x) + Qh,2(ξ),

where Qh,1(ξ) and Qh,2(ξ) consist of seven and three terms respectively. Fix α ∈ (0, 1) and
θ ∈ (0, 1]. Show that, under the conditions of Lemma 3.12, the quantities |Qh,j(ξ)|, j = 1, 2 obey
an estimate of type (3.52). To do so, take one generical term from Qh,1(ξ) and one from Qh,2(ξ):

qh,1(ξ) := −
∫

Ωh

dx

∫

R3

dz1

∫

R3

dz2 (Rh(ξ)) (x, z1)a(z1 − z2) · ∇z1 (Rh(ξ)) (z1, z2)×

× a(z2 − x) · ∇z2 (Wh(ξ)) (z2,x),

qh,2(ξ) :=

∫

Ωh

dx

∫

R3

dz (Rh(ξ)) (x, z)
1

2
a2(z − x) (Wh(ξ)) (z,x).

From (2.31) and by using that |a(x− y)| ≤ |x− y|, then under the conditions of Lemma 2.4:

∀(x,y) ∈ R6,
∣∣a2(x− y) (Wh(ξ)) (x,y)

∣∣ ≤ p(|ξ|)hθ(1−α)e−ϑξ|x−y|, (4.29)

for another ϑ > 0 and polynomial p(· ) both h-independent. Here we used (2.34). From (4.29),
(2.28) along with [6, Lem. A.2], then there exists another constant ϑ > 0 and polynomial p(· ) s.t.

∀h ∈ (0, h0], ∀ξ ∈ Cβ , |qh,2(ξ)| ≤ p(|ξ|)h−3+θ(1−α).
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To control the quantity |qh,1(ξ)|, we need the following estimate. From (2.20), by using (2.25)-
(2.26) together with (2.36), then one can prove that under the conditions of Lemma 2.4:

∀(x,y) ∈ R6, |a(x− y) · ∇x (Wh(ξ)) (x,y)| ≤ p(|ξ|)hθ(1−α)e−ϑξ|x−y|, (4.30)

for another ϑ > 0 and polynomial p(· ) both h-independent. Here we used (2.34) again. From
(2.23), (2.29) and (4.30) combined with [6, Lem. A.2]:

∀h ∈ (0, h0], ∀ξ ∈ Cβ , |qh,1(ξ)| ≤ p(|ξ|)h−3+θ(1−α),

for another constant ϑ > 0 and polynomial p(· ) both h-independent. The other terms coming
from Qh,j(ξ), j = 1, 2 can be treated by using similar arguments. �

Proof of Lemma 3.13. We start with (3.53). Note that (2.18) can be rewritten ∀h ∈ (0, h0] as:

Rh(ξ) =
∑

γ∈E

(
H̃

(cste)
h,γ − ξ

)−1

τh,γ +
∑

γ∈E

S(cste)
h,γ (ξ), with: (4.31)

S(cste)
h,γ (ξ) :=

(
H̃

(cste)
h,γ − ξ

)−1 [
H̃

(cste)
h,γ , τ̂h,γ

] (
H̃

(cste)
h,γ − ξ

)−1

τh,γ , (4.32)

resulting from the commutation of τ̂h,γ with (H̃
(cste)
h,γ − ξ)−1. Then, it follows that:

TrL2(R3)

{
χΩh

(Rh(ξ))
3 χΩh

}
= TrL2(R3)



χΩh




3∏

l=1

∑

γl∈E

(
H̃

(cste)
h,γl

− ξ
)−1

τh,γl


χΩh



+Qh,0(ξ),

where Qh,0(ξ) consists of seven terms. Let us show that, under the conditions of Lemma 3.13, the
quantity |Qh,0(ξ)| obeys an estimate of type (3.53). To do so, take a generical term from Qh,0(ξ):

qh,0(ξ) := TrL2(R3)



χΩh




2∏

l=1

∑

γl∈E

(
H̃

(cste)
h,γl

− ξ
)−1

τh,γl





∑

γ∈E

S(cste)
h,γ (ξ)


χΩh



 .

Firstly, by using (2.25) followed by (2.32), then under the conditions of Lemma 2.2:

∥∥∥∥∥∥
χΩh



∑

γ∈E

(
H̃

(cste)
h,γ − ξ

)−1

τh,γ



∥∥∥∥∥∥
I2

≤ p(|ξ|)
√

|Ωh |, (4.33)

for another h-independent polynomial p(· ). Next, use that [H̃(cste)
h,γ , τ̂h,γ ] = − 1

2 (∆τ̂h,γ)−(∇τ̂h,γ)·∇.

Then, from (2.33) (which is unchanged when replacing (H̃
(ref)
h,γ − ξ)−1 with (H̃

(cste)
h,γ − ξ)−1) and

(2.25) combined with [6, Lem. A.2], one has on R6 under the conditions of Lemma 2.4:

∑

γ∈E

∣∣∣∣
((

H̃
(cste)
h,γ − ξ

)−1 [
H̃

(cste)
h,γ , τ̂h,γ

] (
H̃

(cste)
h,γ − ξ

)−1

τh,γ

)
(x,y)

∣∣∣∣ ≤ p(|ξ|)e−ϑξh
−α

e−ϑξ|x−y|,

for another constant ϑ > 0 and polynomial p(· ) both h-independent. Therefore, it follows that:

∥∥∥∥∥∥


∑

γ∈E

S(cste)
h,γ (ξ)


χΩh

∥∥∥∥∥∥
I2

≤ p(|ξ|)
√
|Ωh |e−ϑξh

−α

, (4.34)

for another ϑ > 0 and polynomial p(· ) both h-independent. Gathering (4.33) and (4.34) together
and using (2.37), then there exists another constant ϑ > 0 and polynomial p(· ) s.t. ∀h ∈ (0, h0]

and ∀ξ ∈ Cβ , |qh,0(ξ)| ≤ p(|ξ|)e−ϑξh
−α

. Finally, it remains to use (4.2) to get an estimate of type
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(3.53). The other terms coming from Qh,0(ξ) can be treated by using similar arguments.
Afterwards, let us turn to (3.54). Introduce ∀0 < α < 1, ∀h ∈ (0, h0] and ∀γ ∈ E the operators

T̃
(cste)
h,γ;0 (ξ) and T̃

(cste)
h,γ;1 (ξ) on L2(R3) generated via their kernel respectively defined as:

∀(x,y) ∈ R6 \D, T̃
(cste)
h,γ;0 (x,y; ξ) := a(x − y)

(
H̃

(cste)
h,γ − ξ

)−1

(x,y), (4.35)

T̃
(cste)
h,γ;1 (x,y; ξ) := a(x − y) · (i∇x)

(
H̃

(cste)
h,γ − ξ

)−1

(x,y).

Note an important thing. From the explicit expression in (2.27), one gets by direct calculations:

∀(x,y) ∈ R6 \D, a(x− y) · (∇x)
(
H̃

(cste)
h,γ − ξ

)−1

(x,y) = 0.

In view of (2.18), the kernel Th,1(· , · ; ξ) defined in (3.46) can be therefore rewritten on R6 \D as:

Th,1(x,y; ξ) = i
∑

γ∈E

(∇τ̂h,γ) (x)T̃
(cste)
h,γ;0 (x,y; ξ)τh,γ(y).

As a result, the following identity holds:

TrL2(R3) {χΩh
Rh(ξ)Th,1(ξ)Th,1(ξ)χΩh

} =

− TrL2(R3)



χΩh

Rh(ξ)




2∏

l=1

∑

γl∈E

(∇τ̂h,γl
)T̃

(cste)
h,γl;0

(ξ)τh,γl


χΩh



 .

Next, from (2.12) together with (2.25), then under the conditions of Lemma 2.2:

∥∥∥∥∥∥


∑

γ∈E

(∇τ̂h,γ) T̃
(cste)
h,γ;0 (ξ)τh,γ


χΩh

∥∥∥∥∥∥
I2

≤ p(|ξ|)
√
|Ωh |e−ϑξh

−α

, (4.36)

for another ϑ > 0 and polynomial p(· ) both h-independent. From (4.36), (4.28), (2.37) and (2.34),
one concludes that there exists another ϑ > 0 and polynomial p(· ) s.t. ∀h ∈ (0, h0] and ∀ξ ∈ Cβ ,

‖χΩh
Rh(ξ)Th,1(ξ)Th,1(ξ)χΩh

‖I1 ≤ p(|ξ|)e−ϑξh
−α

. It remains to use (4.2), what leads to (3.54).
Finally, let us turn to (3.55). Remind that the operator Th,2(ξ) is generated via its kernel

defined in (3.47). By replacing Rh(ξ) with the r.h.s. of (4.31), one has:

TrL2(R3) {χΩh
Rh(ξ)Th,2(ξ)χΩh

} =

TrL2(R3)



χΩh



∑

γ1∈E

(
H̃

(cste)
h,γ1

− ξ
)−1

τh,γ1

∑

γ2∈E

T̃
(cste)
h,γ2;2

(ξ)τh,γ2


χΩh



+Qh,2(ξ),

where T̃
(cste)
h,γ;2 (ξ) is the operator generated by the kernel in (3.43) and Qh,2(ξ) consists of three

terms. Let us show that, under the conditions of Lemma 3.13, the quantity |Qh,2(ξ)| obeys an
estimate of type (3.55). To do so, take a generical term from Qh,2(ξ):

qh,2(ξ) := TrL2(R3)



χΩh



∑

γ1∈E

(
H̃

(cste)
h,γ1

− ξ
)−1

τh,γ1





∑

γ2∈E

V
(cste)

h,γ2
(ξ)τh,γ2


χΩh



 ,

where:

V
(cste)

h,γ (ξ) :=T̃
(cste)
h,γ;2 (ξ)

[
H̃

(cste)
h,γ , τ̂h,γ

] (
H̃

(cste)
h,γ − ξ

)−1

+
(
H̃

(cste)
h,γ − ξ

)−1 [
H̃

(cste)
h,γ , τ̂h,γ

]
T̃

(cste)
h,γ;2 (ξ)

+ T̃
(cste)
h,γ;0 (ξ)

[
H̃

(cste)
h,γ , τ̂h,γ

]
T̃

(cste)
h,γ;0 (ξ).
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Here, T̃
(cste)
h,γ;0 (ξ) is the operator generated by the kernel in (4.35). To arrive at such an identity, we

used that a2(x− y) = {a(x− z) + a(z− y)}2 ∀(x,y, z) ∈ R9. From (3.47) and (4.35), then under

the conditions of Lemma 2.2, the kernel of the operators T̃
(cste)
h,γ;k (ξ), k ∈ {0, 2} obey an estimate

of type (2.25). Ergo, the estimate on the H-S norm in (4.34) still holds true when replacing in

(4.32) one or the two resolvents with T̃
(cste)
h,γ;k (ξ), k ∈ {0, 2}. From this and (4.33), then there exists

another ϑ > 0 and polynomial p(· ) s.t. ∀h ∈ (0, h0] and ∀ξ ∈ Cβ , |qh,2(ξ)| ≤ p(|ξ|)e−ϑξh
−α

. It
remains to use (4.2). The other terms coming from Qh,2(ξ) can be treated similarly. �

Remark 4.4. The methods we use to estimate the traces in the proof of Lemmas 3.11-3.12-3.13
heavily rely on the presence of the characteristic functions χΩh

. But in fact, the χΩh
’s can be

both removed from the traces since the operators sandwiched between the χΩh
’s are trace-class on

L2(R3). Indeed, these operators can always be written as a product of bounded operators of type:

Ki(ξ)O(ξ)Kj(ξ) or O(ξ)Ki(ξ)Kj(ξ) or Ki(ξ)Kj(ξ)O(ξ), i, j ∈ {1, 2}2, (4.37)

where, under the conditions of Lemma 2.2:
(i). The kernel O(· , · ; ξ) of O(ξ) obeys an estimate of type (2.25) or (2.26);
(ii). K1(ξ) has the form:

K1(ξ) =
∑

γ∈E

τ̂h,γK1,γ(ξ)τh,γ ,

and the kernel K1,γ(· , · ; ξ) of K1,γ(ξ) obeys an estimate of type (2.25);
(iii). K2(ξ) has one of the two following forms:

(1)
∑

γ∈E

(∇τ̂h,γ)K2,γ(ξ)τh,γ , or (2)
∑

γ∈E

(∆τ̂h,γ)K2,γ(ξ)τh,γ ,

and the kernel K2,γ(· , · ; ξ) of K2,γ(ξ) obeys an estimate of type (2.25) or (2.26).
Consider for instance K1(ξ)O(ξ)K2(ξ) with K2(ξ) having the form (1). Then, one has:

∣∣TrL2(R3) {K1(ξ)O(ξ)K2(ξ)}
∣∣ ≤

∑

γ1∈E

∑

γ2∈E

‖τ̂h,γ1K1,γ1(ξ)τh,γ1O(ξ)(∇τ̂h,γ2)K2,γ2(ξ)τh,γ2‖I1
.

Note that the double sum only contains O(h3α−3) non-zero terms since when keeping γ1 fixed, only
a finite number (h-independent) of γ2’s have an overlapping support. By mimicking the arguments
leading to the estimates on H-S norms in Remark 2.6, then under the conditions of Lemma 2.2:

‖τ̂h,γK1,γ(ξ)τh,γ‖I2
≤ p(|ξ|)h− 3

2α, ‖(∇τ̂h,γ)K2,γ(ξ)τh,γ‖I2
≤ p(|ξ|)e−ϑξh

−α

h− 3
2α,

for another constant ϑ > 0 and polynomial p(· ) both h-independent. It follows that:

∣∣TrL2(R3) {K1(ξ)O(ξ)K2(ξ)}
∣∣ ≤ p(|ξ|)h−3e−ϑξh

−α

,

for another h-independent polynomial p(· ). All the terms in (4.37) can be treated similarly.

4.4 Proof of Lemmas 3.15-3.16.

When using the estimates from Lemmas 2.2-2.4, we set η = min{1, π
2β } > 0, see (3.2).

Proof of Lemma 3.15. Under the conditions of (3.56), the contribution X̃ (orbit)
h,r1

(β, z) reads as:

X̃ (orbit)
h,r1

(β, z) := −h2κo

β

i

2π

∫

Cβ

dξ f(β, z; ξ)

×
∫

Ωh

dx

∫

R3\Ωh

dz
∑

γ1∈E

(
H̃

(cste)
h,γ1

− ξ
)−1

(x, z)τh,γ1(z)
∑

γ2∈E

T̃
(cste)
h,γ2;2

(z,x; ξ)τh,γ2(x). (4.38)
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The integral w.r.t. z can be reduced to the integral over the set Sh := (∪γ∈E Supp(τh,γ))\Ωh whose
Lebesgue-measure is of order O(h−2−α). From (2.25), under the conditions of Lemma 2.2:

∀(x,y) ∈ R6 \D, max

{∣∣∣∣
(
H̃

(cste)
h,γ − ξ

)−1

(x,y)

∣∣∣∣ ,
∣∣∣T̃ (cste)

h,γ;2 (x,y; ξ)
∣∣∣
}

≤ p(|ξ|)e
−ϑξ|x−y|

|x− y| , (4.39)

for another ϑ > 0 and polynomial p(· ) both independent of h . By using (4.39), (2.32) combined
with [6, Lem. A.2], then there exists another polynomial p(· ) s.t. ∀ξ ∈ Cβ and ∀h ∈ (0, h0]:

∫

Sh

dz

∫

R3

dx

∣∣∣∣∣∣

∑

γ1∈E

(
H̃

(cste)
h,γ1

− ξ
)−1

(x, z)τh,γ1(z)
∑

γ2∈E

T̃
(cste)
h,γ2;2

(z,x; ξ)τh,γ2(x)

∣∣∣∣∣∣
≤ p(|ξ|)h−2−α.

Therefore, the integrals w.r.t. x and z in (4.38) can be commuted by the Tonelli’s theorem. By
using the above estimate along with (3.31), then there exists a constant C = C(β) > 0 s.t.

∀h ∈ (0, h0],
∣∣∣X̃ (orbit)

h,r1
(β, z)

∣∣∣ ≤ Czh−α.

Next, let us turn to X̃ (orbit)
h,r2

(β, z). It is made up of three terms, whose a generical term reads as:

X̃
(orbit)
h,r2

(β, z) := −h2κo

2

1

β

i

2π

∫

Cβ

dξ f(β, z; ξ)

∫

Ωh

dxKh,r2(x; ξ), (4.40)

where, ∀ξ ∈ Cβ , ∀h ∈ (0, h0] and ∀x ∈ Ωh :

Kh,r2(x; ξ) :=
1

(2π)2

∫

Ωh

dz
e−

√
−2(ξ−V (hx))|x−z|

|x− z| a2(z − x)

×
∑

γ∈E

{
e−ςh,γ(ξ)|z−x|

|z− x| − e−
√

−2(ξ−V (hx))|z−x|

|z− x|

}
τh,γ(x). (4.41)

Let x0 ∈ Ωh kept fixed. Introduce in L2(R3) the self-adjoint realization of the operator Ĥ
(cste)
h,x0

:=

− 1
2∆+V (hx0) defined originally on C∞

0 (R3). Its Green function is explicitly known and it is given
by (2.27) but with V (hx0) instead of V (h1−α

γ). Then, by using a resolvent identity in (4.41):

Kh,r2(x0; ξ) =

∫

Ωh

dz
(
Ĥ

(cste)
h,x0

− ξ
)−1

(x0, z)a
2(z − x0)×

×
∑

γ∈E

{(
H̃

(cste)
h,γ − ξ

)−1 [
V (hx0)− V

(
h
1−α

γ
)] (

Ĥ
(cste)
h,x0

− ξ
)−1

}
(z,x0)τh,γ(x0). (4.42)

Now by using (2.36), the estimate (2.25) combined with [6, Lem A.2], then under the conditions
of Lemma 2.2, there exists a polynomial p(· ) independent of x0 s.t. ∀ξ ∈ Cβ and ∀h ∈ (0, h0]:

|Kh,r2(x0; ξ)| ≤ p(|ξ|)hθ(1−α). (4.43)

In view of (4.40), we conclude from (4.43) and (3.31) that there exists another C = C(β) > 0 s.t.

∀h ∈ (0, h0],
∣∣∣X̃ (orbit)

h,r2
(β, z)

∣∣∣ ≤ Czh
−1+θ(1−α).

The two other terms coming from X̃ (orbit)
h,r2

(β, z) can be treated by similar arguments. Finally, let

us turn to the contribution X̃ (orbit)
h,r3

(β, z) which reads under the conditions of (3.56) as:

X̃ (orbit)
h,r3

(β, z) :=
h2

h6

κo

2β

i

2π

∫

Cβ

dξ f(β, z; ξ)

∫

Ω

dxKh,r3

(x
h
; ξ
)
, (4.44)
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with, ∀ξ ∈ Cβ , ∀h ∈ (0, h0] and ∀x ∈ Ω:

Kh,r3

(x
h
; ξ
)
:=

1

(2π)2

∫

R3\Ω

dz
e−

√
−2(ξ−V (x))| xh − z

h |
∣∣x

h
− z

h

∣∣2 a2
(z

h
− x

h

)
.

By using that |a(x−y)| ≤ |x−y|, then the above integrand obeys an estimate of type (2.25). Fix
x0 ∈ Ω. Switching to the spherical coordinates, then under the conditions of Lemma 2.2, there
exists a constant ϑ > 0 and a polynomial p(· ) independent of x0 s.t. ∀ξ ∈ Cβ and ∀h ∈ (0, h0]:

∣∣∣Kh,r3

(x0

h
; ξ
)∣∣∣ ≤ p(|ξ|)

∫ ∞

1
2

dr r2e−h
−1 ϑ

1+|ξ|
r ≤ p(|ξ|)e−

h−1

2
ϑ

1+|ξ|

∫ ∞

0

dr r2e−
h−1

2
ϑ

1+|ξ|
r. (4.45)

Performing the integration w.r.t. the r-variable, one arrives at the estimate:

∀ξ ∈ Cβ , ∀h ∈ (0, h0],
∣∣∣Kh,r3

(x0

h
; ξ
)∣∣∣ ≤ p(|ξ|)h3e−

h−1

2
ϑ

1+|ξ| , (4.46)

for another polynomial p(· ) independent of h ,x0. In view of (4.44), from (4.46), (4.2) with N ≥ 1
and (3.31), then one concludes that ∀M > 0 there exists a constant CM = CM (β) > 0 s.t.

∀h ∈ (0, h0],
∣∣∣X̃ (orbit)

h,r3
(β, z)

∣∣∣ ≤ CM zhM . �

Proof of Lemma 3.16. We start with the contribution X̃ (spin)
h,r1

(β, z) which is made up of two
terms. Under the conditions of (3.61), one of them reads as (hereafter we set z3 := z0):

X̃
(spin)
h,r1

(β, z) := h2κs

β

i

2π

∫

Cβ

dξ f(β, z; ξ)

×
∫

Ωh

dz0

∫

R3\Ωh

dz1

∫

R3

dz2

2∏

l=0

∑

γl+1∈E

(
H̃

(cste)
h,γl+1

− ξ
)−1

(zl, zl+1)τh,γl+1
(zl+1). (4.47)

Reducing the integral w.r.t. z to the integral over Sh := (∪γ∈E Supp(τh,γ))\Ωh , from (2.25), (2.32)
combined with [6, Lem. A.2], then there exists a polynomial p(· ) s.t. ∀ξ ∈ Cβ and ∀h ∈ (0, h0]:

∫

Sh

dz1

∫

R3

dz0

∫

R3

dz2

∣∣∣∣∣∣

2∏

l=0

∑

γl+1∈E

(
H̃

(cste)
h,γl+1

− ξ
)−1

(zl, zl+1)τh,γl+1
(zl+1)

∣∣∣∣∣∣
≤ p(|ξ|)h−2−α.

Therefore, the integrals w.r.t. z0 and z1 in (4.47) can be commuted by the Tonelli’s theorem, and
by using the estimate just above along with (3.31), then there exists a constant C = C(β) > 0 s.t.

∀h ∈ (0, h0],
∣∣∣X̃ (spin)

h,r1
(β, z)

∣∣∣ ≤ Czh
−α.

The other term coming from X̃ (spin)
h,r1

(β, z) can be treated by the same method. Next, let us turn

to the contribution X̃ (spin)
h,r2

(β, z). It is made up of seven terms, whose a generical term reads as:

X̃
(spin)
h,r2

(β, z) := h
2κs

β

i

2π

∫

Cβ

dξ f(β, z; ξ)

∫

Ωh

dxJh,r2(x; ξ), (4.48)

where, ∀ξ ∈ Cβ , ∀h ∈ (0, h0] and ∀x ∈ Ωh :

Jh,r2(x; ξ) :=
1

(2π)3

∫

Ωh

dz1

∫

Ωh

dz2
e−

√
−2(ξ−V (hx))|x−z1|

|x− z1|

×
∑

γ∈E

{
e−ςh,γ (ξ)|z1−z2|

|z1 − z2|
− e−

√
−2(ξ−V (hx))|z1−z2|

|z1 − z2|

}
τh,γ(z2)

e−
√

−2(ξ−V (hx))|z2−x|

|z2 − x| .
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Let x0 ∈ Ωh kept fixed. By following the same arguments as the ones leading to (4.42) from (4.41)
in the proof of Lemma 3.15, then ∀ξ ∈ Cβ and ∀h ∈ (0, h0], one arrives at:

Jh,r2(x0; ξ) =

∫

Ωh

dz1

∫

Ωh

dz2

(
Ĥ

(cste)
h,x0

− ξ
)−1

(x0, z1)
∑

γ∈E

{(
H̃

(cste)
h,γ − ξ

)−1

×
[
V (hx0)− V

(
h
1−α

γ
)] (

Ĥ
(cste)
h,x0

− ξ
)−1

}
(z1, z2)τh,γ(z2)

(
Ĥ

(cste)
h,x0

− ξ
)−1

(z2,x0).

Now by using (2.36), the estimate (2.25) combined with [6, Lem A.2], then under the conditions
of Lemma 2.2, there exists a polynomial p(· ) independent of x0 s.t. ∀ξ ∈ Cβ and ∀h ∈ (0, h0]:

|Jh,r2(x0; ξ)| ≤ p(|ξ|)hθ(1−α). (4.49)

In view of (4.48), we conclude from (4.49) and (3.31) that there exists another C = C(β) > 0 s.t.

∀h ∈ (0, h0],
∣∣∣X̃ (spin)

h,r2
(β, z)

∣∣∣ ≤ Czh−1+θ(1−α).

The six other terms coming from X̃ (spin)
h,r2

(β, z) can be treated by the same method. Finally, let us

turn to the contribution X̃ (spin)
h,r3

(β, z) which is made up of two terms. Take one of them:

X̃
(spin)
h,r3

(β, z) := −h2

h9

κs

β

i

2π

∫

Cβ

dξ f(β, z; ξ)

∫

Ω

dxJh,r3

(x
h
; ξ
)
, (4.50)

with, ∀ξ ∈ Cβ , ∀h ∈ (0, h0] and ∀x ∈ Ω:

Jh,r3

(x
h
; ξ
)
:=

1

(2π)3

∫

R3\Ω

dz1

∫

Ω

dz2
e−

√
−(ξ−V (x))| xh − z1

h |
∣∣x

h
− z1

h

∣∣
e−

√
−(ξ−V (x))(| z1h −

z2
h |+| z2h − x

h |)
∣∣ z1

h
− z2

h

∣∣ ∣∣ z2
h
− x

h

∣∣ .

Let x0 ∈ Ω kept fixed. Under the conditions of Lemma 2.2 and from [6, Lem. A.2], then there
exists a constant ϑ > 0 and a polynomial p(· ) independent of x0 s.t. ∀ξ ∈ Cβ and ∀h ∈ (0, h0]:

∫

Ω

dz2
e−

√
−(ξ−V (x0))(| z1h −

z2
h |+| z2h −

x0
h |)

∣∣ z1
h
− z2

h

∣∣ ∣∣ z2
h
− x0

h

∣∣ ≤ p(|ξ|)h3e−
ϑ

1+|ξ| | z1h −
x0

h |.

By using the same arguments as the ones leading to (4.45), one has under the same conditions:

∀ξ ∈ Cβ, ∀h ∈ (0, h0],
∣∣∣Jh,r3

(x0

h
; ξ
)∣∣∣ ≤ p(|ξ|)h6e−

h−1

2
ϑ

1+|ξ| , (4.51)

for another ϑ > 0 and polynomial p(· ) independent of h ,x0. In view of (4.50), from (4.51), (4.2)
with N ≥ 1 and (3.31), then one concludes that ∀M > 0 there exists a CM = CM (β) > 0 s.t.

∀h ∈ (0, h0],
∣∣∣X̃ (spin)

h,r3
(β, z)

∣∣∣ ≤ CMzhM .

The other term coming from X̃ (spin)
h,r3

(β, z) can be treated by similar arguments. �
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