M. Aitkin, A General Maximum Likelihood Analysis of Variance Components in Generalized Linear Models, Biometrics, vol.91, issue.1, pp.117-128, 1999.
DOI : 10.1016/0096-3003(91)90077-Z

J. Azais, E. Gassiat, and C. Mercadier, Asymptotic distribution and local power of the log-likelihood ratio test for mixtures: bounded and unbounded cases, Bernoulli, vol.12, issue.5, pp.775-799, 2006.
DOI : 10.3150/bj/1161614946

J. Azais, E. Gassiat, and C. Mercadier, The likelihood ratio test for general mixture models with or without structural parameter, ESAIM: Probability and Statistics, vol.13, pp.301-327, 2009.
DOI : 10.1051/ps:2008010

URL : https://hal.archives-ouvertes.fr/hal-00504651

J. P. Baudry, Sélection de modèle pour la classification non supervisée. Choix du nombre de classes, 2009.

C. Biernacki, G. Celeux, G. Govaert, and F. Langrognet, Model-based cluster and discriminant analysis with the MIXMOD software, Computational Statistics & Data Analysis, vol.51, issue.2, pp.587-600, 2006.
DOI : 10.1016/j.csda.2005.12.015

URL : https://hal.archives-ouvertes.fr/inria-00069878

C. Biernacki, Assessing a mixture model for clustering with the integrated completed likelihood, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.22, issue.7, pp.719-725, 2000.
DOI : 10.1109/34.865189

G. Celeux and G. Govaert, A classification EM algorithm for clustering and two stochastic versions, Computational Statistics & Data Analysis, vol.14, issue.3, pp.315-332, 1992.
DOI : 10.1016/0167-9473(92)90042-E

URL : https://hal.archives-ouvertes.fr/inria-00075196

G. Celeux and G. Soromenho, An entropy criterion for assessing the number of clusters in a mixture model, Journal of Classification, vol.5, issue.2, pp.195-212, 1996.
DOI : 10.1007/BF01246098

URL : https://hal.archives-ouvertes.fr/inria-00074799

A. P. Dempster, L. N. , and R. D. , Maximum likelihood from incomplete data via the em algorithm, Journal of the Royal Statistical Society, vol.39, pp.1-38, 1977.

U. Einmahl and D. M. Mason, An empirical process approach to the uniform consistency of kernel-type function estimators, Journal of Theoretical Probability, vol.13, issue.1, pp.1-371007769924157, 2000.
DOI : 10.1023/A:1007769924157

U. Einmahl and D. M. Mason, Uniform in bandwidth consistency of kernel-type function estimators, The Annals of Statistics, vol.33, issue.3, pp.1380-1403, 2005.
DOI : 10.1214/009053605000000129

D. A. Follmann and D. Lambert, Identifiability of finite mixtures of logistic regression models, Journal of Statistical Planning and Inference, vol.27, issue.3, pp.375-381, 1991.
DOI : 10.1016/0378-3758(91)90050-O

C. Fraley and A. E. Raftery, How Many Clusters? Which Clustering Method? Answers Via Model-Based Cluster Analysis, The Computer Journal, vol.41, issue.8, pp.41-578, 1998.
DOI : 10.1093/comjnl/41.8.578

B. Garel, Recent asymptotic results in testing for mixtures, Computational Statistics & Data Analysis, vol.51, issue.11, pp.5295-5304, 2007.
DOI : 10.1016/j.csda.2006.09.033

E. Gassiat, Likelihood ratio inequalities with applications to various mixtures, Annales de l'Institut Henri Poincare (B) Probability and Statistics, vol.38, issue.6, pp.897-906, 2002.
DOI : 10.1016/S0246-0203(02)01125-1

E. Gassiat and R. Van-handen, Consistent Order Estimation and Minimal Penalties, IEEE Transactions on Information Theory, vol.59, issue.2, pp.1115-1128, 2013.
DOI : 10.1109/TIT.2012.2221122

B. Gruen and F. Leisch, Fitting finite mixtures of generalized linear regressions in R, Computational Statistics & Data Analysis, vol.51, issue.11, pp.5247-5252, 2007.
DOI : 10.1016/j.csda.2006.08.014

L. A. Hannah, D. M. Blei, and W. B. Powell, Dirichlet process mixtures of generalized linear models, Journal of Machine Learning Research, vol.1, pp.1-33, 2011.

R. Hathaway, A constrained em algorithm for univariate normal mixtures, Journal of Statistical Computation and Simulation, vol.39, issue.3, pp.211-230, 1986.
DOI : 10.1137/1026034

C. Hennig and T. F. Liao, How to find an appropriate clustering for mixed-type variables with application to socio-economic stratification, Journal of the Royal Statistical Society: Series C (Applied Statistics), vol.105, issue.3, pp.309-369, 2013.
DOI : 10.1111/j.1467-9876.2012.01066.x

C. Keribin, Tests de modèles par maximum de vraisemblance, 1999.

F. Leisch, Modelling Background Noise in Finite Mixtures of Generalized Linear Regression Models, 2008.
DOI : 10.1007/978-3-7908-2084-3_32

P. Mccullagh and J. A. Nelder, Generalized linear models, 1989.

G. Mclachlan and D. Peel, Finite Mixture Models, 2000.
DOI : 10.1002/0471721182

R. Nishii, Maximum likelihood principle and model selection when the true model is unspecified, Journal of Multivariate Analysis, vol.27, issue.2, pp.392-403, 1988.
DOI : 10.1016/0047-259X(88)90137-6

D. Nolan and D. Pollard, $U$-Processes: Rates of Convergence, The Annals of Statistics, vol.15, issue.2, pp.780-799, 1987.
DOI : 10.1214/aos/1176350374

E. Ohlson and B. Johansson, Non-Life Insurance Pricing with Generalized Linear Models, 2010.
DOI : 10.1007/978-3-642-10791-7

A. Oliviera-brochado, F. Vitorino, and . Martins, Assessing the number of components in mixture models: a review. Working Paper, 2005.

A. Pakes and D. Pollard, Simulation and the Asymptotics of Optimization Estimators, Econometrica, vol.57, issue.5, pp.1027-1057, 1989.
DOI : 10.2307/1913622

A. E. Raftery, Bayesian model selection in social research (with discussion), 1994.

B. D. Ripley, Pattern Recognition and Neural Networks, 1995.
DOI : 10.1017/CBO9780511812651

M. Talagrand, Sharper bounds for Gaussian and empirical processes URL http://links.jstor.org/sici?, 1<28: SBFGAE>2.0.CO;2-W&origin=MSN, pp.28-76, 1994.

P. Wang, Mixed Regression Models for Discrete Data, 1994.

P. Wang, M. L. Puterman, I. Cockburn, and N. D. Le, Mixed Poisson Regression Models with Covariate Dependent Rates, Biometrics, vol.52, issue.2, pp.381-400, 1996.
DOI : 10.2307/2532881

D. S. Young and D. R. Hunter, Mixtures of regressions with predictor-dependent mixing proportions, Computational Statistics & Data Analysis, vol.54, issue.10, pp.2253-2266, 2010.
DOI : 10.1016/j.csda.2010.04.002