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METRIC-INDEPENDENT ANALYSIS
OF THE STRESS-ENERGY TENSOR

REUVEN SEGEV

ABSTRACT. The stress-energy tensor of field theory is defined and ana-
lyzed in a geometric setting where a metric is not available. The stress
is a linear mapping that transforms the 3-form representing the flux of
any given property, e.g., charge-current density, to the 3-form represent-
ing the flux of energy. The example of the electromagnetic stress-energy
tensor is given with the additional structure of a volume element.

Keywords. Stress-energy tensor, field theory, differential forms, conser-
vation laws, flux.

1. INTRODUCTION

The introduction of the stress-energy tensor in field theory and the re-
lated analysis of conservation laws utilize the metric properties of space-
time afforded by relativity theory (see for example [1, 2, 3, 4, 5]). Since
one cannot assume that the metric tensor is known in advance, it would be
preferable, at least from the theoretical point of view, to have a formulation
of the theory that does not rely on the metric structure. Such a presenta-
tion of the stress-energy tensor and conservation laws is the subject of this
paper.

For the electromagnetic field as a concrete example, the construction may
be described simply as follows: the value of stress-energy tensor at any
event is a linear mapping that transforms the charge-current density 3-form
to the corresponding energy flux 3-form.

The basic geometric setting is that of an m-dimensional spacetime mani-
fold 4. Spacetime is assumed to be orientable and a specific orientation is
assumed to be chosen. In particular, we do not use a metric or a connec-
tion in the analysis. The first part of the paper, containing Sections 2 and
3, is concerned with the fibration of spacetime induced by a conservation
law for an extensive property p, for example, the electric charge. Assuming
that the flux of the property p out of any region R in spacetime is given as
an integral of a flux density (m — 1)-form 1%, and using a generalization of
the traditional Cauchy assumptions regarding the dependence of the form
Tz on R, there is a unique flux (m — 1)-form ]| (see [6]), the analog of the



charge-current density 3-form in electromagnetism, such that for any re-
gion R, Tr = (*(J), where * is the restriction of forms defined on spacetime
to the boundary of R. The flux density form induces a 1-dimensional sub-
bundle of the tangent bundle T{/ whose integral manifolds are the world-
lines associated with the property. Thus, even in this general setting , the
conservation of the property induces enough structure so the analogs of
particles and velocities—worldlines and flux (m — 1)-forms—may be de-
fined. If a volume element 0 is given on U/, the flux form induces a vector
field v, the analog of the 4-velocity, by the condition | = v16.

The next part of the paper, consisting of Sections 4, 5 and 6, presents
stress theory on manifolds (see also previous works [7, 8]). Consider a vec-
tor bundle W — U, whose elements are interpreted as values of general-
ized velocities. For a region R in spacetime, Section 4 is concerned, with a
linear functional on sections w of W that contains a “volume” term and a
boundary term. The boundary term for a region R C U is given as tz(w)
where tr, is a section of the bundle of linear mappings L(W, A"~ (T*9R)).
Again, with the Cauchy postulates for the dependence of tz on R, there is
a unique section o of L (W, /\m*1 (T*U )) , the Cauchy stress, that induces by
restriction of forms the vector valued forms tr for the various regions.

Section 5 considers a linear functional on sections of W that may be rep-
resented as follows. Let J'(W) be the jet bundle associated with W. Then,
there is a section of L(J1(W), A" (T*U)), the variational stress density, such
that the value of the functional for a section w is [ S(j'(w)), where j!(w)
is the first jet of the section w. The divergences of variational stress densi-
ties are defined and the relation between Cauchy stresses and variational
stresses is presented in Section 6.

The values of the functionals described above are interpreted in Section 7
as the energy variation associated with the motion of the property p as rep-
resented by the flux form J. Accordingly, A™ ' (T*U) is used for the vector
bundle W over spacetime. In this case, the Cauchy stress is a section of
LA™ N (T*U), N" ' (T*U))—the stress-energy tensor. It is shown in Sec-
tion 8 that stress-energy tensors can be represented naturally by sections of
the bundle of linear mappings L(TU, TU).

Finally, Section 9 presents the example of the stress-energy tensor for
electromagnetism. No particular relation is used for the constitutive re-
lation between the Maxwell and Faraday 2-forms and the only additional
geometric structure used is that of a volume element. Mathematically, this
enables us to obtain the 4-velocity vector field from the flux form. The ex-
pression for the Lorentz force we obtain is analogous to that of [2, p. 91]
where a metric is used.

In [9], Gotay & Marsden present a derivation of a metric independent
stress-energy tensor using a different approach. In comparison with the
present paper, the authors assume additional structure of a Lagrangian



and a gauge group. Accordingly, the results they obtain are more com-
prehensive. The stress object derived in [9] is a (1, 1)-tensor density, i.e., a
section of L(L(TU, TU), N"(T*U)) that may be identified with a section of

L(TU, A" (T*U)). Here, allowing a slight generalization where a stress is
an element of L(L(W, TU), N"(T*U)) for some vector bundle W, and then

putting W = A" (T*U) (see Section 7 for the motivation), we arrive at a
stress object thatis a (1, 1) tensor, i.e., a section of L(TU, TU).

2. SCALAR VALUED EXTENSIVE PROPERTIES ON SPACETIME

We consider the conservation of an extensive property p in spacetime U.
Itis assumed that !/ is an m-dimensional orientable manifold with a definite
orientation chosen. An m-dimensional submanifold with boundary R of &/
will be referred to as a control region.

Specifically, it is assumed that for each control region R thereis an (m — 1)-
form Tz on OR, the flux density. The integral [, Tr is interpreted as the flux
of the property out of the control region in spacetime relative to the posi-
tive orientation induced on dR by the orientation on ¢/ and the outwards
pointing vectors. In case a frame is given, the flux density through a space-
like slice is interpreted as the density of the property p in space and the
flux through a hyperplane containing the d/0t tangent vector is interpreted
as the classical flux density of p into the corresponding slice consisting of
simultaneous events.

Regarding tr as the value of a set function defined on the collection of
control regions, Cauchy’s postulates of continuum mechanics can be gen-
eralized to differentiable manifolds as follows (see [6], [8]).

GC1 There is a volume element 8 on U/ such that

[ gy!e.

IR
GC2 Consider the Grassmann bundle of hyperplanes 7g: Gy—1(TU) —
U whose fiber G,_1(TxU) at any event x € U is the Grassmann
manifold of hyperplanes, i.e., (m — 1)-dimensional subspaces of the
tangent space Tyld. Let A" ' (Gu—1(TU))" — Gu—1(TU) be the vec-
tor bundle over G,,_1(TU) whose fiber over a hyperplane H is the
vector space of (m — 1)-forms on H. Then, the dependence of % on

R is via a smooth section

m—1
T Guo1(TU) — N\ (Gua(TU)),
such that g = T(Tx9R).

Cauchy’s theorem, generalized in [6], [8] to manifolds, states that there
is a unique (m — 1)-form | on U such that for any control region R,

TR = T(TyOR) = *(]).



Here, 1: 0R — U is the natural inclusion and (* is the pull-back of forms it

induces. We will refer to | as the flux form associated with the property p.
Usually, it is assumed that there is a source density term s for the prop-

erty, an m-form on U, so that the conservation equation of the property is

/TR:/S.
oR R

In this case, Stokes’ theorem implies that the conservation equation may be
written in a differential form as d] = s. (Again, if a frame is given on space-
time, then the time component of | is the density in space of the property
p and the term in d] containing it is the time derivative of that density. The
space-like components of | describe the 3-dimensional flux and the terms in
d] involving the space-like components make its (m — 1)-dimensional di-
vergence.) In a particular frame, for every time ¢, the classical conservation

law has the integral form
oot [ [
R

oR R

where here R is interpreted as a region in space (a slice of spacetime) and
Br is the rate of change of the density of the property—a 3-form. In order
that the previous Cauchy assumptions apply, it is usually assumed that Sz
is actually independent of R.

Remark 2.1. Assume the manifold i is given a particular volume element
6. Then, there is a vector bundle isomorphism

m—1

io: N\ (ToU) — TU

such that (i o )20 = ], where 1 denotes the contraction (interior product)
of forms by vectors. If § is represented locally by

r(x)dx' AL Adx™,
then, v = ip o ], which we will also write as ig(]), is represented by

) (—1)”1]1"

v =
r

If ] is a flux form of an extensive property p and a volume element is given,
we will refer to v = ig(]) as the kinematic flux associated with p. The kine-
matic flux is the analog of the 4-velocity field. If £ denotes the Lie deriva-
tive, then the differential conservation equation can now be written in the
form L,0 = s.



3. WORLDLINES AND GENERALIZED BODY POINTS

A flux form | induces a 1-dimensional distribution over the open sub-
manifold of & where it does not vanish. Let E(]) be the minimal envelop-
ing subbundle associated with J, i.e., the minimal subbundle Z of T*U{ such
that J(x) € A" ! Z,. We will refer to the annihilator E(J)* c TU of the
minimal enveloping subbundle as the flux bundle. That is,

E()f = {ve Tld; ¢p(v) =0, forall ¢ € E(]),}.

The flux bundle is 1-dimensional and a tangent vector v is in the flux bundle
if and only if v1 ] = 0. The flux bundle is also the one dimensional bundle
obtained by the relation v = ig(]) when the flux form ] is kept fixed and the
volume element 6 is allowed to vary. Being 1-dimensional, the flux bundle
is integrable, and its 1-dimensional integral manifolds will be referred to as
(local) worldlines. Consider the equivalence relation x ~ x’ if x and x’ are on
the same worldline. We will refer to the collection of worldlines B = U/~
as the material universe.

The worldlines form a foliation of I/ (See [10] for a detailed treatment). In
case the foliation is regular, so B is an (m — 1)-dimensional submanifold of
U and the natural projection i/ — B = U /~ is a submersion, an element of
B is a material point and a compact (m — 1)-dimensional submanifold with
boundary of B is a material body. A necessary and sufficient condition for
the foliation to be regular is the existence of local slices, i.e., at every event
x there exists a local (m — 1)-dimensional submanifold P of ¢/ such that
P intersects every worldline at one point at most and Tx/ = TyP x T.Y,
where Y is the worldline through x.

Thus, in case the foliation by worldlines is regular, the construction we
described generates a material structure in space even though the velocity
field is not defined uniquely. In addition, the flux form ] is an object that
generalizes the velocity field even if a volume element is not given and
even if the foliation it generates is not regular.

Clearly, foliated charts and slices generate frames that assign to events
unique material points and “time” coordinates. If a volume element is
given, the kinematic flux induces a unique time coordinate in the neigh-
borhood of every event (independently of a chart). Thus, a flux form and a
volume element induce together a local frame.

4. CAUCHY’S STRESS THEORY FOR M ANIFOLDS

Let m: W — U be a vector bundle over the m-dimensional orientable
manifold ¢/. The vector bundle is interpreted as the bundle of generalized
velocities over Y. In classical continuum mechanics, if i/ is interpreted as
the physical space (a slice of spacetime), then in many cases W is the tan-
gent bundle TU. If U is interpreted as the material body, then W is usually
the pull-back of the tangent bundle of the space manifold under the con-
figuration mapping that embeds the material universe in space. This is the



interpretation used in previous works (e.g., [7],[8]). In either case, a section
of the bundle 7t is interpreted as a generalized velocity field from either the
Eulerian or the Lagrangean points of view.

Cauchy’s stress theory for manifolds, presented in [8], considers for each
compact m-dimensional submanifold with boundary R of ¢/ a linear func-
tional of the generalized velocity fields containing a volume term and a
boundary term of the form

Fe(w) = [ ba(w)+ [ ta(w)
R

oR

Here, w is a section of W, by, the body force, is a section of L (W, /\m(T*R))

and tg the boundary force is a section of L(W, A" ' (T*dR)) so the integrals
make sense. The functional Fr is interpreted as the force, or power, func-
tional and the value Fr(w) is classically interpreted as the power of the
force for the generalized velocity field w.

We note that body forces and surface forces may be regarded as covector
valued forms. For example, a surface force tx may be identified with a

section tr of A" (T(9R), W*) by

A

tR(Z)l,. . .,vm,l)(w) = tR(w)(vl,. . .,Umfl).

so we have an isomorphism of A" (TOR, W*) with L(W, A" '(T*dR)).
The Cauchy postulates for forces are analogous to those pertaining to
the scalar valued properties. The body term, bz is assumed to be indepen-
dent of R (and is omitted in the spacetime formulation anyhow). The local
dependence on the tangent hyperplane is now provided by a section

m—1

5 G (TU) — L(m5(W), A\ (Gur (T))),

where 715 (W) is the pull-back of the vector bundle W by the projection of
the Grassmann bundle onto G,,_1(TU) (see diagram).

7 ()

e (W) =5 Gt (TU) —— A" (Gua (TU))"

T lnc

7T

W _ U

The boundedness postulate, the analog of GC1, requires that there is a
section S of the bundle of linear mappings L(J'(W), A" (T*U)) such that

/b(w)+/tn(w) g/)s(jl(w))’.

oR

[Fr(w)| =




Here, J! (W) is the first jet bundle of W, j1 (w) is the first jet of the section w,
and the absolute value of an m-form 6, S(j! (w)) in this case, is given as

16(x)] = 0(x) if 6(x) is positively oriented,
| —-6(x) if 6(x) is negatively oriented,

relatively to the orientation chosen on /.

The resulting generalized version of Cauchy’s theorem states that there
is a unique section o of A" '(TU, W*) = L(W, A" (T*U)), called the
Cauchy stress such that tg (w) = *(0 o w). We will write o(w) for ¢ o w and
*(o) for * o o so we have the Cauchy formula tr = 1*(0) in analogy with the
scalar case (with the difference that the forms are vector valued now).

Using Stokes’ theorem, the action of Fg may now be rewritten using an
integral over R of R-independent forms and without a boundary term as

r(w) = /(da(w) +b(w)).

R

Assume that (x?, w®) are local vector bundle coordinates in a neighbor-
hood 7=1(U) ¢ W, U C U with local basis elements {e,} so a section of
W is represented locally by w”e,. Then, denoting the dual base vectors by
{e*} a stress ¢ is represented locally by

0 b et @dx AL AdX AL AT,

where a “hat” indicates the omission of an item (an index or a factor). The
value of o(w) is represented locally by

O—al...f(...mwadxl/\ s /\dxk/\ CoAdX™

5. VARIATIONAL STRESSES

Let 1: W — U be a vector bundle as in the previous section. A variational
stress density is a section of L(J1 (W), A™(T*U)).

For the vector bundle coordinates (x, w*),i =1,...,m, a = 1,...,dim(W,),
the jet of a section is represented locally by the functions {w®(x'), wﬁ.(xk )}
where a subscript following a comma indicates partial differentiation. A
variational stress density will be represented locally by the functions {Su1.., 521._. ,

so that the single component of the m-form S(j' (w)) in this coordinate sys-

tem is

S(]l (w))lm = Sa1.mW" + S‘]Blmwﬁ

Note that the notation distinguishes between the components of S that are
dual to the values of the section and those dual to the derivatives by the
number of indices only. The next few paragraphs motivate the introduction
of variational stress densities.



Variational stress theory is formulated usually in a particular frame where
the space (m — 1)-dimensional manifold M is a global slice of spacetime
and U is interpreted as the (m — 1)-dimensional material universe mani-
fold. In such a situation, for any body R—an (m — 1)-dimensional compact
submanifold with boundary of /—one may consider configurations of the
body in space defined as embeddings of R in M.

The rational behind the variational formulation of stress theory is the
framework for mechanical theories where a configuration manifold is con-
structed for the system under consideration, generalized velocities are de-
fined as elements of the tangent bundle to the configuration manifold, and
generalized forces are defined as elements of the cotangent bundle of the
configuration space. For the mechanics of continuous bodies in space, the
natural topology for the collection of embeddings is the C' topology for
which the collection of embeddings is open in the collection of all C' map-
pings of the body into space. Using this topology, the tangent space to
the configuration manifold at the configuration x: R — M is Cl(K* (TM)),
the Banachable space of C'sections of the pull-back x*(TM). Thus, forces
in continuum mechanics are elements of C 1(1{* (TM)) " —continuous, linear
functionals on the space of differentiable vector fields equipped with the C’
topology.

The basic representation theorem (see [7]) states that a force functional
F e Cl(K* (TM))” may be represented by a measure on {/—the variational
stress measure—valued in J! (x*(TM))*, the dual of the firstjet bundle J* (x* (T M))
U. The evaluation of a force Fr on the generalized velocity w is

Fe(w) = [ dp(j'(w),
R

where u is the J'(x*T.M)*-valued measure—a section Schwartz distribu-
tion.

Assuming that « is defined on all the material universe ¢/, we use the no-
tation W for x*(T.M). This vector bundle can be restricted to the individual
bodies, and with some abuse of notation, we use the same notation for both
the bundle and its restrictions to the individual bodies.

In the smooth case, a variational stress measure is given in terms of a sec-
tion S of L(JY(W), A" 1(T*U)) (recalling the U is now the material mani-
fold with dimension m — 1) so

hwnz/swwm.
R

Since in the sequel we consider only the smooth case, we will use “vari-
ational stresses” to refer to the densities.



6. THE RELATION BETWEEN THE CAUCHY APPROACH AND THE
VARIATIONAL APPROACH

In [11] we define a canonical mapping

m m—1
po: L(J'OW), \(T*U)) — L(W, \ (T*U)),

that assigns to a variational stress density S a Cauchy stress ¢ satisfying the
following relation. At every x € U (we suppress the evaluation at x in the
notation)
¢ No(w) = S(jpew),

for any 1-form ¢. Here, jysw is roughly the jet at x of a section whose value
is 0 € Wy and its derivative is ¢ ® w. More precisely, if u: Y — W is the
section whose first jet at x is jysw, then, u satisfies the following conditions:
u(x) = 0; denoting the zero section of W by 0, T,u — T,0 € L (TXZ/{, T0<X)Wx)
induces the linear mapping ¢ ® w through the isomorphism of Ty(,) Wy with
W;. The local representation of p, is as follows. If ¢ = p,(S), then, using
the local representatives of o and S as in the previous sections,

OB1..im = (—1)i’15+;1...m, (no sum over 7).

The mapping p, is clearly linear and surjective.

Given a variational stress density S its generalized divergence Div S is
the section of L(W, A" (T*U)) defined by

Div S(w) = d(po(S) (w)) (' (w).

The local expression for Div S(w) is

(54 — Setom) W dx' AL AdX™,

al..m,i

which shows that Div S depends only on the values of w and not its deriv-
ative. With these definitions one obtains that

[5G @) = [br@+ [ @)
R R

R

where tg(w) = i (ps(S)(w)) and DivS 4+ bg = 0. We conclude that ev-
ery variational stress induces a unique force system { (b, tz)} through the
Cauchy stress it induces and its divergence. Actually, we obtained a de-
composition of S(j!(w)) into an exact differential and a term that is linear
in the values of w.

The converse is also true. If we have a force system that satisfies Cauchy’s
postulates, then, the induced Cauchy stress enables us to define a section
Sof L(J'(W), A™(T*U)) by S(j(w)) = b(w) + do(w). Clearly, writing the
local expression for S, it is linear in the jet of w. Hence,

Fr(w) = /b(w)+/d(7(w) = /S(jl(w)).
R R R



If for a given variational stress b = Div S = 0, then, S(j!(w)) = dp.(S)(w).
Thus, we have a complete correspondence between the Cauchy approach
and the variational approach to stress theory.

7. STRESS-ENERGY TENSORS

Following the interpretation of the flux form | as an object generalizing
the velocity vector field, we may consider stress theory on spacetime U/

where we set W = A"~ 1(T*U). To emphasize this we may write

Fr(]) = / t=()).
oR

Here, the boundary term t is a section of L(A"™ ' (T*U), " (T*9R)).
Note that for the spacetime formulation the term involving by is omitted.
Assuming that the generalized Cauchy postulates hold for tz, the Cauchy
stress o is a section of L(A" ' (T*U), A" ' (T*U)). Finally, DivS = 0 and
do(]) = S(j*(]))-

The situation may be described generally as follows. We started with an
extensive property p, given in terms of the flux densities ¢ for the var-
ious control regions R in spacetime. The source term for property p is s
and assuming the Cauchy postulates are satisfied the property p has a flux

form J. We now consider a second property, the g property, whose flux

densities T7(2q  for the various control regions and source term s(9) satisfy the

conservation equation
T(‘?) q

R R

Again, assuming the Cauchy postulates hold for the property q, we have

the corresponding flux form ] satisfying 1'7({7 ) = p (J) and the conserva-

tion equation has the differential representation dJ?) = s(.

We will say that the property q is a resource for the property p if the flux
density ’L’g ) depends pointwise linearly on the flux form | of the property

p. Thus, there is a section tr as above such that T7(2q ) = tr(])-
In this framework, the Cauchy theorem implies that
() =
= tz(J)
= (e(]),
for the inclusion ¢ of an arbitrary region, so [ = ¢(]). In other words,
the Cauchy stress transforms the flux of the property p to the flux of the

resource that p uses—the property q. The source term for the property g is
now given by s = do(J).



Naturally, in the sequel we will be concerned primarily with the energy
resource.

8. REPRESENTATIONS OF FORCE DENSITIES AND STRESS-ENERGY
TENSORS

For the situation under consideration a force density (the analog of bz

if considered) is given in terms of a section of L(A" ' W*, A™ W*). Such
sections have simple representations as follows.

For a vector space W with dimension m, consider, the space of linear
mappings (A" W) = L(A’ W', A" W"). Define the mapping A?: A" 7 W
(A’ W’) by AP(@)(B) = a A B.

Clearly A? is a linear mapping between the two spaces. In addition, as
A" W' is 1-dimensional, dim (A’ W) = dim (A W') = dim (A" 7" W").
Thus, A? is an isomorphism if Kernel(AF) = {0}. It is clear however that if
AP(a)(B) =a A B =0forall 5, thena = 0.

We may conclude for example that a body force density is of the form
A A | for a 1-form A.

As the stress-energy tensor is now a section of L ( A" (U, NTHTU) ),
itis locally represented by a matrix with respect to a local basis of A" HTU).
We will make below some further observations regarding the representa-
tions of stresses.

Assume that a volume element 0 is given on U/. Then, we may use the
vector bundle isomorphism

m—1

ig: N\ (T*U) — TU

to represent the section ¢ of L(A" ' (T*U), A" ' (T*U)) by a section & of
L(TU, TU) satisfying & o ig = ig o 0.

Let us consider the relation between the local representation of o and and
the local representation Ffji dx' ® % of 7. To represent ¢ locally, we will use
the notation &' for the basis element dx'A . .. /\dxj/\_ . AdX™ of N"TH(THU).
Thus, the flux form ] is represented locally by J;¢', and the stress is repre-
sented locally in the form ?Tij ¢j ® &', where {¢;} is the dual basis to {¢'}.

If the volume element 6 is represented locally by rdx'A ... Adx™, the ac-
tion of iy is given locally by

N 1.
Z 2 l+1 ]Z ax1

(we use the summation symbol as the summation convention cannot be
used on the right). Thus, ip(c'(])) is represented by

BRIy s

j



and 7 (ig(])) is represented by

Z( 1)1+11 ~] ]z 9

; 9xJ
Hence, the relation between ¢ and ¢ is represented locally as

~j itk A k

It is interesting to note that the volume element does not enter the last
relation and one may attempt to arrive at a natural isomorphism between
the bundles L(A" ' (T*U), A" ' (T*U)) and L(TU, TU). Such a natural
isomorphism can be constructed as follows. Consider the tensor product
T*U ®y TU. This tensor product is naturally isomorphic to L(T, TU). For

an element & = (le P ® v;in T"U @y TU, vj € TxU, @' € T:U, set

m—1 m—1

o N\(T'U) — N\ (T"U)

by

(+) o(]) = ~f ,u <4>f A 1)

We note that o is indeed linear in J. Since ¢ depends linearly on the v’ and
on the ¢/, it depends linearly on the elements of the tensor product.

For the local coordinates {x'}, let us determine the stress ¢ induced
by the linear mapping & € L(TU,TU) represented locally by the tensor

& dx! ® 55 By definition, o(]) is represented by (the sum on i is explicitly
wrltten)

; aa (dx' N ]) = Za —J dxi/\(fkdxl/\.../\d/x\k/\.../\dxm))
_Za’axl S (1) dx AL AdX™)
Z 1) J; dx'A . AN A"
_20' 1+]] &l
ZZ(AT/L'EJ-
i



Hence, the matrix representing ¢ is (7]-" = (1) 5"];.. We conclude that

(x) is indeed the natural, invariant representation of the isomorphism be-
tween the bundlesL (A"~ (T*U), A" (T*U)) and L(TU, TU). This moti-
vates even further the interpretation of the Cauchy stress as a transforma-
tion operating on the flux or velocity field of the property p to give the flux
form for the energy or velocity of the generalized energy points.

9. EXAMPLE: THE MAXWELL STRESS-ENERGY TENSOR WITHOUT A
METRIC

As an example for the foregoing analysis, we consider a generalization of
the stress-energy tensor of classical electromagnetism to the setting where
a metric is not available. We assume that there is a volume element on the
4-dimensional /. The following setting is also independent of any relation
between the Maxwell 2-form and the Faraday 2-form such as the relations
between the fields (E, B) and (D, H) in vacuum. The extensive property
under consideration is of course the electric charge and | is the charge-
current density—a 3-form. The conservation of charge implies that d] = 0
and the Maxwell 2-form g is a flow potential for the flux form so | = dg.
For a 1-form A—the vector potential, the energy source density is A A J. It
follows that the Faraday 2-form § = d A satisfies df = 0.

Thus, assuming that a volume element 6 is given on U, we set w = iy(J)
and define the stress-energy tensor as the section ¢ of L ( A" N T uy, NPT U )
by (c.f. [12] p. 36 for the closest expression we found)

o(J) = (ie(J)28) AT~ (ie(])2f) A g.
Alternatively, using
wa(gAf) = (wag) Af+ g A (waf),

the definition of the electromagnetic stress-energy tensor may also be writ-
ten as
o(]) = ig(J)a (g A ) —2(ie(])f) A g.

Note that the matrix of the Cauchy stress with respect to the natural basis
of the space of (m — 1)-forms is related to the usual matrix of the stress-
energy-momentum tensor as discussed in the previous section.

We now consider the energy source term do(]). Using w = ip(]) one
obtains

do(]) = d((io(1)=8) A= (io(])-f) Ag)
=d(wag) Nf— (wag) Ndf+ (waf) Ndg —d(waf) AN g
= d(wog) Af+ (wsf) A ] —d(wsf) Ag,

where Maxwell’s equations were used to arrive at the last line. Using the
identity d(waa) = L0 — wada, for any differential form «, we have

do(]) = (waf) AJ + (Log — usdg) Af— (Lof —wadf) Ag.



Finally, as w1 ] = 0, Maxwell’s equations give

do(]) = (waf) AT+ (Lowg) Af— (Luf) Ao

It is noted that the term (w.f) A | represents the power of the Lorentz
force. In addition, in the classical formulation where a metric is available
and g = *f (x denotes the Hodge operator), the terms (L,g) A fand (Lyf) A
g are equal and the energy source density contains the power of the Lorentz
force (and energy conservation) only. For an analogous expression where
the constitutive relation between g and f is not specified but a metric is
used, see [2, p. 91].

APPENDIX A. LOCAL REPRESENTATION OF THE MAXWELL
STRESS-ENERGY TENSOR

We write the local representation fi]- dx' A dx/ of the Faraday 2-form f in
the form
0 —-Ei —E; —Ej
v | E© O B3 —B;
Uit=| e —B, 0 B |’
Ez B, -B; 0

and the corresponding representation §;j dx’ A dx/ for the Maxwell 2-form
as
0 H;y H, Hj
.+ | -Hi 0 D3 —D
{gl]} - —H2 —D3 0 Dl s
—Hj; Dy, —-Dy 0

For simplicity of the notation we assume that locally the volume element
6 is of the form dx! A --- A dx*. Then, w = ip(]) is represented by w' =

(—1)"1];. With this notation, the matrix {6/} representing the stress-energy
tensor is

{o/y = ({6} {62 (6%} {o*)),

where,
H1B1 + HyBy + H3B3 + D1E1 + DyE, + E3Ds3
sl 2(EsHy — EoH3)
: 2(EsHy — E1H3) ’
2(E,Hy — EvHa) ,
2(B3D; — By Ds)
52— ] HiBi—HoBy — H3Bs + E1Dy — EoD — E3Ds
! 2(E1Dy — ByHy) !
2(E1D3 + BsHy)

7



2(B3D1 — B1Ds)
3 2(B1H; — E;Dy)
—H1By + HyBy — H3B3 — E{D1 + E;Dy — E3D;
2(—E;D3 — BsHy)
( 2(B,Dy — B1Dy) )
A4 2(B1H3 — E3Dy)
! 2(—E3D; — ByH3)
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