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Generalized Stress Concentration Factors

R. SEGEV
Department of Mechanical Engineering, Ben-Gurion University, P.O. Box 653, Beer-Sheva
84105, Israel

In memory of my friends
Isaac Feldman (1954-73), Amir Moses (1954-96), and Ilan Ramon (1954-2003).

Abstract: The classical stress concentration factor is regarded as the ratio between the maximal value of the
stress in a body and the maximal value of the applied force for a given distribution of material properties.
An optimal stress concentration factor is defined as the lowest stress concentration factor if we allow any
stress field that is in equilibrium with the given load. The generalized stress concentration factor, a purely
geometric property of a body, is the maximal optimal stress concentration factor for any applied force. We
show that the generalized stress concentration factor 1s equal to the norm of an extension mapping of Sobolev
functions.
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1. INTRODUCTION

The present paper considers the question of how bad is the geometry of a body in terms of the
magnitude of the stresses induced in it. We establish a relation between this interpretation of
stress concentration and another geometric property — the norm of an extension mapping of
Sobolev functions defined on the interior ol the body.

The traditional stress concentration factor (see for example Peterson [1]) indicates, for
a given loading condition, the ratio between the maximum of a component of the stress and
the value of that component for an idealized geometry. For example, if there i1s a change
of the cross section A along a bar subjected to tension F, it gives the ratio between the
maximal stress and the nominal stress F'/A. Assuming that the nominal stress is actually
the stress far away from the location where the cross section changes, we may regard those
nominal stresses as traction boundary conditions. Thus, the stress concentration factor may
be represented by the ratio

sup, ; « 10k (x)1}
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where b; and t; are the body force and surface force distributions associated with the given
loading F.

In the last expression, the maximum over ¢ in the denominator (e.g., max;{|b;(x)|}) and
the maximum over i, k in the numerator serve as norms on R” and on the space L(R?, R?) of
linear mappings defined on R*. This particular choice, possibly reflecting the flavor of tra-
ditional stress concentration factors but not rotation invariance (e.g., max;{|b;(x)|} depends
on the coordinates chosen), may be replaced by other norms on the corresponding finite-
dimensional spaces. In the sequel, we use |b(x)| and |7 (x)]| to denote the norms of the values
at x € B of the body force vector field b and surface force vector field ¢ associated with the
given loading F'. We denote by |a (x)| the norm of the value of the stress at x. For example,
one may use |b(x)| = /b;(x)b;(x) and |o (x)| = /o ;1 (x)o i (x) that are rotation invariant.

Thus, the stress concentration factor is given by

sup, {|o (x)|}
sup, , {[bCO)], [t}

F= x € IntB, y € ¢B.

In the following, this concept of stress concentration is developed further in a number of
steps.

Traditional stress concentration factors are calculated analytically, approximated numer-
ically or measured experimentally. Their values are given lor specific distributions of mate-
rial properties, usually homogeneous, isotropic, linearly elastic materials. We wish to leave
the material properties of the body open and consider the following question. Assume that
one 1s performing a process of structural optimization by varying the distribution of material
properties in the body. What would be the smallest value of the stress concentration for the
given load? (Clearly, one can obtain as large a stress concentration as one wishes by varying
the distribution of material properties.) Specifically, we denote the collection of all stress
fields in equilibrium with the loading F by Xy and consider

k F.optimal _ inf; ey, {Sup.r ”J(I)”}
sup, {6, [t}

Next, we arrive at a purely geometric property of the body. Noting that one usually does
not know the exact nature of the loading, we allow the force distribution to vary and consider
the worst case, i.c.

= 5u

j F-optimal inf; ey, {Hup_r “”(I)”}
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K = sup
e

We also 1gnore high stresses and force densities on parts ol the body having zero volume (or
arca in case of t) so we replace the suprema above by essential suprema. Finally, the stress
object o (x) considered here contains not only the traditional stress tensor o but also a
self-force o;. The self-force, appearing in various theories of materials with microstructure,



may be thought of as the reaction of a three-dimensional (elastic) foundation. Thus, | (x)] is
redefined appropriately and the principle of virtual work has the form (we use the summation
convention and commas denote partial differentiation)

/b;w;dlf’-l—j tw;dA = /J;w,-dVﬁ-/J,-gwf,;{dV.

Int B B Int B Int B

The objective of the analysis presented in this paper 1s to prove that K 1s equal to the
norm of an extension mapping associated with Sobolev functions. Specifically, let L;(Int
B, R?) denote the Sobolev space of vector fields over the interior of the body with integrable
components and integrable derivatives of the components. Then, one of the basic properties
of Sobolev functions implies that each Sobolev vector field ¢ € L;(Int B, R?) may be
extended to B in such a way that the restriction of the extension to the boundary, its trace, is
integrable over the boundary. Denoting this extension mapping by 1, one may consider the
norm

@l
el =S =T

For an appropriate norm on the extended function and using the Sobolev norm for ¢, ||z||
assumes the form

[ 1914V + [ ‘&:‘dﬂ

lel = sup 2 ,
pel](IntB,RY) f [Pl dV + f IVgldV
Inth IntB

where g?;v denotes the extension of ¢ to the boundary @B of the body. This paper proves in
some detail that K = ||i

In writing the paper an attempt was made to make it self-contained for a wide readership.
For this reason, some standard definitions and results of analysis are incorporated. The
discussion is limited to the particular application presented here. For the general definitions
and theorems the reader 1s referred to standard texts on Sobolev spaces (e.g., [2]). Section 2
introduces the basic notation and norms used lor external forces and stresses. Section 3
considers the L}-Sobolev space and shows how elements of its dual space are represented in
terms of essentially bounded functions that we interpret physically as stress fields. Section 4
presents the relevant results on extensions and traces of Sobolev mappings. All the preceding
material 1s combined in Section 3 to yield the result stated above. Finally, the short discussion
of Section 6 presents some of the limitations of possible application of our result.

I wish to thank R. James, R. Lipton and other participants in the meeting of the Society
for Natural Philosophy (University of Kentucky, September, 2003) for their useful comments
on my presentation of this work. I am also indebted to an anonymous reviewer for the
insightful remarks made 1in the evaluation of the manuscript.




2. PRELIMINARIES

2.1. Analytical Preliminaries

Considering a vector space W with a seminorm ||-||, a linear functional w: W — R is
continuous, or bounded, relative to the given seminorm if there is a number C > 0 such that

lw(w)| < C|lw]|, forall weW.

For the given vector space and seminorm, we will denote by W* its dual space, i.e. the
vector space of all bounded linear functionals. The vector space W* has a natural dual norm
|-]|* defined as follows. For each linear functional y, |[w||* is the smallest C that satisfies
the continuity condition. Thus, formally,

Ly (w)]
lwll* = sup :
weWw  [[W|
Assume that ||-||; and |||, are norms on W; and W5, with dual norms |-||7 and ||-||5,
respectively. If we use on the space W; x W, the norm |[(w, w2)|| = |lwill; + lIwall,,

then, it follows from the definition above that the corresponding dual norm on W7 x W3 =
(Wi x Wy)* is given by [|(wy, wo)|| = max { ||y, |}, [|wa[3}-

In the sequel, we will use norms to measure magnitudes of elements in R?, its dual, the
space of linear mappings L(R?, R?), and its dual. For v € R®, we will use |v| to denote

]
I *

its norm. For example, we may use |v|; = > . |v;], or [v], = /v;v;. For the first example
the dual norm of an element f € (R*)* will be given by | f|] = | f|. = max; | fi|. For the
second example where the norm is induced by the inner product, | f|5 = | f|, = / fi fi-

Similarly, for T e L(R* %) (e.g., the gradient of a vector field) we will use |T| to
denote its norm. For example, we may use |T|, = ZI:J |Ty| or |T|, = /TuTy giving the
corresponding dual norms |R|] = |R|, = maxy;|Ry| and |R|; = |R], = VR Ry for
R e LR}, RY)".

We will also be concerned with R? x L(R*, R?*) = R'?. For an element (v, T) € R? x
L(R*, R*) we will use the norm |(v, T)| = |v|+|T| so that for (f, R) € (R x L(R?, R?))",
|(f, R)| = max{| f], [R]}.

2.2. Mechanical Variables

A body will be modelled mathematically by a three-dimensional compact submanifold B
with smooth boundary ¢ B of R*. The interior of the body will be denoted by Int B. The
physical space will be modeled by R” and a virtual velocity is a mapping w : B — R, As
customary in continuum mechanics, a force is represented by a body force b and a surface
force t defined in the interior of the body and its boundary, respectively. We regard b and ¢
as elements of R*" acting on virtual velocity w in the forms b;w; and f;w; to produce power
densities. Further assumptions concerning the regularity of virtual velocities, body force and
surlace force fields will be specilied below.



We will regard a force on a body as a linear functional operating on virtual velocities to
produce power in the form

F(w) = /bfw;-dvjufrfwfdﬂ.

Int B oB

Usually, stress fields ¢ = (o ;) are regarded as linear functionals on the space of tensor
fields. This 1s in agreement with the traditional expression

/ ) ,'ng,,:_-d V

IntB

for the power performed by the stress tensor. We will generalize stresses to include selt-
forces 6y = (o;): that is, additional stress components that operate directly on the compo-
nent of the virtual velocity fields. Self-forces appear in theories of continuum mechanics on
manifolds and theories of materials with microstructure. Thus, together with the self-forces,
the stress ¢ = (o, 0,) has the components (¢;, o).

We use the term local velocity field tor an integrable field over the interior of the body
valued in R x L(R?, R?). Thus, a local velocity field y is represented by a collection of
12 functions y = (x¢, ¥1) = (x;. ¥ ;) on the interior of the body. For the values of a local
velocity field we use the norm |y (x)| = ‘Xﬂ{xﬂ -+ ‘;51{4:)‘ as above. We regard the values
of stresses (together with the self-forces) as elements of (R3 x L(R?, I[%‘ﬁ}) *. Thus, we have
the action g (x)(x(x)) = a;(x)y,;(x) + g (x) . (x) giving the density of the power of the
internal forces. Hence, the norm of the value of a stress at a point will be given by

o (x)| = max{lao(x)], [o1(x)]}.

(It 1s noted that traditional failure criteria for even the case of linear elastic materials are
usually seminorms and not norms. Thus, any norm of the value of the stress tensor at a point
may only be used to bound the *“equivalent stress™.)

Stress fields act on local velocity fields to produce the power of the internal forces in the
form

o(y) = /U;'X;dv+ /J;kxikdlf’.

IntB IntB

The principle of virtual work 1s a generalized form of the equilibrium equation and
boundary conditions. We will say that the virtual velocity field w is compatible with a local
velocity field y if y, = w; and y,;, = w; ;. Thus, the lorce F 1s in equilibrium with the stress
o if F'(w) = o(y) for all compatible pairs of virtual velocities and local virtual velocities,

1e,
fb;w;db’—k/t,—w;dﬂz /foidv+fa,-kxfkdv.

IntB ¢B IntB IntB



2.3. The L' and L°° Norms and Their Duality

We want to represent the maximum of the magnitude |o (x)| of the stress in a body as the
norm of the stress field. In addition, we want to allow stresses that are unbounded on subsets
of the body having zero volume. Specifically, assuming that each of the 12 components of
the stress defined on Int B is essentially bounded and using the standard notation L™ for the
class of essentially bounded mappings, the vector space of stress fields 1s denoted by L™ (Int
B, R'%). As expected, we use the L>*-norm

la||”™ = ess sup{|o(x)|} = ess sup {|oo(x)]. |01 (x)]}

X &

on this space of stresses.

A standard result of Lebesgue integration theory (see [2, p. 41 ] ) states that the L>-space
of functions can be identified using integration with the dual of the space L' of Lebesgue
integrable mappings equipped with the L'-norm. For our situation, the space of integrable
mappings y is L' (Int B, R'?) and the L'-norm of a field y is

- =/|x|d1f=/|xn\d1f+]|x.|d1f-

IntB IntB It B

X

The action of a bounded linear functional associated with the stress field ¢ € L>(Int B, R'?)
on fields y € L'(Int B, R'?) is given by the familiar expression

ag(y) = ]r:r,-zi-dlf’—k/rrmx,-kdl’.

IntA Inth

Moreover, the L*™-norm we use is the natural norm induced on the dual by the L'-norm as
defined above. Thus,

lo ()l

L® i’ : 2
ol = lloll* =sup—=7% = sup |o(x)l.
£ ||}E'|| Iz =1

2.4. The Norm of Forces

In analogy with the preceding paragraph we wish to regard the largest magnitude of either
a body force or a surface force as the norm ol a given force F. We also want to regard this
norm as a dual norm to a certain norm on the space of virtual velocities. Note that we cannot

use simply the L'-norm
© = [ wiav
B

W



on the space of virtual velocities because in that case a force that has a non-vanishing surface
force field ¢t will not be continuous. (A change of w on the boundary only will not be
reflected in the norm because the boundary has zero volume measure. However, because
of the boundary term, the virtual work is sensitive to the boundary values ol the virtual
displacements.)

To account for the boundary term in the work done by the external forces we require

that the restriction w|zp of a virtual velocity field to the boundary be integrable over the

: ; cih L1# 5
boundary. We thus use for virtual velocities the norm ||-||  defined by

o e N f |w|dv+/|w|dA,

IntB iy

i.e., the sum of the L'-norm of the mapping w defined on the body and the L'-norm of its
restriction w|z to the boundary relative to the area measure. Alternatively, the L"*-norm
may be regarded as the L'-norm relative to the Radon measure u, defined on B by

w(D) = V(DNIntB) + A(D N éB),

where V and A are the volume and area measures, and hence the notation. This space of
p-integrable virtual velocity fields will be denoted by L'# (B, R?).

Forces, being elements of the dual space L'#(B, R*)*, may be identified with elements
of L>=#(B,R?). A force F may be identified with a continuous linear functional relative to
the L'*-norm if the body force components b; and surface force components #; (alternatively,
|b| and |t]) are essentially bounded relative to the volume and area measures, respectively.
Moreover, the dual norm of a force is the L°#-norm, given by

|

IFIT = IFIM" = ess SUp,cp, yeon (D], 111}
as anticipated.

Keeping in mind the two last sections, our objective of finding some relation between
maximal stresses and maximal values of the applied force densities i1s translated into the
mathematical question of finding a relation between the L*-norm of a stress and the L™*-
norm of a force assuming that the two satisty the principle of virtual work.

3. THE SOBOLEYV SPACE L|(Int B, R*) AND ITS DUAL

3.1. Basic Definitions

The Sobolev space L, (Int B, &) to be defined below, plays a central role in the forthcoming
analysis although it has not been considered above. Its dual, the space L]‘ (Int B, R%)* serves
as a “mediator” between the space L>#(B,R*) containing the forces, and space of stress
fields L>=(Int B, R'?).



The space L(Int B, [R?) is the collection of vector fields on Int B that are integrable

relative to the volume measure and whose gradients have integrable components. The norm
on L;(Int B, R?) is given by

161" = oI + 1Vl =f|(¢, V)| dV = /[|¢|+|v¢|)dv.
Int8 Int B

There is a natural mapping
j: Li(IntB,R*) — L'(IntB, R'?)

taking a field ¢ to a local velocity field y = j(¢) = (¢;,¢;;). It is noted that j is a
one-to-one mapping but it is not onto L'(Int B, R'?). In addition, j is norm-preserving as
I

HO

3.2. The Representation of L } -Forces by Stresses

In the sequel we will refer to an element S € L] (Int B, R¥)* as an L}-force. The mapping j
defined above enables one to represent any L|-force S by stresses as follows.

|
Let S: Li(Int B,R*) — TR be a linear functional bounded by ||+||L'i For every y €
Image j c L'(Int B, R'?) we have

o e TR Ly 1* 1
ISGTO[ < ISIE [ Col| - = 1SI™ lel™
where we used the fact that j 1s injective in order to apply

j~': Image j — L}(IntB, RY),

and we used the fact that IIc;bIIL' = || j () ||"‘I implies

I 1
il = lxl* .

It follows that

Soj ':Image j c L'(ImB,R"?) — R

is a linear functional on the vector subspace Image j  L'(Int B, R'%) that is bounded
relative to the ||- ||LI -norm.

We now recall the Hahn—Banach theorem stating that if U is a vector subspace ol the
normed vector space W and T is a bounded linear functional on U, then T may be extended

to a bounded linear functional T on W such that Hf" = ||T||*. In other words, there is a

bounded linear functional 7 € W* such that



T(w)=T(v) forall velU
and

\T{W)\ 1T ()]
S = Sup ———
e TR STV

By the Hahn—Banach theorem, Soj~' may be extended to a linear functional
¢: L'(Int B, R'?) = R such that

6(y)=S80j '(y) forall y elImage j,
or equivalently,
S(p) =6 (j(p)) forevery ¢ e Li(IntB,RY).
We recall that for a linear mapping

M: W, — W,
the dual mapping

M": W; — W]
is defined by

M*(c)(w) =a(M(w)) forall ¢ ew;, and w e W,.

Thus, using the definition of the dual mapping, we conclude that every S € L (Int B, R*)*
is of the form

S = j*(6) forsome & € L'(IntB,R'*)* = L=®(IntB,R").

3.3. Evaluation of the Dual- L } -Norm

Using the second assertion of the Hahn—Banach theorem one obtains

IS@)I So iG] _ [eGo|
¥ T | - 12
pel|(IntB,R?) ||¢,||"' ' €lmage j Fds el anB.R12) ||y II"
hence,
1% ST ~ 1LY PR [ i
Isit=[l;*@)|" =" = lla|"




Generally, for any ¢ € L>(Int B, R'?)

e @@ leGnl el i@
17*(a)II™" = sup ——— = sup —— < sup P
el ¢ ol é i ()"

: g LLe P
so |lj*(@)I™ < o™ .
We conclude that

LI"“ T B P &y .o
ISI* = ||¢||” =infllol|l

where the infimum is take over all ¢ € L*(Int B, R'?), with § = j*(o).

4. THE SOBOLEY EMBEDDING THEOREM AND ITS CONSEQUENCES

Now that we presented the relation between the Sobolev forces and stresses we want to relate
the Sobolev forces with the applied forces in L>#(B, R?*) represented by body forces and
surface forces. To do that, one constructs a mapping

i: L(IntB, R') — L"*(B,R")
that 1s linear, one-to-one, and continuous—an embedding. The construction of the mapping 1
uses important properties of Sobolev spaces asserted by the trace theorem. The theorem is

described below for the particular application for which it 1s needed here. Its usual formula-
tion 1s much more general (see for example [2]).

4.1. Some Properties of Sobolev Mappings

Sobolev mappings delined on open sets with smooth compact boundaries (in the sense of
manifolds with boundaries as we postulated here) may be extended linearly and continuously
to R, That is, for each ¢ € L] (Int B, R?) there is a field

E(@): R — R’ suchthat &£(¢)(x) = p(x) forall x e IntB.
The extension 1s viewed as a linear and continuous mapping
£: LI(IntB,R?) — L|(R’, R,

S0

IEGI" < c il .

for some C; > 0. (Note that the norm of £(¢) uses integration over R rather than Int B.)



Sobolev mappings may be restricted continuously and linearly to integrable mappings
on a smooth surface M. That is, there is a linear mapping

; Il Ll
p: LR, R) — L'(M,RY), with |[p(@)l" <Cligll ",
for some C; > 0. (Note that the restriction of an integrable function to a surface need not be
integrable on that surface. Its values on that surface may be infinity everywhere.)
Combining the two, one may first extend an L{-mapping from Int B to R* and then
restrict it to @ B to obtain a continuous linear mapping, the trace mapping,

i =po&: LI(IntB,R*) — L'(6B,RY).

Thus, there 1s a C; > 0 such that

la@IE < Callgl™ .

Clearly, as any Sobolev mapping is integrable, we have also the continuous inclusion
mapping

10: LI(IntB,RY) — L'(IntB, RY),

satisfying

@I < gl .

4.2. Implications for the Present Situation

Given a mapping ¢ € L,(Int B, R?), let i(¢) : B — R* denote the mapping obtained by
extending ¢ to R? and then restricting it to B. Clearly, 1(¢) agrees with ¢ in Int B. We have

AT = I @I + lo@)[F

L I
< G llel + el .

Hence,

RN

@I <Clgl", where C=1+Cs.
[t follows that we have a mapping
i: Ly(IntB, R*) — L"*(B, R?),

which is clearly linear, one-to-one and continuous—bounded by C.



The definition of the norm of a bounded linear mapping M: W, — W, is

M (w)]|
IM]| = sup :
weW, "H’r ||

-

1.e. 1t 18 the smallest bound Cy; such that ||M(w)|| < Cy ||w || for all w € W,. Relurning to
the mapping 1, we have

< o8

le(w)|
le]] = sup

woo lwb

4.3. The Relation Between the L.°°* and DuﬂI-L} Norms of Forces
As 1 is a linear continuous injection, the dual mapping
u L (B, R

CF)w) = F((w)),

L>*(B,R*) — Ll(IntB, R%)",

forall w € L} (Int B, R?), is continuous. A basic implication of the Hahn—Banach theorem
is that ||2*|| = ||z]|. For the sake of completeness we present the proof in the Appendix.
Thus, for every force F € L>#(B, R?), we have

lt
I .
sup = = Il = llll,

FoolF]

where the supremum is taken over all forces in L (B, R?).

5. CONCLUSION

The situation so far may be described by the following diagram.

I L# (B., R_"‘) 5 ! L} ([]’]l B,RB) JI'_} E! (Inl B,RIE)

*

L' (B,R})" Y . LI(mtB,R)" J°  L'(IntB,R?)"

L>* (B, R?) L™ (Int B, R"?)



, ’ ; : I,
We now combine the results of the two previous sections and represent IIs“l(;"?)II"‘I n
terms of stresses to obtain

ek

. TR
FelL=u(B,REY) || F]||

2]l

_ ap o e 1985 SUP, {loo)], I ()l
Fel>.4(B,R%) ess sup, {lb(x)|, |r(y)[}

We recall that 1*(F) = j*(o ) means

" (F)(w) = j"(a)(w),

/b,-w,—dl”+ft,-w,-dﬂ= fﬁu,-lt’;dV+ ‘/ﬂ'jﬁ-ﬂ’j‘ﬂ-dv+

Int& &8 Intf# IntB

soO that

Thus, for each F, the infimum is taken over all stress fields ¢ in equilibrium with F. The
right-hand side becomes K and we conclude that the generalized stress concentration factor
is indeed equal to the norm of the extension mapping 1 of Sobolev functions.

6. DISCUSSION

We will indicate below some limitations to the possible applicability of the foregoing result
in practical stress analysis. Hopefully, some of these difficulties may be overcome by further
study.

Firstly, we note that “optimal™ stress fields we consider include self-forces. Thus, in
order to obtain the optimal stress field for any given force, one has to provide such self-forces
through some mechanical apparatus or special materials. Usually the self-forces vanish so,
in such cases, the tensor part of the stress field will be larger than the optimal one. In addition
the tensor part of the stress object is not symmetric and the same observation applies.

A second i1ssue that one may consider is the existence of a material for which such an
“optimal” stress field exists. For simplicity, we restrict ourselves to inlinitesimal elasticity.
Then, one looks for a distribution of material properties, satisfying the usual requirements
of continuum mechanics, such that the resulting strain components satisfy the equations of
compatibility. Assuming that there 1s a compliance mapping at each point, giving the strain
in terms of the stress tensor, the compatibility equations will yield differential equations for
the distribution of the compliance over the body. Moreover, il the application of the self-
force is associated with some sort of “elastic foundations™, additional compatibility, between
the deformation calculated from the stress tensor and the displacement associated with the
“elastic foundation™, should be imposed.

Finally, we note that no boundary conditions on the displacements were imposed. Thus,
unless the external load F 1s in equilibrium, the body will accelerate. This will change



the external loading because of additional unknown inertial and possibly viscous forces.
Nevertheless, since our generalized stress concentration factor applies to all forces acting on
the body, 1t applies in particular to forces that are in equilibrium. Thus, the generalized stress
concentration factor may serve as an upper bound, possibly not attainable, for statics.

APPENDIX. M| = ||M*||

Consider two normed vector spaces W and V and a bounded linear mapping M: W — V

with norm

M (w)]
|M|| = sup — .
weW ”“’ ”

We prove that

M| .

: IM*(n)ll
|M*|| = sup =
nev+ ”?.:""

We show lirst that ||M*| < ||M||. Recalling that for any € V7,

|7 (v)]
7]l = sup l ;
re¥Y ||1”||
we have
IM* () (w)| = In(Mw))| < lIgll 1M < ligll 1M [w]l.
Hence,
. |M* () (w)|
IM* ()l = sup — 22 < iyl 1M
weW ”H’! ||

It follows that

\M* ()| *
sup ——— 1 — M| < IM]l.
Hev* ||ﬁ'||

This of course implies that M* 1s also bounded.
We now show that ||M*| = ||M||. We have

M* M=*( * M(w
R 1) Y L) B VLU0V
nev= "-l"f" neV= weW ”-’;"” ||W|| neV=weW ”?;"” ||H”"




Thus, it is sufficient to prove that for any ¢ > O there is an # € V* and a w € W such that

_ In(Mon))I
Il Tw ]

1M

b

so that |M|| — [|M*|| < & for all ¢ > 0, implying that ||M]|| — [|M*|| < 0.
From the definition of || M || there is a w,. € W such that

| M(w.)||
— < g

"Wa' ||

M|

Thus, for the one-dimensional subspace M of V spanned by M(w,), i.e. all vectors of the
formu = aM(w,.), a € IR, we define the linear 5, by . (aM(w.)) = a [|[M(w.)|. On M we
have

M |??;,-(H)‘ B n.(a M(w,:)_)‘ .
o = sup 20 — s =1

ueM || H ” aclk "':I M{W,:) ||

By the Hahn—Banach theorem 7, may be extended to a bounded linear functional 77,.: V —
R with, n,(M(v.)) =a||M(v,)|, forall a € R, and

7.0 .
sup = ||| =1
reV ||1*’||
Hence,
1. (M(w.)) M (w. )l
M| — —— ‘:||M||— < E.
e[ 1w | lw, |
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