
HAL Id: hal-00957438
https://hal.science/hal-00957438

Submitted on 10 Mar 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Searching for sinks of Henon map using a
multiple-precision GPU arithmetic library

Mioara Joldes, Valentina Popescu, Warwick Tucker

To cite this version:
Mioara Joldes, Valentina Popescu, Warwick Tucker. Searching for sinks of Henon map using a multiple-
precision GPU arithmetic library. 2013, 6p. �hal-00957438�

https://hal.science/hal-00957438
https://hal.archives-ouvertes.fr

Searching for sinks of Hénon map using a
multiple-precision GPU arithmetic library

Mioara Joldes∗ Valentina Popescu† Warwick Tucker ‡

ABSTRACT

Today, GPUs represent an important hardware development
platform for many problems in dynamical systems, where
massive parallel computations are needed. Beside that, many
numerical studies of chaotic dynamical systems require a
computing precision higher than common floating point (FP)
formats. One such application is locating invariant sets for
chaotic dynamical systems. In particular, we focus on rig-
orously proving the existence of stable periodic orbits for
the Henon map for parameter values close to the classical
ones. For that, we present a multiple-precision floating-point
arithmetic library in CUDA programming language for the
NVIDIA GPU platform. Our library extends the precision
using so-called FP expansions, where a number is repre-
sented as the unevaluated sum of standard machine preci-
sion FP numbers. This format offers the advantage of using
directly available and highly optimized hardware FP opera-
tions. We generalize algorithms used by multiple-precisions
libraries such as Bailey’s QD, or the analogue GPU version,
GQD.

Keywords

floating-point arithmetic, multiple precision library, GPGPU
computing, error-free transform, Hénon map, dynamical sys-
tems

1. INTRODUCTION
The advent of high-performance computing architectures

allows for the numerical study of many problems in dynami-
cal systems, like bifurcations analysis or periodic orbit com-
putation. However, for long time iteration of chaotic sys-
tems, two issues occur: (i) one usually needs more precision
than the standard IEEE 64-bit floating-point arithmetic; (ii)
numerical observed phenomena have to be rigorously proven
in a computer assisted way using validated numerics. A
classical example is that of the Lorenz system [9], for which
both (i) and (ii) were tackled in literature: the conjecture

∗LAAS-CNRS, 7 Avenue du Colonel Roche, 31077 Toulouse,
France, joldes@laas.fr
†LAAS-CNRS, 7 Avenue du Colonel Roche, 31077 Toulouse,
France, joldes@laas.fr
‡Department of Mathematics, Uppsala Univ., Box 480,
75106 Uppsala, Sweden, warwick@math.uu.se

that the structure of the solution is that of a strange attrac-
tor was proven in a computed assisted way [22]; extended
precision methods were developed for iterating this system
numerically with several hundreds of digits [1].

In this article we focus on another well-known dynami-
cal system: the Hénon map [6], which can be considered
as one of the ”classic” discrete dynamical systems, but for
which several long-standing open questions remain. The
Hénon map [6] is a two-parameter, invertible map h(x, y) =
(1+y−ax2, bx). Depending on the two parameters a and b,
this map can be chaotic, regular (the attractor of the map
is a stable periodic orbit), or a combination of these. It is
conjectured that for the classical parameters a = 1.4 and
b = 0.3, the Hénon map is chaotic and supports a strange
attractor. This property has been observed numerically, but
the question whether the Hénon attractor is indeed chaotic
(trajectories belonging to the attractor are aperiodic and sen-
sitive to initial conditions) or not remains open.

It is known [3] that there is a set of parameters (near
b = 0) with positive Lebesgue measure for which the Hénon
map has a strange (chaotic) attractor. The parameter space
is believed to be densely filled with open regions, where
the attractor consists of one or more stable periodic orbits
(sinks). In light of this, it is probably impossible to verify
that, given a specific point (a, b) in parameter space, the
dynamics of the map generates a strange attractor. On the
other hand, it was recently proven using validated numer-
ics [5] that for several parameter values close to the classical
ones, what appears to be a strange attractor (Fig. 1(a))
is actually a stable periodic orbit (Fig. 1(b)). Specifically,
in Fig. 1, 10000 iterations of the Hénon map h(x, y), with
fixed parameters a = 1.399999486944 and b = 0.3 are plot-
ted. The iterates appearing in Fig. 1(a) start in a point
(x′

0, y
′
0) and those for Fig. 1(b) in (x′′

0 , y
′′
0), which are cho-

sen in the following way: 5 ·109 iterations are performed and
skipped (not plotted) before obtaining (x′

0, y
′
0); and respec-

tively, for (b) 6 · 109 iterations are skipped before obtaining
(x′′

0 , y
′′
0). Clearly, Fig. 1(a) looks like the Hénon strange at-

tractor, while Fig. 1(b) is just a periodic orbit. This means
that what we observe in computer simulations is actually a
transient behavior to the periodic steady state that we are
actually interested in.

Proving the existence of such a stable periodic orbit in-
volves a finite (yet challenging) amount of computations,
and all necessary conditions are robust (there exists an open
set in the parameter space in which all conditions remain
true). So, if such a sink exists, we should theoretically be
able to find it using high performance computing.

However, in order to find sinks for parameters close to
the classical ones, we need to compute very long orbits for
a large amount of initial points and parameters, as detailed
in Sec. 4. Iterating the map for various initial points is a
classical SIMD parallel problem, so a GPU implementation
is presented. For our double precision implementation we
obtain a significant speed-up of 21.5x compared to a multi-
threaded CPU implementation. But in order to tackle the
conjecture, we need a higher precision. Thus, in this article
we also present a multiple-precision floating-point arithmetic
library using the CUDA programming language [16] for the
NVIDIA GPU platform. In Sec. 2 we review some existing
works on GPU-based multiple-precision arithmetic and we
detail our library implementation in Sec. 3. The strategy
for locating sinks is presented in Sec. 4. Finally, we present
and compare our implementation results in Sec. 5.

−1.5 −1 −0.5 0 0.5 1 1.5

−0.4

−0.2

0

0.2

0.4

x

y

(a)

−1.5 −1 −0.5 0 0.5 1 1.5

−0.4

−0.2

0

0.2

0.4

x

y

(b)

Figure 1: Hénon map h(x, y) = (1 + y − ax2, bx) with
a = 1.399999486944, b = 0.3; 10000 iterates are plotted
after skipping (a) 5 · 109 and (b) 6 · 109 iterations.

2. MULTIPLE PRECISION ARITHMETIC

LIBRARIES AND GPUS
Today most floating-point (FP) computations – on both

CPUs and GPUs – are done in double precision (also called

binary64) and are compliant with the IEEE 754-2008 stan-
dard [8]. The standard requires correct rounding of basic
arithmetic operations with several rounding modes, i.e., the
returned result should be as if computed with infinite pre-
cision, then rounded. This brings portability to numerical
code and also makes it possible to build a correct interval
arithmetic [11] rather easily. However, our problem of find-
ing sinks for the Hénon map requires precisions in the range
of up to a few hundreds of bits. Quad or higher precision
is seldom implemented in hardware, and the most common
solution is to use software emulation for multiple precision.
There are mainly two ways of representing numbers in ex-
tended precision.

First, in multiple-digit representation, a number is rep-
resented by a sequence of digits coupled with a single ex-
ponent. An example is the representation used in GNU
MPFR [4] which is an open-source C library providing ar-
bitrary precision with correct rounding for standard oper-
ations and functions. Currently, GNU MPFR is not sup-
ported on GPUs. Another example is ARPREC [2], which
has been ported to GPUs under the name GARPREC, by
Lu et al. [10].

Second, in multiple terms representation, a number is ex-
pressed as an unevaluated sum of several standard FP num-
bers. This sum is usually called a FP expansion. Bailey’s li-
brary QD [7] supports double-double (DD) and quad-double
(QD) computations; a number is represented as the uneval-
uated sum of 2 or 4 double-precision FP numbers. This
has been ported to CUDA under the name of GQD [10].
It is known [12] that the DD/QD formats are not compli-
ant with the IEEE 754-2008 standard, and the algorithms
for basic operations in [7] do not provide correct round-
ing. However, this multiple term format offers the simplicity
of using directly available and highly optimized FP opera-
tions. Also, most multiple terms algorithms are straight-
forwardly portable to highly parallel architectures such as
GPUs. GQD/QD multiple terms representation supports
only DD and QD computations, which is equivalent to roughly
up to 212 bits of significand. We remark that this is not ex-
actly the same as 212 bits of significand in the multiple digits
representation because the multiple terms format can repre-
sent more bits (some intermediary zero bits can be skipped
in this representation [12, Chap.14]). When the same preci-
sion is required, the GARPREC computation cost is usually
higher than GQD [10].

In [13] an improved multiple-digit library – CUMP – is
presented. This library is based on the low-level integer
arithmetic routines of GMP, and uses the 64-bit integer
arithmetic internally on the GPU instead of the double FP
arithmetic used by GARPREC. On the NVIDIA Tesla C2050,
CUMP is reported to be up to 2.6 times faster than GARPREC.
For the sake of brevity, we refer to related works given in [13]
concerning integer multiple precision and earlier work for
GPUs without double precision hardware support.

For our problem, we could have used either the GQD or
CUMP library. However, these turn out to be suboptimal
for our purpose as detailed in Sec. 5. CUMP is based on
the multiple-digit format, for which the basic operations is
slower than those on multiple-terms, while GQD is multiple
terms but limited to 4 doubles. In our work, we exploit the
multiple terms format, and generalize Bailey’s algorithms to
n-double multiple-terms, i.e., we use Bailey’s FP expansions.

3. LIBRARY IMPLEMENTATION
Let us fix some notation. A normal binary precision-p

floating-point (FP) number is a number of the form x = Mx ·
2ex−p+1, with 2p−1 ≤ |Mx| ≤ 2p−1. The integer ex is called
the exponent of x, and Mx ·2−p+1 is called the significand of
x. We denote accordingly to Goldberg’s definition ulp (x) =
2ex−p+1 [12, Chap. 2]. We also denote the machine epsilon
by ε = 2−p+1.

A natural extension of the notion of DD or QD is the no-
tion of floating-point expansion. A floating-point expansion
u with n terms is the unevaluated sum of n floating-point
numbers u0, u1, . . . , un−1, in which all nonzero terms are
ordered by magnitude (i.e., ui 6= 0 ⇒ |ui| ≥ |ui+1|). Arith-
metic on FP expansions was introduced by Priest [17], and
later by Shewchuk [21]. To ensure that such an expansion
carries significantly more information than one FP number
only, it is required that the ui’s do not “overlap”. This no-
tion of overlapping varies depending on the authors. An
expansion u0, u1, . . . , un−1 is B-non-overlapping (that is,
non-overlapping according to Bailey’s definition [7]) if for all
0 < i < n, we have |ui| ≤ 1

2
ulp (ui−1).

Many algorithms exist for the addition and multiplication
of FP expansions [18, 21, 19, 20, 7, 15]; all are based on
various atomic error-free transforms. These are known un-
der the names of Fast2Sum, 2Sum, 2Prod, and – when a fma

(Fused Multiply-Add) instruction is available – 2ProdFMA,
see [12, Chap.4-5] for details. These atomic error-free algo-
rithms use only native precision operations, but keep track
of all accumulated rounding errors, ensuring that no infor-
mation is lost. We mainly make use of Algorithm 1 2Sum
and Algorithm 2 2ProdFMA which require 6 and 3 double
precision operations, respectively. We also make use of Vec-
Sum, given in Fig. 2 and Algorithm 3, which is simply a
chain of 2Sum, performing an error free transform on the
sum of n FP numbers [21, 19].

Our library is implemented in CUDA – an extension of the
C language developed by NVIDIA [16] for their GPUs. The
algorithms mentioned above are very suitable for the GPU
because all basic operations (+,−, ∗, /,√) conform to the
IEEE 754-2008 standard for FP arithmetic for single and
double precision. Support for the four rounding modes is
provided and dynamic rounding mode change is supported
without any penalties. The fma instruction is supported for
all devices with CUDA Compute Capability at least 2.0.

Algorithm 1 2Sum (a, b).

s← RN(a+ b)
{ RN stands for performing the operation in rounding to
nearest mode.}
t← RN(b− RN(s− RN(s− b)))
e← RN(s+ t)
return (s, e) such that s = RN(a+ b) and s+ e = a+ b

Algorithm 2 2ProdFMA (a, b).

p← RN(a · b)
{ RN stands for performing the operation in rounding to
nearest mode.}
e← fma(a, b,−p)
return (p, e) such that p = RN(a · b) and p+ e = a · b

Algorithm 3 VecSum (a0, . . . an−1).

Ensure: r0 + . . .+ rn−1 = a0 + . . .+ an−1.
r0 ← a0

for i← 1 to n− 1 do
(ri, ri−1)← 2Sum(ai, ri−1)

end for
return r0, . . . , rn−1

Figure 2: VecSum with n terms. Each 2Sum box
performs Algorithm 1, the sum is output to the left
and the error downwards.

In general, each error-free transform applied to two FP
numbers, returns two FP numbers. So, an algorithm that
performs addition of two expansions x and y with n and
m terms, respectively, will return a FP expansion with at
most n+m terms. Similarly, for multiplication, the product
is a FP expansion with at most 2nm terms [17]. So-called
normalization algorithms are used to render the result non-
overlapping, and this implies also a potential reduction in
the number of terms. Bailey’s QD algorithms return only
the most significant 2 or 4 FP terms for DD and QD for-
mats, respectively. Analogously, we only present the ”input
k - output k terms” variant for our algorithms, although we
have implemented fully customizable FP expansions algo-
rithms for addition/subtraction and multiplication.

Addition. Algorithm 4, based on a chain of 2Sum trans-
formations (see Figure 3), generalizes Bailey’s QD addi-
tion; given two FP expansions a = a0 + . . . + ak−1 and
b = b0 + . . . + bk−1, it produces the k most significant FP
components of the sum r = a + b. In order to compute
one more error correction term, that will be present in the
renormalization at the end, we perform our ”error free trans-
formation scheme” k + 1 times.

At step n = 0 we compute the exact sum a0+b0 = r0+e0,
where roughly speaking, r0 is of order O(1) and e0 is of order
O(ε). At each step n = 1, . . . , k we compute the exact result
of an+bn = sn+en, where sn and en are of order O(εn) and
O(εn+1), respectively. From previous steps we have already
obtained n error terms of order O(εn) that we add together
with sn to obtain the term rn ”of order” O(εn) before the
renormalization step. This addition is done with the VecSum
(see Algorithm 3). The (k+1)-th component rk is obtained
by a simple summation of the previously obtained terms of
order O(εk).
Note that, in this setting, subtraction is much simpler

than for the multiple digit case, and can be performed simply
by negating the FP terms in b.

Multiplication. Algorithm 5 (see also Figure 4) general-
izes Bailey’s QD multiplication. Again, we consider two FP

Algorithm 4 Algorithm of addition of FP Expansions with
k terms.
Require: FP expansion a = a0 + . . .+ ak−1; b = b0 + . . .+

bk−1.
Ensure: FP expansion r = r0 + . . .+ rk−1.
1: (r0, e0)← 2Sum(a0, b0)
2: for n← 1 to k − 1 do
3: (sn, en)← 2Sum(an, bn)
4: rn, e0, . . . , en−1 ← VecSum(sn, e0, . . . , en−1)
5: end for
6: rk ← 0
7: for i← 0 to k − 1 do
8: rk ← rk + ei
9: end for
10: r[0 : k − 1]← Renormalize(r[0 : k])
11: return FP expansion r = r0 + . . .+ rk−1.

expansions a = a0 + . . . + ak−1 and b = b0 + . . . + bk−1

and we want to compute the k most significant FP compo-
nents of the product r = a · b. For the product (p, e) =
2ProdFMA(ai, bj), p is of order O(εn) and e of O(εn+1),
where n = i + j, and we consider only the terms for which
0 ≤ n ≤ k. This implies that for each n we have n+1 prod-
ucts to compute (see line 4 of Algorithm 5). Next, we need
to add all terms of the same order of magnitude. By induc-
tion, it can be easily shown that beside the n+ 1 products,
we also have n2 terms resulting from the previous iteration.
This addition is performed using VecSum to obtain rn in
line 6. The remaining terms are concatenated with the er-
rors from the n+1 products, and the entire e0, . . . , e(n+1)2−1

array is used in the next iteration. The (k+1)-th component
rk is obtained by simple summation of all remaining errors
with the simple products of order O(εk). 2ProdFMA is not
needed in the last step since the errors are not reused.

Algorithm 5 Algorithm of multiplication of FP Expansions
with k terms.
Require: FP expansion a = a0 + . . .+ ak−1; b = b0 + . . .+

bk−1.
Ensure: FP expansion r = r0 + . . .+ rk−1.
1: (r0, e0)← 2ProdFMA(a0, b0)
2: for n← 1 to k − 1 do
3: for i← 0 to n do
4: (pi, êi)← 2ProdFMA(ai, bn−i)
5: end for
6: rn, e[0 : n2 + n− 1]← VecSum(p[0 : n], e[0 : n2 − 1])
7: e[0 : (n+ 1)2 − 1]← e[0 : n2 + n− 1], ê[0 : n]
8: end for
9: for i← 1 to k − 1 do
10: rk ← rk + ai · bk−i

11: end for
12: for i← 0 to k2 − 1 do
13: rk ← rk + ei
14: end for
15: r[0 : k − 1]← Renormalize(r[0 : k])
16: return FP expansion r = r0 + . . .+ rk−1.

The division algorithm is also implemented, but not dis-
cussed in this article, since we do not use it in our Hénon code.

Figure 3: Addition of FP Expansions with k terms.
Each 2Sum box performs Algorithm 1, the sum is
output downwards and the error to the right.

Figure 4: Multiplication of FP Expansions with k
terms. Each 2ProdFMA box performs Algorithm 2,
the product is output downwards and the error to
the right; VecSum stands for Algorithm 3.

In our library we use templates for both the number of terms
in the expansion and the native type for the terms. In other
words, we allow static generation of any input-output pre-
cision combinations (e.g. add a double-double with a quad-
double and store the result on triple-double) and operations
with types like single-single, quad-single etc., are supported.
All the functions are defined using host device speci-
fiers, which allows for the library to be used on both CPU
and GPU. We also favor in-place algorithms to avoid register
spill/loads. Basic operations for interval arithmetic are also
supported in a similar templated class. For this class, we
implemented Priest’s [18] and Shewchuk’s [21] algorithms,
which are generally slower than those presented in this ar-
ticle, but they allow for enclosing correctly in an outward
rounding mode the rounding errors.

Understandably, each multiple-precision arithmetic oper-
ation presented is not parallelized. Some parallelized algo-
rithms for addition and dot product for large arrays of num-
bers have been proposed in [23], but for our purpose – and
this is the case for all existing multiple precision libraries –
the parallelization takes place at the problem level.

In our implementation we use a sequential memory lay-
out for the expansion terms, whereas CUMP/GARPREC
libraries use an interval memory layout where the terms of
multiple precision numbers are interleaved. Specifically, for
an array of nmultiple precision numbers, each withm terms,
the jth term of the ith number is stored in the position jn+i
in the array. This format is better suited for operations with
large arrays of multiple precision numbers, since it favors
coalesced accesses of off-chip memory. In what follows, our
parallelization scheme is different for the Hénon map study,
and does not require a special memory layout. Our library
code will be made freely available.

4. FINDING SINKS FOR THE HÉNON MAP
Recall that our goal is to find parameters (a, b) near (1.4, 0.3)

for which the long term behavior of the Hénon map is de-
scribed by a stable period orbit (sink). The main idea for
locating such sinks is described in [5], where double preci-
sion arithmetic on a CPU architecture is used. In brief, (i)
for each considered point (a, b) in parameter space, we per-
form a large amount of iterations of the Hénon map h for
many different initial points. The hope is that at least one of
these trajectories will, after some initial transient behaviour,
be attracted to what appears to be a periodic orbit; (ii) we
use rigorous numerics to validate/falsify the existence of any
sink found at step (i). These main steps are explained in
what follows.

Given a fixed (a, b) together with a single initial point
(x0, y0), the subsequent computations are governed by two
integers Nt and pmax. First, we perform Nt iterations of the
map h which now depends on (a, b): h(x0, y0), h(h(x0, y0)),. . .,
hNt(x0, y0). These are all discarded, except the final iter-
ate hNt(x0, y0), which we continue to follow for another
pmax iterates. At this stage, we examine the piece of or-
bit hNt+1(x0, y0),. . . , h

Nt+pmax(x0, y0) for any close returns.
In other words, we attempt to find a integer 1 < k < pmax

such that maxk
i=1 ‖hNt+i(x0, y0)−hNt+i+k(x0, y0)‖ is small.

If this succeeds, we may have found a period-k sink, which
we later attempt to verify using rigorous numerics.

The number Nt of transient iterations which are discarded
is usually chosen by trial-and-error since it depends on hid-
den intrinsic properties of the dynamics of the Hénon map.

In practice, Nt ∼ 109. In our search, we have used pmax =
5000. For each parameter we use Ni ∼ 103 different initial
points. Finally, we repeat the entire procedure for Np ∼ 106

parameters near (1.4, 0.3).
If at the end of this search process we identify some ”nu-

merical periodic orbits”, in a second step we rigorously prove
their existence using methods from interval analysis [11, 14].
This part can be checked ”off-line” on a CPU architecture,
and we use the same as described in [5], which is based
on an interval Newton operator. This step is not detailed
further here, since it is only the first part that is compu-
tationally expensive. Its complexity depends on two main
factors: the precision used for computations, and the capa-
bility of exploiting the inherent parallelism available both
in the parameter space and the initial points considered for
each parameter.

The main idea for the parallelization on GPU is that each
thread computes the iterates of the map h starting with one
fixed initial point and fixed parameter (a, b) (these iterations
are inherently sequential). The initial points are generated
in a suitable region close to the attractor by a single thread
on the GPU. They are stored in a shared memory array that
gives access to all the other threads in the same block. Each
thread writes in a shared memory array the period (if any)
of the orbit, and one point of the orbit in the affirmative
case. Each block is bi-dimensional and corresponds to one
parameter (a, b). We grid the parameter space near (1.4, 0.3)
and apply the above process to each grid point. We also
implemented some variants where several blocks correspond
to the same parameter (a, b) in order to be able to iterate
on more initial points. Without this ability, we are limited
by the size of the block shared memory to ca 103 initial
points/parameter.

For our double precision implementation, Fig. 5 shows
comparisons for timings obtained by a C implementation
with OpenMP, on an Intel(R) Core(TM) i7 CPU 3820, 3.6GHz,
4 cores, 8 threads computer vs. our CUDA C implementa-
tion on an NVIDIAGeForce Tesla C2075 graphics card with
448 cores, 1.15GHz. The orbit length taken is Nt ∼ 106.
We plot the computation time in ms versus the total num-
ber of orbits computed, that is Np ·Ni. The 21.5x speedup
obtained is significant.

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000 10000 100000 1e+06

C
o
m

p
u
te

 t
im

e
 (

m
s
)

Initial points

CPU[i7-3820]/GPU[C2075] performance

CPU
GPU

Speedup

Figure 5: Timings (in ms) for CPU[i7-3820] vs.
GPU[C2075]. Here we compute Nt ∼ 106 itera-
tions/initial point.

5. RESULTS AND CONCLUSIONS
Several orbits already found in [5] were re-checked using

our GPU implementation for double precision. For example,
for 106 grid points for a ∈ [1.3999, 1.4001], b = 0.3 fixed,
1024 orbits/parameter and 106 iterations/orbit we found
57 parameters which present stable periodic orbits in 2.94h
on 2 Tesla C2075 GPUs. Speed-ups are given in Fig. 5.

Our multiple precision library supports data and arith-
metic operations on both host and device code. As such,
only minor changes to the CUDA code written for double
precision Hénon map iterations are required to allow the us-
age of our library. A code snippet from a Hénon like GPU
kernel using 4-double precision from our multi prec tem-
plated class is given in Fig. 6.

#define prec 4
/*device fct to be run using prec*doubles precision*/
__host__ __device__ void henon_iterate(double x0,
double y0, double a, double b, long int ITER) {

/*init multi_prec template vars*/
multi_prec<prec,double> x_i(x0);
multi_prec<prec,double> y_i(y0);
multi_prec<prec,double> x_old;
for (long int i=1; i <= ITER; i++) {

/*Compute iterates*/
x_i = y_i + 1.0 - a*x_i*x_i;
y_i = b*x_old;

}
}

Figure 6: Example of usage of template multi prec

types and operations with 4-doubles precision in a
host or device code that performs Hénon map iter-
ations

A performance comparison between multi prec versus
double computations on GPU for Hénon iterations is given
in Table 1. In the same table, we also compare the GPU
performance of our library versus QD (which supports only
2 and 4-doubles precision).

Currently, we are not able to compare GARPREC/CUMP
performance for our Hénon map application, because they
were both tuned for big array operations where the data
are generated on the host, and only the operations are per-
formed on the device. In our case, each thread needs to
generate and allocate multiple precision data on the device.
With these constraints, we were not able to implement our
application using these libraries so far. However, in [10] it
is stated that GQD should be faster that GARPREC for
double-double and quad-double computations. Moreover,
it is also known [7, 10] that multiple-terms operations are
faster than multiple-digit ones for precisions in the range of
up to several hundreds of bits. This is confirmed in our case,
in Table 2.

More precisely, for the same benchmark Hénon map code
we also compare the performances on CPU for our library
versus MPFR in Table 2. This comparison is not entirely
fair seeing that the multiple-digit format is not equivalent
to the multiple-terms format. Indeed, we do not guaran-
tee the correct rounding for each basic operation, but we
present this comparison from a prospective point of view.
As future work we intend to provide error bounds for our
FP expansions algorithms; with this improvement, multiple
terms format could become an interesting alternative even
for the CPU architectures. One limitation is the precision
supported with FP expansions, which is about 2000 bits (39

Precision Mprec

double 102398

2 doubles 7608
3 doubles 5200
4 doubles 1788
5 doubles 758
6 doubles 374
7 doubles 205
8 doubles 122

Precision Mprec QD

double 102398

2 doubles 7608 4539
4 doubles 1788 618

Table 1: Peak number of Hénon map orbits/second
for double vs. extended precision obtained with our
library Mprec vs. QD library on Tesla GPU[C2075]
using 106 iterations/orbit.

Precision Mprec MPFR

2 doubles (106 bits) 227 11.8
3 doubles (159 bits) 76 10.6
4 doubles (212 bits) 37 10.1
6 doubles (318 bits) 15 8.9
8 doubles (424 bits) 8 7.9

Table 2: Peak number of Hénon map orbits/second
for obtained with our library Mprec vs. MPFR
library (both parallelized with OpenMP on 8
threads) on Intel i7-3820 @3.60GHz using 106 itera-
tions/orbit.

components), which occurs only if the first component is
near overflow and the last near underflow.

Currently, the parameter values closest to the classical
ones for which a sink has been found are (1.4, 0.2999999774905).
At the moment, we are searching for a sink at the classical
parameters using 4-doubles multi prec operations.

6. REFERENCES

[1] A. Abad, R. Barrio, and A. Dena. Computing periodic
orbits with arbitrary precision. Phys. Rev. E,
84:016701, Jul 2011.

[2] D. H. Bailey, Y. Hida, X. S. Li, and B. Thompson.
ARPREC: an arbitrary precision computation
package. Technical report, Lawrence Berkeley
National Laboratory, 2002. Available at http:
//crd.lbl.gov/~dhbailey/dhbpapers/arprec.pdf.

[3] M. Benedicks and L. Carleson. The dynamics of the
Hénon map. Annals of Mathematics, 133(1):pp.
73–169, 1991.

[4] L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, and
P. Zimmermann. MPFR: A Multiple-Precision Binary
Floating-Point Library with Correct Rounding. 33(2),
2007. available at http://www.mpfr.org/.

[5] Z. Galias and W. Tucker. Combination of exhaustive
search and continuation method for the study of sinks
in the Hénon map. In Proc. IEEE Int. Symposium on
Circuits and Systems, ISCAS’13, pages 2571–2574,
Beijing, May 2013.

[6] M. Hénon. A two-dimensional mapping with a strange
attractor. Communications in Mathematical Physics,
50:69–77, 1976. 10.1007/BF01608556.

[7] Y. Hida, X. S. Li, and D. H. Bailey. Algorithms for
quad-double precision floating-point arithmetic. In

Proceedings of the 15th IEEE Symposium on Computer
Arithmetic (ARITH-16), pages 155–162, June 2001.

[8] IEEE Computer Society. IEEE Standard for
Floating-Point Arithmetic. IEEE Standard 754-2008,
Aug. 2008. available at http://ieeexplore.ieee.
org/servlet/opac?punumber=4610933.

[9] E. N. Lorenz. Deterministic Nonperiodic Flow. J.
Atmos. Sci., 20(2):130–141, Mar. 1963.

[10] M. Lu, B. He, and Q. Luo. Supporting extended
precision on graphics processors. In Proceedings of the
Sixth International Workshop on Data Management
on New Hardware, DaMoN ’10, pages 19–26, New
York, NY, USA, 2010. ACM.

[11] R. Moore. Interval Analysis. Prentice Hall, Englewood
Cliffs, NJ, 1966.

[12] J.-M. Muller, N. Brisebarre, F. de Dinechin, C.-P.
Jeannerod, V. Lefèvre, G. Melquiond, N. Revol,
D. Stehlé, and S. Torrès. Handbook of Floating-Point
Arithmetic. Birkhäuser Boston, Nov. 2009.

[13] T. Nakayama and D. Takahashi. Implementation of
multiple-precision floating-point arithmetic library for
GPU computing. In Proceedings of the 23rd IASTED
International Conference on Parallel and Distributed
Computing and Systems, PDCS 2011, pages 343–349,
December 2011.

[14] A. Neumaier. Interval methods for systems of
equations. Cambridge University Press, 1990.

[15] H. D. Nguyen, S. Graillat, and J.-L. Lamotte.
Extended precision with a rounding mode toward zero
environment. Application to the Cell processor.
International Journal of Reliability and Safety,
3(1):153–173, 2009.

[16] NVIDIA. NVIDIA CUDA Programming Guide 5.5.
2013.

[17] D. M. Priest. Algorithms for arbitrary precision
floating point arithmetic. In Proceedings of the 10th
Symposium on Computer Arithmetic, pages 132–145.
IEEE Computer Society Press, 1991.

[18] D. M. Priest. On Properties of Floating Point
Arithmetics: Numerical Stability and the Cost of
Accurate Computations. Thesis (Ph.D. in
mathematics), Department of Computer Science,
University of California, Berkeley, Berkeley, CA, USA,
1992.

[19] S. M. Rump, T. Ogita, and S. Oishi. Accurate
floating-point summation part I: Faithful rounding.
SIAM J. Sci. Comput., 31(1):189–224, Oct. 2008.

[20] S. M. Rump, T. Ogita, and S. Oishi. Accurate
floating-point summation part II: Sign, k-fold faithful
and rounding to nearest. SIAM J. Scientific
Computing, 31(2):1269–1302, 2008.

[21] J. R. Shewchuk. Adaptive precision floating-point
arithmetic and fast robust geometric predicates.
Discrete & Computational Geometry, 18:305–363,
1996.

[22] W. Tucker. A rigorous ODE solver and Smale’s 14th
problem. Foundations of Computational Mathematics,
2(1):53–117, 2002.

[23] N. Yamanaka, T. Ogita, S. M. Rump, and S. Oishi. A
parallel algorithm for accurate dot product. Parallel
Comput., 34(6-8):392–410, 2008.

