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We analyze inertial granular flows and show that, for all values of the inertial number I , the
effective friction coefficient µ arises from three different parameters pertaining to the contact network
and force transmission: 1) contact anisotropy, 2) force chain anisotropy and 3) friction mobilization.
Our extensive 3D numerical simulations reveal that µ increases with I mainly due to an increasing
contact anisotropy and partially by friction mobilization whereas the anisotropy of force chains
declines as a result of the destabilizing effect of particle inertia. The contact network undergoes
topological transitions, and beyond I ≃ 0.1 the force chains break into clusters immersed in a
background “soup” of floating particles. We show that this transition coincides with the divergence
of the size of fluidized zones characterized from the local environments of floating particles and a
slower increase of µ with I .

PACS numbers: 45.70.-n,83.80.Fg, 45.70.Mg, 81.05.Rm

From large-scale geological events to a variety of indus-
trial processes involving bulk materials and powders, the
flow behavior of granular materials has been a subject of
intensive research since many years [1–6]. The diversity
of boundary conditions and confining geometries made it
difficult for a long time to extract the intrinsic rheology
of dense inertial flows until a unification was achieved
by analyzing several experimental and numerical data in
terms of a single dimensionless inertial number I, defined
as the ratio of the particle relaxation time (m/pd)1/2, un-
der an average or confining stress p and for a particle of
mass m and diameter d, to shear time γ̇−1 imposed by
the flow rate γ̇ [7, 8]. The model arising from this semi-
nal work is based on a generic dependence of the effective
friction coefficient µ and packing fraction ν on I.

This empirical model of steady granular flows, in com-
bination with continuum conservation equations, cor-
rectly predicts the velocity and stress fields in various
flow geometries [7, 9–11]. However, it still lacks a clear
particle-scale foundation. The increase of µ with I de-
spite an increasingly lower packing fraction is a non-
trivial property that reveals a genuine microstructure.
A few studies reported on the microstructure of iner-
tial flows [8, 12–15] show that, as I increases, the force
chains become more sparse, the correlation length of con-
nected particles decrease [5, 16, 17] , the contact lifetimes
decline, and an increasing number of impulsive forces
[18, 19] and frictionally mobilized contacts [4, 8] come
into play. But a challenging issue is how to connect such
particle-scale observations with the rheology.

In this Letter, we analyze inertial granular flows by
means of a stress partition that readily links the µ(I)
rheology to three different particle-scale mechanisms: 1)
contact anisotropy, 2) force chain anisotropy and 3) fric-
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tion mobilization. The data are obtained from extensive
contact dynamics simulations of homogeneous shear flow
with spherical particles for a broad range of I varied from
low to very high values. Stress partition has been suc-
cessfully applied to quasi-static deformations [20–24] but
never to inertial flows. As we shall see below, the rela-
tive importance of local mechanisms evolves with I and
therefore the flow structure undergoes qualitative transi-
tions that underlie the evolution of the effective friction.
Such transitions are consistent with the correlative evo-
lution of the statistics of fluidized zones that we analyze
by considering the clustering of floating particles.

Contact dynamics simulations were carried out with
Np = 24000 spheres. The packing is sheared between
two parallel rough walls by imposing a constant horizon-
tal velocity Vy on the top wall and periodic boundary
conditions along the flow in the y direction and along
the transversal x direction. The packing is confined by a
constant compressive stress σzz applied on the top wall
along the z-direction; see Fig.5(a). A small polydisper-
sity (1± 0.1)d in particle diameters is introduced to pre-
vent crystallization at the walls. The gravity is set to
zero in order to avoid strain localization at the bound-
aries and to ensure uniform stress field in the bulk. In
the contact dynamics method, the particles are treated
as perfectly rigid so that I is the only relevant dimen-
sionless parameter of flow [24–26]. Contact dissipation
is modeled in terms of normal and tangential restitution
coefficients en and et as well as a friction coefficient µs

between particles. We set µs = 0.4 and en = et = 0. This
choice corresponds to a highly dissipative packing. We
note that the values of restitution coefficients have nearly
no influence on dense granular flows as inelastic collisions
occur at high frequency and dissipate the kinetic energy
at time scales far shorter than those of shear and particle
relaxation [7, 8].

Under the action of the applied shear strain, all sam-
ples dilate from their initial high density and tend to a
steady flow characterized by a linear velocity profile. We



performed 17 simulations for a broad range of I varied
from 6 × 10−4 to 0.72 by keeping the same shear rate
and changing the confining pressure [36]. The data pre-
sented in this Letter, are average values over the steady
state with standard deviations used as error bars. The
values of I are obtained from the average stress p, which
fluctuates in the steady state around the average stress.
The error bars on the values of I represent these fluctu-
ations. Obviously, the fluctuations increase with I, and
thus the data are to be sampled more frequently in the
steady state in order to reach meaningful statistics.

The stress state being invariant along the x direction,
we consider here only the restriction σ of the stress to
the shear plane yz. It may be expressed as [27]

σαβ = nc〈f
c
αℓc

β〉, (1)

where nc is the number density of the contacts and the
average is taken over the contacts c with contact force
component f c

α and branch vector ℓc
β joining the centers

of contacting particles. Note that, the contribution of
particle velocity fluctuations (〈mvαvβ〉/V ) remains very
small compared to that of contact forces in all the simula-
tions considered here. According to the Mohr-Coulomb
model, the effective friction coefficient during shear is
given by µ ≃ q/p, where p = (σ1 + σ2)/2 is the mean
stress and q = (σ1 − σ2)/2 is the stress deviator, and σ1

and σ2 are the principal values on the shear plane [28].
Fig. 1 displays µ and ν obtained from our simula-

tions and a compilation of available published numerical
and experimental data from several authors for different
boundary conditions as a function of I [1–5, 29] [37]. We
see that our numerical data collapse well with all other
data. The effective friction coefficient increases and tends
to saturate with increasing I whereas the packing frac-
tion declines from 0.59 in the quasi-static state to 0.50
for our highest values of I. Note that 0.59 corresponds to
the density of a packing of frictional spheres under con-
tinuous quasi-static shearing, as also evidenced by exper-
iments [30].

Relying on our numerical data, we now focus on the
stress partition in connection with the effective friction.
Let us express the average in (1) as an integral:

σαβ = nc

∫ ∫ ∫
fαℓβ Pℓfn df dℓ dn, (2)

where Pℓfn is the joint probability density of forces and
branch vectors ℓ = ℓn projected on the shear plane. At
the lowest-order description of the microstructure, we ne-
glect the force-fabric correlations and split P as a prod-
uct Pℓfn = Pℓ(ℓ)Pf (f)Pn(n). Integration over f and ℓ

yields:

σαβ ≃ ncℓ0

∫
Ω

〈fα〉(n)nβPn(n)dn, (3)

where Ω is the angular domain of integration and 〈f〉(n)
is the average force as a function of n and 〈ℓ〉 = ℓ0.
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FIG. 1: (Color online) Effective friction coefficient (a) and
packing fraction (b) as a function of I . The data analyzed in
this paper are in blue triangles. The other data are extracted
from [1–5, 29]. The dashed line shows the fitting form µ =
µ0 + µ1−µ0

1+I0/I
introduced in [9, 10].

The contact force on the shear plane can be decom-
posed into its normal and tangential components 〈fn〉(n)
and 〈ft〉(n), and n is parametrized by its orientation
θ. The three functions P (θ), 〈fn〉(θ) and 〈ft〉(θ) are π-
periodic and, as shown in Fig.3, they can be well ap-
proximated by their lowest-order Fourier expansions [20–
23, 31]:

P (θ) ≃ 1/π{1 + ac cos 2(θ − θc)},

〈fn〉(θ) ≃ 〈fn〉{1 + an cos 2(θ − θn)},

〈ft〉(θ) ≃ −〈fn〉at sin(θ − θt), (4)

where ac, an, and at are anisotropy parameters, and
θc ≃ θn ≃ θt are the corresponding privileged directions
on the shear plane, and nearly coincide with the major
principal stress direction in the steady state. Now, in-
troducing Eqs. (4) in the integral (2), and neglecting the
cross products of the anisotropy parameters, one gets the
simple relation:

µ ≃
1

2
(ac + an + at). (5)

The predicted values of µ by this equation from the
anisotropy parameters are shown in Fig. 2 together with
those obtained from the stress tensor as a function of I.
We see that Eq. (5) approximates excellently the effec-
tive friction for all values of I. This result indicates also
that the expression (1) of the stress tensor holds correctly
for high inertia where impulsive forces prevail.

The evolution of the three anisotropies with I is plot-
ted in Fig.3. Interestingly, the normal force anisotropy
an decreases and tends to a constant value whereas the
friction force anisotropy slightly increases with I. At the
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FIG. 2: (Color Online) Effective friction coefficient µ (black
circles) together with its harmonic approximation (Eq.5) (red
squares) as a function of inertial number I .
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FIG. 3: (Color online) Evolution of anisotropy parameters as
a function of I in log-linear and linear representation. The
polar diagrams of Pn(θ) (black circle), 〈fn〉(θ) (red square)
and 〈ft〉(θ) (green triangle) are shown for I ∼ 0.1 together
with their fits (plain orange line) (Eq. 4).

same time, the contact anisotropy ac is a sharply increas-
ing and nonlinear function of I. This means that, since
by virtue of Eq. (5) the three anisotropies add up to build
the effective friction, the contact anisotropy is the princi-
pal microstructural cause of the increase of effective fric-
tion as a function of the inertial number. In general, ac

varies oppositely with the coordination number z, which
declines in our simulations from 4.5 to 1.1 as I varies
from 10−4 to 0.7. This is because the contact anisotropy
is mainly a consequence of the loss of contacts in the ex-
tension direction [32]. The normal force anisotropy an

reflects the force chains, which are increasingly destabi-
lized by particle inertia causing an to decrease. Hence,
the friction force anisotropy at, which reflects friction
mobilization (〈|ft|〉/〈fn〉 ∝ at), grows to re-stabilize the
force chains and thus take more actively part in force
transmission [23].

Since the contact anisotropy and coordination num-
ber seem to be sensibly important with respect to the
effective friction, we now turn to the connectivity of the
contact network in order to obtain morphological clues
to the evolution of the force network. The connectivity
can be described by the proportion Pk of force-bearing
particles having k ≥ 1 contacts and the proportion P0

of floating particles, i.e. not participating in the force
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FIG. 4: (Color online) Proportion of floating particles P0 and
the connectivity Pk of the particles (inset) as a function of I .
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FIG. 5: (Color online) Floating particle are in grey, non-
floating in violet for I ∼ 10−3(a), I ∼ 0.1(b), I ∼ 0.21(c)
and I ∼ 0.6(d). Black lines represents the connection be-
tween particles (i.e. the length of force chains).

network. Note that
∑

k≥1
Pk = 1 and

∑
k≥1

kPk = z.
Fig. 4 displays Pk for k = 1 to 8 and P0 as a function
of I. We observe several nontrivial topological transi-
tions. For I < 0.01, the effect of inertia leads to the re-
duction of highly-connected particles (k > 4) in favor of
low-connected particles (k < 4) while P4 remains nearly
constant. In this range, P0 ≃ 0.07. At higher values of
I, the force network is further destabilized and P4 be-
gins to decline whereas P3 keeps increasing up to a peak
value at I ≃ 0.1 beyond which P3 also begins to decline
whereas P2 continues to increase. The loss of particles
having 3 contacts is a dramatic change in the microstruc-
ture as multiple contacts may thereafter occur mainly in
the form of linear force chains without branching, as ob-
served in Fig. 6(d). P0 increases slightly in this range
from 0.07 to 0.2 but undergoes a sharp increase beyond
I ≃ 0.1. For I > 0.3, the flow is dominated by P2 and
P1 (corresponding to the collisions of floating particles).

The sharpt transition observed at I ≃ 0.1 for P0 coin-
cides with the slowing down of µ(I); see Fig. 1 on linear
scale. At the same time, the normal force anisotropy
ceases to decline and takes a constant value an ≃ 0.2; see
Fig. 3. The fact that beyond I ≃ 0.1 the force anisotropy
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FIG. 6: Mean size of critical floating clusters as a function
of I . The inset shows the statistical distributions of Ri for
several values of I .

does not follow the contact anisotropy indicates that the
force chain formation during flow is hindered by colli-
sions, and the contacts do not live long enough to sus-
tain percolating force chains. Indeed, at I ≃ 0.1 a frac-
tion P ∗

0 = 0.2 of particles is floating and this fraction of
particles disconnected from the force network is consis-
tent with the site percolation threshold of a hexagonal
compact packing [33]. This means that, beyond I ≃ 0.1,
the effect of inertia may be analyzed more sensitively in
terms of the evolution of floating particles rather than
connected chains, whose correlations have already been
a subject of several studies to characterize the transition
from inertial regime to quasi-static regime [13, 16].

The floating particles actually provide a complemen-
tary picture in terms of fluidized zones defined from the
neighborhoods of floating particles. For each floating par-
ticle i, let P i

0(I, R) be the proportion of floating particles
for a spherical volume of radius R centered on i. We
determine the size Ri of the fluidized zone by requiring
P i

0(I, Ri) = P ∗
0 . In words, this is the size of the spherical

volume in which the density of floating particles is equal
to the percolation threshold P ∗

0 . The distribution P (R)
of the sizes of fluidized zones for given value of I can be
evaluated from the set {Ri} and, their mean size Rmean is
determined by double averaging Ri over all floating par-
ticles and during shear. This construction is nearly dual
to the 2-point cluster function introduced by Torquato et
al. [34, 35].

Figure 5 shows four snapshots of floating particles for
different values of I. At low I the floating particles are

mostly isolated, but they tend to cluster into fluidized
zones as I increases. Fig. 6 displays the clustering length
Rmean as a function of I. The inset shows the statistical
distributions of Ri for several values of I. We see that
Rmean is nearly constant and equal to 2d for I < 0.1,
as expected for isolated floating particles. Thereafter,
Rmean grows rapidly with I and reaches the system size
for I ≃ 0.3. This evolution reflects the coalescence pro-
cess of fluidized zones and a transition to the collisional
regime at I ≃ 0.3 where P0 > 0.6. This process is also
clearly evidenced by the evolution of the size distribu-
tions of fluidized zones, which broaden as I increases up
to I ≃ 0.1. For I > 0.1, the distribution develops a
second peak for R equal to the system size whereas the
mean size of the fluidized zones continues to increase.

To summarize, in the range I < 0.1 the force
anisotropy reflects percolating force chains, which are
progressively destabilized by inertial effetcs with increas-
ing I. As a result, the force anisotropy declines towards a
residual constant value an ≃ 0.2 for I > 0.1. This resid-
ual force anisotropy is essentially induced by collisions
due to shearing, which begin to affect the microstructure
in the form of fluidized zones of increasing size that coa-
lesce at I = 0.3. Hence, in the whole range I > 0.1, the
microstructure may be described as composed of short-
lived and impulsive force chains embedded in a “soup” of
floating particles. The contact anisotropy grows due to
enduring force chains and by loss of contacts for I < 0.1
and due to both impulsive force chains and shear-induced
collisions of floating particles beyond I = 0.1. This geo-
metrical anisotropy provides the main additive contribu-
tion to the effective shear friction of the flow according to
Eq. (5). The transition to a fully collisional regime oc-
curs at I ≃ 0.3 where the whole system is in a fluidized
state. Let us also note that the value I = 0.3 may be
identified with the reference value I0 in the fitting form
introduced in [9, 10] and shown in Fig. 1.

The above picture reveals the highly nonlinear evolu-
tion of the microstructure with increasing inertial number
that we analyzed in terms of three anisotropy parameters,
which underly additively the effective friction. The dy-
namics of local structures may be further investigated by
considering in detail the contact lifetimes, the process of
contact gain and loss and the role of impulsive forces, as
discussed in [18, 19] regarding the jamming transition in
a suspension.
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[22] E. Azéma, F. Radjai, and G. Saussine, Mechanics of Ma-
terials 41, 721 (2009).
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[26] F. Radjäı and V. Richefeu, Mechanics of Materials 41,
715 (2009).

[27] J. J. Moreau, in Friction, Arching, Contact Dynamics,
edited by D. E. Wolf and P. Grassberger (World Scien-
tific, Singapore, 1997), pp. 233–247.

[28] B. Andreotti, Y. Forterre, and O. Pouliquen, Granular

Media: Between Fluid and Solid (Cambridge University
Press, 2013).
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