Influence of thermal fluctuations on the Nernst signal in superconducting (K,Ba)BiO3 single crystals

Thierry Klein, Z. Pribulova, Raoul Piquerel, Hervé Cercellier, Jacques Marcus, C. Marcenat

To cite this version:

Influence of thermal fluctuations on the Nernst signal in superconducting (K,Ba)BiO$_3$ single crystals

T. Klein,1,2 Z. Pribulova,1,3 R. Piquere,1 H. Cercellier,1,2 J. Marcus,1 and C. Marcenat4

1Institut Néel, CNRS, 25 rue des Martyrs, F-38042 Grenoble, France
2Université Joseph Fourier, B.P 53, F-38041 Grenoble, France
3Centre of Very Low Temperature Physics, Institute of Experimental Physics of the Slovak Academy of Sciences and FS UPJS, Watsonova 47, 040 01 Kosice, Slovakia
4SPSMS, UMR-E 9001, CEA-INAC/UJF-Grenoble 1, 17 rue des martyrs, F-38054 Grenoble, France

(Received 6 December 2010; published 17 March 2011)

We report on the Nernst effect, specific heat and transport measurements performed in high quality (K,Ba)BiO$_3$ single crystals close to optimal doping ($T_c\sim 31$ K). We show that a nonzero Nernst effect remains visible well above the upper critical field unambiguously deduced from the onset of the specific heat anomaly. This finite Nernst signal is attributed to fluctuations of the amplitude of the order parameter in a region where the free energy is smaller than $k_B T$. Despite the absence of any vortex liquid phase (and hence of any significant phase fluctuations), the field and temperature dependence of the Nernst coefficient is very similar to the one obtained in electron-doped cuprates.

DOI: 10.1103/PhysRevB.83.094524

I. INTRODUCTION

The discovery of an anomalously large Nernst signal above the critical temperature (T_c) in hole-doped cuprates$^{1-5}$ rapidly imposed this technique as a fundamental probe for the study of superconducting fluctuations in type II superconductors. As no qualitative difference could be observed between the low ($T < T_c$) and high ($T > T_c$) temperature regimes, this anomalous signal has been attributed to the existence of a vortex-like excitation (i.e., phase fluctuations) above the superconducting transition. This behavior supported the idea that T_c could correspond to the loss of long-range phase rigidity of Cooper pairs pre-existing in the so-called pseudogap state (see also Refs. 6–10 for theoretical developments on the Nernst effects in cuprates). Similarly, in the vicinity of a superconductor-insulator transition, the very low carrier density is also expected to give rise to strong phase fluctuations, accounting, for example, for the nonzero Nernst effect that has been observed above T_c in InO$_3$ (Ref. 11).

This scenario was further supported by experiments in electron-doped cuprates for which there is no evidence for any pseudogap and for which the Nernst signal vanishes at T_c. However, besides this fundamental difference, the field dependence of the Nernst effect for $T < T_c$ is very similar to the one observed in hole-doped samples. Indeed, in all systems the Nernst effect rapidly increases above the irreversibility line [for which the critical current vanishes], reaching a maximum for intermediate fields, and progressively decreases at high fields. This “tilted hill” profile has hence been attributed to the wandering of the vortex lines associated with the melting of the vortex solid and the upper critical field is defined as the field for which the Nernst effect is getting equal to zero.

To probe this scenario, we have performed specific heat, transport, and Nernst effect measurements in (K,Ba)BiO$_3$ single crystals. This system presents some similarities with cuprates since superconductivity12 is also obtained by doping of a nonconventional insulating phase resulting here from the charge ordering of bismuth.13 However, the description of its superconducting properties is easier. First, tunneling spectroscopy measurements reveal a classical BCS-type superconducting gap14 and no evidence for an unconventional coupling mechanism has been reported so far. Second, due to its cubic (i.e., isotropic) structure, this system is a powerful tool to investigate the influence of dimensionality on the superconducting properties (see, for instance, Refs. 15 and 16). Third, thermal fluctuations are more than two orders of magnitude smaller than in cuprates.

This latter point itself has several important consequences. First, no liquid phase can be observed in this system and phase fluctuations are hence irrelevant.17 The irrelevance of vortex line wandering has further been inferred from the functional dependence of the torque signal on temperature and field in heavy ion irradiated samples.16 Moreover, if strong fluctuations hinder any direct determination of the upper critical field (H_{c2}) in cuprates, (K,Ba)BiO$_3$ presents the great advantage of showing clear specific heat anomalies from which H_{c2} can be unambiguously deduced.18 It is hence possible to compare the field for which the Nernst signal vanishes to this H_{c2} line.

However, it is important to note that thermal fluctuations are not fully negligible in (K,Ba)BiO$_3$ and we have then shown19 that the (pinning dependent17) position of the H_{c2} line is obtained by assuming that the difference between the free energy densities in the normal and superconducting states [$\Delta F = F_N - F_S(H)$] becomes on the order of $k_B T / V_{coh}$ for $H > H_{c2}$:

$$\Delta F = (\mu_0 H_c^2 / 2)(1 - H_{c2} / H_{c2}^{MF})^2 \sim k_B T / V_{coh} \quad (1)$$

where V_{coh} is the correlation volume and H_{c2}^{MF} the mean field critical field. The upper critical field is hence shifted towards lower temperature. The amplitude of the order parameter is then small for $H_{c2}^{MF} > H > H_{c2}$ and fluctuations in this amplitude are expected to be important in this region. The main result of the present work is to show that a non zero Nernst signal remains visible well above the H_{c2} line and that this signal only vanishes for $H \rightarrow H_{c2}^{MF} (> H_{c2})$.

The measurements have been performed in a high quality (K, Ba) BiO₃ single crystal close to optimal doping (x ~ 0.35, Tc ~ 31 K). Those crystals display very sharp transitions in both transport and magnetic susceptibility (ΔTc < 0.2 K) as well as very well-defined specific heat anomalies [see Fig. 2(b) and Ref. 17]. The Nernst effect is the detection of a transverse voltage (Vx) when a heat gradient is applied along the x direction in the presence of a perpendicular magnetic field (Bz: eN = Ez/NT). Those measurements have been performed on a ~1 x 1 x 0.3 mm³ slice cut out of a single crystal. Three thermocouples have been placed on both ends and in the middle of the sample. A heat gradient of about 1 K was applied to the sample by heating up one edge of the slice. The reported temperature was measured at the center of the sample and we checked that the heat gradient was linear along the sample. The specific heat measurements were previously performed on single crystals from the same batch using an ac technique as described in Ref. 18 and the transport measurements were done using a standard four probe geometry.

Heat anomaly, and as shown in Fig. 2(b), the onset of eN lies close to this Cₚ midpoint. eN then rapidly increases above the irreversibility line following the R versus T curve [Fig. 2(a)]. Indeed, eN is related to the electrical (σij) and thermoelectrical (αij) components of the conductivity tensor through eN = [αxy,σxx - αxxσxy]/[σxx + σyy] and in the absence of significant Hall effect eN = ραxx. Neglecting the small change in αxy on the narrow temperature (or field) range of the transition, one therefore directly gets eN ∝ ρ in the close vicinity of the irreversibility line, in good agreement with the data. In the standard mean-field theory the Nernst effect is then expected to decrease linearly towards zero for H → Hz; 10, 21 eNMF ∝ ρ × [(H - Hz)²(T)]/(4κ²T). On the contrary, in (K, Ba) BiO₃ eN does not vanish for H = Hz but remains clearly finite for fields well above the onset of the specific heat anomaly [shaded areas in Fig. 2(b)].

FIG. 2. (a) Renormalized Nernst signal (Vx/ΔT, open circles) and resistivity (R, thick line) as a function of the temperature for the indicated values of the magnetic field in (K, Ba) BiO₃ single crystals. (b) Nernst signal (Vx/ΔT, open circles) and electronic contribution to the specific heat anomaly (ΔCp/T, closed circles) as a function of the temperature for the indicated values of the magnetic field. The shaded area indicates the region for which a nonzero Nernst effect is observed above the onset of the specific heat anomaly. The curves at 2 and 1 T have been shifted for clarity.

FIG. 1. Nernst signal (eN = Vx/ΔT) in the presence of a heat gradient (ΔT ~ 1 K) along the x direction a function of applied magnetic field (along the z direction) for the indicated temperatures in a (K, Ba) BiO₃ single crystal. Inset: Vx/ΔT as a function of the temperature for the indicated values of the field.

III. RESULTS AND DISCUSSION

As no Nernst effect is observed above Tc for H = 0, 20 the superconducting contribution to eN can be directly identified without any further treatment. As observed in cuprates, eN is very small at low field and low temperature (see Fig. 1) due to pinning hindering the vortex motion in the vortex solid state. In (K, Ba) BiO₃, the irreversibility line can be deduced from both R → 0 and from the onset of the diamagnetic response. This line lies close to the midpoint of the specific
By analogy to this standard mean field theory, we have reported in the inset of Fig. 4 (open symbols) both $e_N(T)$ and the value of $\rho \times (H - H_{c2}(T))/(4k_B^2T)$ [taking $\kappa \sim 100$ (Ref. 22)] where H_{c2} is now the upper critical field deduced from the C_p anomaly i.e. rescaled by the fluctuations. As shown, this simple formula reproduces very well quantitatively the experimental data for $T < T_{c2}(H)$ (a similar agreement is obtained for the other magnetic fields) but, in contrast to the simple mean field scenario, for $H \neq 0$, e_N remains finite for $T_{c2} < T < T_{c2}^{MF}$ [or equivalently for $H_{c2}(T) < H < H_{c2}^{MF}$] due to fluctuations in the amplitude of the order parameter in the region where $0 < \Delta F < k_BT/\Delta \gamma$. Note that, as discussed in (Ref. 19), the thermal fluctuations are also expected to lead to a small rescaling of the zero field T_c (typically on the order of 1 K). However as the maximum of the signal scales as $H^2/T)^{1/3}$ (see below) we were unable to probe this rescaling in our data for $H \rightarrow 0$.

The continuity of the Nernst signal through the H_{c2} line is further emphasized by the contour plots displayed in Fig. 3. We have reported on this H-T diagram, the lines corresponding to the onset (open circles) and end ($e_N < 1 \mu V/K$, open squares) of the Nernst effect, together with this thermodynamic H_{c2} line (closed squares). The gray scale corresponds to regions with successively higher values of e_N (contour plots). As shown, no peculiar feature is observed for e_N as H crosses the H_{c2} line. Note that the slope of the line corresponding to the end of the Nernst signal is on the order of 1.2 T/K being close to the value observed in heavily irradiated samples37 leading to $\mu_0 H_{c2}(0) \sim 0.7 \times 1.2 \times T_c \sim 26$ T in good agreement with the value deduced from magnetotransport data at low temperature23 ($H_{irr} \rightarrow H_{c2}$ for $T \rightarrow 0$).

In heavy ion irradiated samples, the torque signal presents a discontinuous jump (T_0) when the magnetic field is aligned with the amorphous tracks. In (K,Ba)BiO$_3$, Γ_0/T_B then scales as $|Q|^{1/2}$ (Ref. 16) where Q is the Lowest Landau Level (LLL) parameter: $[(H^{MF}_{c2}(T) - H)/(HT)^{2/3}] \times [(T_c^2/H^{MF}_{c2}(0)G_i)^{1/3}]$ with $Gi \equiv \frac{1}{2} [k_BT_c/\vartheta_0] \sim 3 \times 10^{-4}$ ($\vartheta_0 = (\Phi_0/4\pi \lambda)^2$ being the vortex line energy, λ the penetration depth and ξ the coherence length38). To check the validity of this LLL scaling on the Nernst signal, we have plotted in Fig. 4 $e_N \times (T/H^3)^{1/3}$ as a function of Q where Q has been calculated assuming that H^{MF}_{c2} lies close the end point of the Nernst effect (thin solid line in Fig. 3).

As shown in Fig. 4, this scaling is very well obeyed for fields smaller than ~ 3 T and/or temperature larger than ~ 24 K. All the characteristic lines are then defined by specific values of $Q(T,H)$. As pointed out by van der Beek et al.,16 Eq. (1), which defines H_{c2}, is equivalent to $Q = -[4\pi \sqrt{2}]^{2/3} \sim 7$ if one assumes that $V \sim a^2\xi_0$, d_0 being the intervortex spacing. We here obtain that the onset of the C_p lies close to $Q = -8$, in good agreement with this estimation. Similarly, one can assert25 that the irreversibility line in disordered systems is also given by some peculiar value of $Q(T,H)$. As shown in Fig. 4, the onset of the Nernst signal at the irreversibility line here corresponds to $C \sim -13$ (as a comparison, $|C|$ values on the order of $11-15$ have been recently inferred for the irreversibility line in iron pnictides35). The scaling fails at high field/low temperature, but this decrease in the amplitude is probably related to the broadening of the resistive transition (i.e., $\rho \propto \rho_0^2$).
IV. SUMMARY AND CONCLUSIONS

We therefore obtain the following scenario: The H_{c2} line in the (K,Ba)BiO$_3$ system is shifted toward lower temperatures due to [small but not negligible] thermal fluctuations. In a LLL scaling scenario this line is then defined by $Q \sim -8$ corresponding to the line for which the condensation energy becomes on the order of $k_BT/\alpha_0^2\xi$. A peak of the Nernst effect is observed in the vicinity of this rescaled H_{c2} line, but ϵ_N remains finite up to H_{c2}^{MF}. Finally we would like to emphasize the similarity between the temperature and field dependence of the Nernst signal observed here and the one previously obtained in electron doped cuprates. Indeed, despite the irrelevance of vortex wandering in our system, the field (and/or temperature) dependence of ϵ_N has the characteristic “tilted-hill” profile previously observed in cuprates (see Fig. 1 (present work) and Fig. 27 in Ref. 3). Moreover the similarity in the contour plots of those two systems is striking (see Fig. 3 (present work) and Fig. 28 in Ref. 3) and it would hence be interesting to test this scenario in electron doped cuprates.

20Despite the proximity of a metal insulator transition, the ϵ_N/TB value can be estimated to be lower than 210^{-2} nV/TK~2 [following K. Behnia, M. A. Measson, and Y. Kopelevich, Phys. Rev. Lett. 98, 076603 (2007)].
24Note that this number quantifies the strength of thermal fluctuations and is on the order of $\sim 4 \times 10^{-7}$ in YBaCuO.
26Following, $\alpha_{xy} \propto [T/H^2]^{1/3}$ is expected to scale with Q and we have here assumed that $\epsilon_N = \rho_0\alpha_{xy}$ as ρ is close to its normal state value above the peak of the Nernst coefficient.