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Interpolated pressure laws in two-fluid

simulations and hyperbolicity

Philippe HELLUY and Jonathan JUNG

Abstract We consider a two-fluid compressible flow. Each fluid obeys a stiffened

gas pressure law. The continuous model is well defined without considering mixture

regions. However, for numerical applications it is often necessary to consider artifi-

cial mixtures, because the two-fluid interface is diffused by the numerical scheme.

We show that classic pressure law interpolations lead to a non-convex hyperbolicity

domain and failure of well-known numerical schemes. We propose a physically re-

levant pressure law interpolation construction and show that it leads to a necessary

modification of the pure phase pressure laws. We also propose a numerical scheme

that permits to approximate the stiffened gas model without artificial mixture.

Introduction

The numerical simulation of compressible two-fluid flows with Eulerian finite vol-

ume approximation has been widely studied. We refer for instance to [20, 17, 22]

and included references. The Eulerian approach is very appealing compared to La-

grangian front tracking methods because it generally leads to much simpler algo-

rithms. However, one has to circumvent the pressure oscillations that appear at the

two-fluid interface with standard conservative schemes. The lack of accuracy of the

Godunov scheme at contact waves is a well-known issue. It is not only observed in

two-fluid simulations but also in one-fluid simulations when the single fluid satisfies

a complex pressure law [8].

Another less known aspect of classic two-fluid models is that their hyperboli-

city domain is generally not convex. Thus in some cases, the Godunov scheme is

unstable and fails after only one time iteration.
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In this paper we consider the flow of a gas and a liquid modeled by two stiffened

gas equations of state. The pressure law is initially only defined in the pure phases:

the mass fraction of gas ϕ can take only two values ϕ = 0 or ϕ = 1.

For numerical reasons, the pressure law is often interpolated in an artificial mix-

ture region 0 < ϕ < 1. We show that a naive numerical interpolation always leads

to the non-convexity of the hyperbolicity domain and thus to the instability of the

Godunov scheme.

We then propose two alternative cures to this issue:

1. The construction of a mixture pressure law based on physical and thermodynam-

ical arguments. We are then able to recover a convex hyperbolicity domain. But

we also prove that it is necessary to modify the pressure law of the liquid phase,

which cannot be a simple stiffened gas anymore.

2. For keeping the simplicity of the stiffened gas model, we propose another

scheme, the Random Interface Solver (RIS) [16]. This scheme does not diffuse

the mass fraction profile and allows stable computations of the two-fluid model.

Finally we present some two-dimensional numerical results obtained with the RIS

scheme.

1 Two-fluid flows and Godunov scheme

We consider a two-fluid model (air and liquid water) written as a first order system

of conservation laws

∂tW +∂xF(W ) = 0. (1)

The space variable is x. The time variable is t. We use the notations ∂t = ∂/∂ t,

∂x = ∂/∂x. The conservative unknowns (x, t)→W (x, t) are

W = (ρ,ρu,ρe,ρϕ)T , (2)

with the density ρ, velocity u, total energy e and mass fraction of gas ϕ . The total

energy e is related to the internal energy ε by

e = ε +
1

2
u2. (3)

The flux of the conservative system is given by

F(W ) = (ρu,ρu2 + p,(ρe+ p)u,ρϕu)T . (4)

The pressure law is of the form

p = P(ρ,ε,ϕ). (5)

If at the initial time t = 0 the mass fraction ϕ takes only two values 0 (pure liquid

phase) and 1 (pure gas phase) then it is also true at any later time. This property
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implies that theoretically it is only necessary to provide the pressure laws P(ρ,ε,0)
for the liquid and P(ρ,ε,1) for the gas. A classic choice is the stiffened gas pressure

law

P(ρ,ε,ϕ) = (γ(ϕ)−1)ρε − γ(ϕ)π(ϕ), (6)

γ(1) = γ1 > 1, π(1) = π1 = 0, γ(0) = γ2 > 1, π(0) = π2 > 0. (7)

The constants γ1, γ2 and π2 are obtained from physical measurements. For instance,

for air and water, we can take [1]

γ1 = 1.4, γ2 = 3, π2 = 8533×105 Pa.

In the following, we consider the properties of system (1)-(6). In short, we call it

the two-fluid model.

In practice, it is difficult to impose ϕ = 0 or ϕ = 1 in the numerical approxi-

mation. A widely used possibility (see for instance [2, 11, 17, 21, 20, 22]) is to

interpolate the pressure laws parameter γ(ϕ) and π(ϕ) for ϕ ∈]0,1[.
For the stiffened gas pressure law, the sound speed is given by

c =

√

γ(ϕ)(p+π(ϕ))

ρ
,

we thus obtain that the system (1)-(6) is hyperbolic if W is in the hyperbolicity

domain

Ω = {(ρ,ρu,ρe,ρϕ),ρ ≥ 0,ϕ ∈ [0,1], p+π(ϕ)≥ 0.}
The Riemann problem for the two-fluid system consists in solving the following

initial value problem

∂tW +∂xF(W ) = 0,

W (x,0) =

{

WL if x < 0,
WR otherwise.

The left and right constant states WL, WR are taken into the hyperbolicity domain Ω .

The solution is self-similar, denoted by

R(WL,WR,
x

t
) =W (x, t).

It is made of shock waves, rarefaction waves and contact waves, separated by con-

stant states. It is well known that the solution of the Riemann problem is generally

not unique. In order to reduce the set of solutions, we can for instance consider only

shock waves that satisfy the Lax characteristic criterion. Below, we will also discuss

the Lax entropy criterion.

An essential feature of the two-fluid system is that the Riemann problem admits

a unique global solution that satisfies the Lax characteristic criterion whenever the

left and right initial states are in the hyperbolicity domain Ω . This global solution

is constructed from standard wave parameterization [18]. It is sometimes necessary
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to introduce vacuum state in the gas phase (see [2] for details). The solution is not

only theoretical. It can also be computed almost analytically in an efficient way.

The Riemann problem being uniquely solvable, it is then tempting to apply the

Godunov scheme to the two-fluid model with arbitrary initial data.

We consider a sequence of time tn, n∈N such that the time step τn = tn+1−tn > 0.

We consider also a space step h. We define the cell centers by xi = ih. The cell Ci is

the interval ]xi−1/2,xi+1/2[. We consider an approximation

W n
i ≃ 1

h

∫

x∈Ci

W (x, tn)dx.

A time step of the Godunov scheme is made of two stages:

• Step1: Exact resolution starting from approximated cell averages

∂tV +∂xF(V ) = 0,

V (x,0) =W n
i , x ∈Ci.

• Step 2: Averaging of the exact solution

W n+1
i =

1

h

∫

Ci

V (x,τn)dx. (8)

The time marching scheme also admits a finite volume formulation

W n+1
i =W n

i − h

τn

(

Fn
i+1/2 −Fn

i−1/2

)

.

The numerical fluxes are computed from exact solutions of the Riemann problem

Fn
i+1/2 = F(R(W n

i ,W
n
i+1,0)).

The time step satisfies a CFL condition

τn ≤
h

2λ max
n

,

where λ max
n is an upper bound of all the wave speeds in the solutions of the interface

Riemann problems at time tn.

In our application, Step 1 of the Godunov scheme is not a problem if all the W n
i

are in Ω because the Riemann problem admits a unique physically relevant solution

W (x, t) ∈ Ω . Surprisingly, Step 2 is much more problematic when π1 6= π2, because

of the following result [16]:

Theorem 1. Consider the two-fluid system (1)-(6) and suppose a continuous inter-

polation of the pressure law parameters ϕ → γ(ϕ), ϕ → π(ϕ) for ϕ ∈ [0,1] satis-

fying (7). Then, the hyperbolicity set Ω is never convex.
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The non-convexity of Ω is a big issue, because even if we have V (x,τn) ∈ Ω
in the averaging formula (8), we cannot conclude that W n+1

i ∈ Ω . In practice it is

possible to construct initial data for which the Godunov scheme fails after only one

iteration [21, 16]. In conclusion, the Godunov scheme applied to the two-fluid model

with π1 6= π2 is generally unstable.

Remark 1. The numerical resolution of the two-fluid model with stiffened gas pres-

sure law has been extensively studied. When the two fluids are perfect gases (when

π1 = π2 = 0) the hyperbolicity set Ω is convex. In this case, the Godunov scheme

is stable. But it often gives very inaccurate results in contact waves. In the litera-

ture, this behavior is called the pressure oscillation phenomenon. Let us emphasize

that the instability of the Godunov scheme for π2 6= π1 and the pressure oscillations

in contact waves are two different and independent shortcomings of the Godunov

scheme applied to two-fluid flows.

Remark 2. A very popular method for avoiding pressure oscillations has been pro-

posed by Abgrall and Saurel in [22]. The method relies on a non-conservative nu-

merical resolution of the transport equation

∂tϕ +u∂xϕ = 0,

and a special interpolation of the pressure law coefficients γ(ϕ), π(ϕ) that ensures

that the pressure and the velocity remain numerically constant in contact waves.

Even if this trick improves the Godunov scheme accuracy, it does not improve the

stability. Indeed, it is possible to show that the hyperbolicity set, expressed in the

non conservative variables

Ω ′ = {(ρ,ρu,ρe,ϕ),ρ ≥ 0,ϕ ∈ [0,1], p+π(ϕ)≥ 0}

is also generally not convex. We can also exhibit physical initial state that leads to

the failure of the Abgrall-Saurel scheme after only one iteration [16].

Remark 3. A Lax entropy W → U(W ) ∈ R∪{+∞} is a strictly convex function of

W associated to an entropy flux W → G(W ) such that the smooth solutions of the

two-fluid model satisfy the additional conservation law

∂tU(W )+∂xG(W ) = 0.

If a system of conservation laws admits a Lax entropy, then from Mock’s theorem

[19], we know that the system is hyperbolic on the domain of U and thus

Ω=DomU =
{

W ∈ R
4,U(W )<+∞

}

.

Because the domain of a convex function is a convex set, we deduce that the two-

fluid model cannot possess a global Lax entropy.

In conclusion of this section, we have two alternatives for approximating the

two-fluid model in a robust and precise way:



6 Philippe HELLUY and Jonathan JUNG

1. We can abandon the stiffened gas pressure law (6) and construct another pressure

law that ensures the convexity of the hyperbolicity set.

2. If we keep the stiffened gas pressure law we have to construct a scheme that is

stable with respect to non-convex hyperbolicity set.

In Section 2, we investigate the first possibility, while in Section 3 we consider the

second.

2 Convex mixture

In this section, we consider a mixture of a perfect gas and a liquid satisfying the

stiffened gas pressure law. From physical entropy arguments, we construct a mixture

pressure law. This pressure law is naturally associated to a convex Lax entropy of the

two-fluid system. Mock’s theorem then ensures the convexity of the hyperbolicity

set. The construction is split into several steps.

2.1 Construction of an extensive mixture entropy

The pressure law is constructed as follows. First, we consider two fluids indexed

by i = 1 and i = 2 of mass Mi, energy Ei, occupying a volume Vi. We introduce

the specific heat χi of fluid i. Then, for Mi > 0, Vi > 0 and Ei > πiVi, the entropy

function of fluid i is

Si(Vi,Ei,Mi) =−χiγiMi lnMi +χi(γi −1)Mi lnVi +χiMi ln(Ei −πiVi). (9)

For completely rigorous proofs, we have to define the entropies for all (Vi,Ei,Mi) ∈
R

3. We thus also set

Si(Vi,Ei,0) = 0, Vi ≥ 0, Ei ≥ πiVi, (10)

and

Si(Vi,Ei,0) =−∞ (11)

in all the other cases. With this definition, Si are concave upper semicontinous (in

short: usc) functions and

DomSi = {(Vi,Ei,Mi),Vi > 0,Ei > πiVi,Mi > 0}
∪{(Vi,Ei,0),Vi ≥ 0,Ei ≥ πiVi} . (12)

DomSi are convex cones. In addition, the entropies Si are Positively Homegeneous

function of degree 1 (in short PH1)

∀λ ≥ 0,∀W ∈ R
3,S(λW ) = λS(W ).
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We then define the entropy of the immiscible mixture by

S(V,E,M,M1) = sup
V1,E1

(S1(V1,E1,M1)+S2(V −V1,E −E1,M−M1)) . (13)

This formula is physically justified by the fact that the entropy is an additive quan-

tity and by the second principle of thermodynamics: the mixture of the two flu-

ids evolves until it reaches a maximum of entropy. For more details, we refer to

[1, 15, 14, 16] and included references. Let us also observe that we do not optimize

the mixture entropy with respect to M1 because we do not consider phase transition

between the liquid and the gas.

From standard convex analysis, it is possible to prove the following result [16]:

Theorem 2. Let S be defined by (13), where S1 and S2 satisfy (9)-(11). Then S is a

PH1 concave and usc function. Its domain is a convex cone given by

DomS = {(V,E,M,M1),V > 0,E > 0,M ≥ M1 ≥ 0}
∪{(V,E,0,0),V ≥ 0,E ≥ 0} . (14)

2.2 Intensive mixture entropy and pressure law

From the extensive PH1 entropy, we can go back to intensive variables. We have the

following relations

ρ =
M

V
,τ =

1

ρ
=

V

M
,ε =

E

M
,ϕ =

M1

M
,s =

S

M
,σ =

S

V
.

We then define the intensive specific entropy

s(τ,ε,ϕ) = S(τ,ε,1,ϕ).

From Theorem 2, the specific entropy is a concave function. We define the pressure

p, temperature T and chemical potential λ of the mixture by

T =
1

∂ε s
, p = T ∂τ s, λ = T ∂ϕ s, (15)

in such a way that

T ds = dε + pdτ +λdϕ.

We can also consider the volumic entropy

σ(ρ,ρε,ρϕ) = S(1,ρε,ρ,ρϕ) = ρs(
1

ρ
,

ρε

ρ
,

ρϕ

ρ
).

In the same way, the volumic entropy is a concave function of (ρ,ρε,ρϕ).
It is then standard [10, 12, 16] to deduce that the quantity
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U(W ) =−σ(ρ,ρε,ρϕ), with W = (ρ,ρu,ρε +1/2ρu2,ρϕ)T ,

is a convex Lax entropy associated to the entropy flux

G(W ) = uU(W ).

Our whole construction ensures that the two-fluid system with the pressure law

given by (15) is necessarily hyperbolic on a convex domain and that this convex

domain is simply the domain of the Lax entropy U .

2.3 Explicit pressure law

It is interesting to perform the full computations in order to see how the resulting

pressure P(ρ,ε,ϕ) is different from the interpolated pressure law (6). The compu-

tations are not very difficult but a little bit lengthy. They are rigorously detailed in

[16].

We give the final result. Let us just mention that the same formula can be obtained

by formally assuming pressure and temperature equilibrium between the two phases

p1 = p1, T1 = T2.

The temperatures T1 and T2 of the two stiffened gases are given by the relation

χiTi = 1/∂εi
si(τi,εi) = εi −πiτi.

Of course, such equilibrium assumption has no meaning when ϕ = 0 or ϕ = 1 be-

cause in this case only one phase is present in the mixture. The entropy optimization

procedure is more rigorous and allows handling the cases ϕ = 0 or ϕ = 1.

We take a density ρ > 0, an internal energy ε > 0. We define the heat capacity of

the mixture by

χ = χ(ϕ) = χ1ϕ +(1−ϕ)χ2.

We also define the energy fraction of the mixture by

ζ = ζ (ϕ) =
χ1ϕ

χ
.

The mixture polytropic parameter is then

γ = γ(ϕ) = ζ γ1 +(1−ζ )γ2.

We also consider the following quantities

δ =−γ2π2, r = (δ +(γ −1)ρe)2 −4δ (γ1 −1)ζ ρe > 0.

The volume fraction of gas is then given by
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α = α(ϕ) =
δ +(γ −1)ρe−√

r

2δ
.

1. If 0 < ϕ < 1 then

P(ρ,ε,ϕ) = (γ −1)ρε − γ(1−α)π2.

2. If ϕ = 1 then

P(ρ,ε,ϕ) = (γ1 −1)ρε.

3. If ϕ = 0 then

P(ρ,ε,0) = max(0,(γ2 −1)ρε − γ2π2). (16)

The main result of this analysis is that even if the mass of gas vanishes (ϕ = 0) the

remaining liquid does not always obey a pure stiffened gas law. When the energy is

small enough, the liquid pressure vanishes. Intuitively, this means that the liquid un-

dergoes a cavitation phenomenon. The liquid pressure cannot be negative anymore,

while it was possible in the pressure law (6).

The pressure law obtained with the entropy optimization procedure ensures a

convex hyperbolicity domain. It thus ensures the stability of the Godunov scheme.

However, the pressure law is more complex than the stiffened gas law. For instance,

in a pure liquid region, the two-fluid model can degenerate to a pressureless Euler

system. This system is known to lead to theoretical and numerical difficulties. In

addition, we have verified in numerical experiments that the pressure oscillation

phenomenon is still present at contact waves. Therefore, we will also propose in the

next section a practical numerical method for solving directly the two-fluid model

with a non-convex hyperbolicity domain.

3 A new Random Interface Solver

In this section, we return to the simple stiffened gas pressure law (6). We define the

hyperbolicity sets in the pure phases

Ω0 = Ω ∩{ϕ = 0}, Ω1 = Ω ∩{ϕ = 1}.

These two sets are convex. We consider a numerical initial condition in the pure

phases

∀i,W 0
i ∈ Ω0 ∪Ω1.

We show how to construct a scheme, the Random Interface Solver (RIS) that satis-

fies the stability condition

∀i,∀n ≥ 0, W n
i ∈ Ω0 ∪Ω1. (17)

From the literature and the considerations above we know two things:

1. The new scheme cannot be exactly conservative at each time step;
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2. If we average the mass fraction on the cells of the initial mesh, we will introduce

a numerical diffusion and certainly pressure oscillations at the interface.

In order to avoid these two pitfalls we will

1. use a random sampling strategy at the interface. It allows avoiding the diffusion

of the mass fraction profile. It is not perfectly conservative, but we can prove that

it is statistically conservative on long times;

2. before the random sampling, we use a Lagrangian conservative finite volume

scheme at the interface. In this Lagrangian step, the mass fraction is not diffused

either.

We now enter into the details of the RIS scheme. Each time step of the scheme

is made of two stages: an Arbitrary Lagrangian Eulerian (ALE) step and a Pro-

jection step. The idea to combine the Glimm’s scheme approach [9] and a La-

grangian scheme approach was first proposed by Chalons and Goatin in [5]. See

also [3, 4, 13].

3.1 ALE stage

In the first stage, we allow the cell boundary xi+1/2 to move at velocity ξ n
i+1/2

. At

the end of the first stage, the cell boundary is

x
n+1,−
i+1/2 = xi+1/2 + τnξ n

i+1/2.

Integrating the conservation law (1) on the moving cells, we obtain the following

finite volume approximation

h
n+1,−
i W

n+1,−
i −hW n

i + τn(F
n
i+1/2 −Fn

i−1/2) = 0.

The new size of cell i is given by

h
n+1,−
i = x

n+1,−
i+1/2 − x

n+1,−
i-1/2 = h+ τn(ξ

n
i+1/2 −ξ n

i−1/2).

The numerical flux is now of the ALE form

Fn
i+1/2 = F(W n

i+1/2)−ξ n
i+1/2W n

i+1/2.

The intermediate state W n
i+1/2

is obtained by the resolution of a Riemann problem

W n
i+1/2 = R(W n

i ,W
n
i+1,ξ

n
i+1/2).

In practice, R can also be an approximate Riemann solver [16].

Finally, the interface velocity is defined by

ξ n
i+1/2 =

{

un
i+1/2

if (ϕn
i −1/2)(ϕn

i+1 −1/2)< 0,

0 else.
(18)
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The numerical flux is thus a classic Godunov flux in the pure fluid. It is a Lagrangian

numerical flux at the two-fluid interface.

3.2 Projection step

The second stage of the time step is needed for returning to the initial mesh. We have

to compute on the cells Ci of the initial mesh the averages of W
n+1,−
i , defined on

the moved cells C
n+1,−
i =]xn+1,−

i−1/2
,xn+1,−

i+1/2
[. Instead of a standard integral averaging

method, we rather consider a random sampling averaging process. We consider a

pseudo random sequence ωn ∈ [0,1[ and we perform the following sampling

W n+1
i =















W
n+1,−
i−1 , if ωn <

ξ n
i−1/2

τn

h
,

W
n+1,−
i , if

ξ n
i−1/2

τn

h
≤ ωn ≤ 1+

ξ n
i+1/2

τn

h
,

W
n+1,−
i+1 , if ωn > 1+

ξ n
i+1/2

τn

h
.

(19)

A good choice for the pseudo-random sequence ωn is the (k1,k2) van der Corput

sequence. In practice, we consider the (5,3) van der Corput sequence.

The resulting scheme has the following properties [16]:

• it is stable in the sense of (17);

• it is conservative in a statistical sense;

• it is entropy dissipative in a statistical sense;

• it does not produce spurious oscillations at the two-fluid interface.

4 Numerical results

We can extend the scheme to higher dimensions with dimensional splitting (for more

details we refer to [13]). It is remarkable that the same random number can be used

for one time step in the x and y directions. It is also remarkable that despite dimen-

sional splitting, the two-dimensional scheme converges towards the right solution

without oscillation. Indeed, since the work of Colella [6], it was generally admitted

that applying the dimensional splitting procedure to the Glimm’s scheme leads to

poor numerical results.

We present in Figure 1 the results of a two-dimensional shock-droplet simula-

tion. The initial droplet is a disk. A shock-wave coming from the right of the com-

putational domain interacts with the droplet. The computations have been realized

thanks to an OpenCL/MPI implementation of the two-dimensional RIS scheme. For

this test case, we use a cluster of four AMD Radeon HD 7970 GPU. The detailed

description of the test case is given in [13]. We display the droplet after the interac-

tion. We observe that we are able to capture a sharp interface. The numerical noise
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is moderate, despite the random nature of the scheme. Because we use a very fine

mesh with 20,000× 5,000 cells, we are able to zoom on small Kelvin-Helmholtz

vortices (see Figures 2 and 3).

Fig. 1 Shock-droplet simulation. Density plot. Full view of the computational domain.

Fig. 2 Shock-droplet simulation. Density plot. Zoom on the droplet.



Interpolated pressure laws in two-fluid simulations and hyperbolicity 13

Fig. 3 Shock-droplet simulation. Density plot. Second zoom on the droplet.

We present in Figure 4 the results of a two-dimensional shock-bubble simulation.

The initial bubble is a disk. A shock wave coming from the left of the computational

domain interacts with the bubble. We display the bubble after that it has been split

by the shock wave. The computations have been realized thanks to an OpenCL/MPI

implementation of the two-dimensional RIS scheme. For this test case, we use a

cluster of ten NVIDIA K20 GPU. The detailed description of the test case is given

in [13]. We use a very fine mesh with 40,000×20,000 cells. As in the previous test

case, we can zoom in order to observe small details of the split region (see Figures

5 and 6).

5 Conclusion

We have shown that a widely used two-fluid liquid-gas model has a non-convex

hyperbolicity domain. This non-convexity can lead to the failure of the Godunov

scheme after only one time step. This is true even if the continuous model admits a

perfectly well defined solution that satisfies the Lax characteristic criterion.
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Fig. 4 Shock-bubble simulation. Density plot.

We have proposed a modified equation of state for recovering a convex hyperbo-

licity domain. The resulting pressure law is more complicated and is not a stiffened

gas equation of state anymore in the pure liquid, when the gas mass fraction ϕ = 0.

For keeping the simplicity of the stiffened gas equation, we have thus constructed

a finite volume scheme, the RIS scheme, which avoids the numerical diffusion of

the mass fraction. The RIS scheme is based on a Lagrangian finite volume approach

coupled with a random sampling at the interface.

Let us conclude that the construction of a conservative finite volume scheme

that would give accurate results at contact waves for one-fluid or two-fluid general

pressure laws is still an open question.
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