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A Geometrical Setting for the Newtonian 
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Pearlstone Center for Aeronautical Engineering Studies, Department of Mechanical 
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and AMIT AILON 

Department of Electric and Computer Engineering, Ben Gurion University, Beer 
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ABSTRACT: A geometrical setting for the Newtonian mechanics of mechanical manipulators 
is presented. The configuration space of the mechanical system is modelled by a differentiable 
manifold. The kinematics of the system is formulated on the tangent and double tangent 
bundles of the corifiguration space, and forces are defined as elements of the cotangent bundle. 
The dynamical properties of the system are introduced by specifying a Riemannian metric on 
the configuration space. The metric is used in order to generate the generalized momenta and 
the kinetic energy from the generalized velocities, and the connection it induces makes it 
possible to formulate a generalization of Newton's second law relating generalized forces and 
generalized accelerations. 

I. Introduction , 
Local properties of mechanical systems such as the equations of motion can be 

described by the classical treatment of mechanics. However, these formulations 
cannot provide a framework for the discussion of global questions such as the 
existence and uniqueness of the solutions of the equations of motion. While the 
classical control theory deals with differential equations in Rn, the motion of a 
mechanical system takes place (in the holonomic case) on differentiable manifolds. 

Comprehensive formulations of Lagrangian and Hamiltonian mechanics on 
differentiable manifolds have been available for several years, see, for example (1, 
2). These general formulations, which are based on the notion of a symplectic 
manifold, cannot be utilized directly in engineering applications because, as their 
names indicate, they assume that the motion is given in terms of a Lagrangian 
function or a Hamiltonian function, and the Newtonian notion of a force is missing. 

In this paper, we present a global geometrical formulation of the dynamics of 
multi-degrees of freedom mechanical systems which incorporates the notion of a 
force. Such a formulation is suitable for the analysis of the dynamics of robots where 
(generalized) forces serve as control parameters. In the suggested formulation the 
equations of motion are written directly on the basis of a generalized invariant 
version of Newton's second law. For the sake of completeness and easy reference, 
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we present in an informal manner all the necessary mathematical terms and we 
define all the mathematical notions in the context of mechanics. 

Section II introduces the notion of a differentiable manifold as the configuration 
space of a mechanical system and Section III introduces the tangent bundle and 
the double tangent bundle through the notions of motion and generalized velocity. 
Section IV introduces the cotangent bundle of the configuration space and presents 
the statics of a mechanical system as an example. In Section V we introduce the 
Riemannian metric (kinetic energy), and the structure it induces on the con­
figuration space. In Section VI we use the structure provided by the kinetic energy in 
order to relate the forces and accelerations by the equation of motion. Geometrical 
results concerning the case of a free motion of the system are stated in Section VII. 
It turns out that these results allow us to write the equations of motion in an 
uncoupled linearized form if the gravity forces are neglected. 

II. The Configuration Space 

The basic notion of any analytical study of a mechanical system is the con­
figuration space. The configuration space of a mechanical system is the collection 
of all possible configurations or states of the system. Clearly, the configuration 
space describes the kinematical properties of the mechanical system completely. 
The configuration spaces of mechanical systems which are composed of material 
particles and rigid bodies can be associated with geometric objects. For example, 
the configuration space of the double planar pendulum can be identified with the 
surface of a torus. Given a mechanical system, we denote its configuration space 
byQ. 

In order to a~ply mathematical analysis to the configuration space, generalized 
coordinates are introduced. The number of generalized coordinates needed to 
specify any configuration is the number of degrees of freedom of the system. The 
following assumptions allow us to assign coordinates to the various configurations 
in a meaningful way 

(i) We assume that for every configuration q 0 in Q there exists a collection of 
neighboring configurations U and a function cp that assigns to any con­
figuration q in U an ntuple of real numbers cp(q) = (ql(q), q2(q), ... , qn(q)), 
such that the image of cp is an open subset of Rn, and if q and q' are two 
distinct configurations in U, then cp(q) =1= cp(q'). 

The subset U is called a coordinate neighborhood and we say that cp is a 
chart on U and that qi(q), i = I, ... , n, are the coordinates of q under cp. 

(ii) It might happen that two coordinate neighborhoods U and U' with charts cp 
and cp' intersect and we can have the transformation of coordinates cp' ocp-I 

on cp(U n U'), which gives the coordinates qi'in the chart cp' in terms of the 
coordinates qi in the chart cp in the form of n functions qi' = {(qi). We 
assume that both cp' 0 cp - I and its inverse transformation can be continuously 
differentiated as many times as we wish and it follows that the matrix oqi'joqi 
is nowhere singular. 

The collection of coordinate neighborhoods and the charts defined on them are 
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called an atlas on Q. Together with such an atlas Q has the geomctric sti-ucture of 
an n-dimensional differentiable manifold. It can be shown that the coordinate 
neighborhoods form a basis for a topology on Q. It can also be shown that if Q is 
compact in that topology it cannot be covered by a single coordinate neighborhood 
and it follows that the torus and the sphere, for example, cannot be covered by a single coordinate neighborhood. 

Let h: Q -+ Q' be a continuous mapping from a manifold Q into a manifold Q'. Then, by the definition of the topology on a manifold, for every coordinate 
neighborhood Von Q', there exists a coordinate neighborhood U on Q such that 
h( U) c V. However, denoting the charts on the two coordinate neighborhoods by 
<p and t/J, the unique relation between points on manifolds and their coordinates 
implies that the mapping t/Joho<p- 1 associates the coordinates si of h(q) with the 
coordinates qi of any point q in U, in the form sf = sf(qi). The mapping t/Joho<p-I 
is called a local representative of h. We say that a mapping h: Q -+ Q' is differentiable 
if every local representative of h is differentiable. Seemingly, this definition depends 
on the charts used to construct the local representatives. However, the differ­
entiability of the coordinate transformations guarantees that if a local rep­
resentative of a mapping with respect to some charts on Q and Q' is differentiable, 
then, any other local representative of h with the same domain on Q will be 
differentiable so that the notion of differentiability is well defined. 

III. The Tangent Bundle 

By a motion of the mechanical system having a configuration space Q, we mean 
a differentiable mapping m: R -+ Q, where R is the time axis. Mathematically., such 
a motion is called a curve iJil Q. Let q be a configuration of the mechanical system 
and let m and m' be two curves such that m(O) = m'(O) = q. If <p is a chart in 
some neighborhood of q then the two motions induce the motions <pom = (ql(t), . .. , 
qn(t)) and <pom' = (ql'(t), . .. , if'(t)) in a neighborhood of <p(q) in Rn. We say that m 
and m' are tangent at q if d/dt (<pom) 11= 0 = d/dt (<pom') 11= 0, i.e. their representatives are tangent in Rn at the coordinates of q. Again, it can be shown that if two motions 
are tangent when we use the chart <p they are tangent with respect to any other 
chart. 

Let v denote a class of all motions that are tangent to a certain motion m at q. 
We call v a tangent vector at q or a generalized velocity at q and we say that m or 
any other motion in v represents v. The tangent space to Q at q is the set of all 
velocities at q and it is denoted by TqQ. 

We show now that TqQ has the structure of a vector space. Let v and u be two 
velocities at Q, let <p be a chart in a neighborhood of q and let m and m' be 
motions representing v and u. Then, for a and b in R, we define av + bu to be 
the tangent vector whose representing motion is <p-I(<p(q)+t(av+bu)), where 
V= d/dt(<p0m)lt=o, u = d/dt (<pom') It=o, i.e. Vi = d/dt(qi(t))lt=o, d = d/dt ({(t)) It=o. One can easily verify that this definition satisfies all the axioms of a vector space 
and that it is independent of the chart <po 

The tangent bundle to the configuration space is defined as TQ = UqeQTqQ. The 
tangent bundle projection 't"Q: TQ -+ Q is the mapping which assigns to every tangent 
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vector v the configuration q where it is tangent. the tangent -bundle TQ can be 
given the structure of a differentiable manifold in the following way. Given any 
tangent vector v, let cp be a chart in a neighborhood U Qf q = LQ(V). We can define 
the chart <1>: LQ I (U) -+ Rn x Rn by 

<I>(v) = (cp(q),d/dt(cpom)/t=o) = (ql, ... ,qn,d/dt(ql(t)), ... ,d/dt(qnct)))/t=o, 

where m is any motion representing v and qi(t) are the components of cpom. This 
chart on TQ induced by the chart cp on Q is called the natural chart and it clearly 
satisfies the first axiom of manifolds. In addition, by the definition of the linear 
structure on TqQ, <l>q: TqQ -+ Rn is an isomorphism of vector spaces. Assuming that 
cp' is another chart in a neighborhood of q and that <1>' is the chart it induces on 
the tangent bundle, we relate the coordinates (l, vi) of v with respect to <I> with the 
coordinates (l', 1/) of v with respect to <1>'. Let qi(t) be the components of cpom, 
then, by definition, qi = qi(O), vi = d/dt (qi(t)) / t= o. The components of cp' am will be 
{(t) = qi'(qi(t)), and using the chain rule and the summation convention, the 
coordinates of v will be 

Hence, denoting the partial differentiation O{/oqi by q:;, we have vi' = q:;vi and we 
note that q:; is a vector space isomorphism. 

Given a differentiable mapping h: Q -+ Q' there is an induced mapping Th: 
TQ -+ TQ' which is defined as follows. Let v be any tangent vector, let LQ(V) = q 
and let m be a motion representing v. Then, we define Th(v) to be the tangent 
vector to h(q) which is represented by the motion hom in Q'. If c((q) are the 
coordinates in a neighborhood of q and siCs) are the coordinates in some chart in 
the neighborhood of h(q), the coordinates (sr, Uk) of Th(v) in the natural chart are 
given by 

s = s(c(), if = d/dt (s"(qi(t))) / t= 0 = s",jd, 

where (q", d) are the coordinates of v in the natural chart on TQ. Thus, for a fixed 
q, the restriction T;: TqQ -+ Tf(q)Q' of Th to the tangent space at q is a linear 
mapping and given charts in neighborhoods of q and h(q), it is locally represented 
by the derivative of the local representative of h. The mapping Th is called the 
tangent mapping or the derivative of h. 

The process of generating the tangent bundle can be repeated and we can 
construct the tangent bundle to the tangent bundle T(TQ), or T2Q. Clearly, 
elements of T2Q have coordinates in R 4

n, and if the local representative of a curve 
in TQ is of the form (qi(t), viet)), the coordinates in the natural chart of the element 
of T2Q that the curve represents are (qi, vi, d/dt (qk), d/dt (VS

)) / t= o. The tangent 
bundle projection for this second tangent bundle is LTQ: T2Q -+ TQ, and locally, it 
is given by (qi, vi, uk, w) -+ (qi,Vi). Given a motion m: R -+ Q there is an induced 
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-= curve dm in TQ which assigns to any time to the tangent vector (velocity) to m at 
time to. If (qi(t» are local representatives of this motion, the local representatives 
of dm are (qi(t), d/dt (qi(t»). Similarly, m induces a curve d 2m on T2Q which assigns 
to any time to the acceleration at that time, i.e. if (qi(t» are the local representatives of m, the local representatives of d2m are 

(qi(t), d/dt (qi(t», d/dt (qi(t», d 2/dt(qi(t»). 

The curve dm is called the lifting of m and d 2m is called the second lifting of m. 
Just as dm(t) represents the velocity at time t, d 2m(t) represents the (generalized) 
acceleration of the system undergoing the motion m at the time t. 

As a special case of the derivative of a mapping between two manifolds we have I 

the mapping TrQ: T2Q ~ TQ, which is the tangent mapping of the tangent bundle 
projection. Since the local representatives of rQ are of the form (qi, vi) ~ (qi), the 
local representatives of TrQ are of the form (qi, vi, uk, W

S) ~ (qi, u'). We note that if 
w is in the image of d2m for some motion m, then TrQ(w) = rTQ(w), 

A vector field on Q is a mapping X: Q ~ TQ such that rQoX(q) = q. We note 
that the derivative of a vector field is a mapping TX: TQ ~ T2Q. If the vector field 
is given locally in the form (qi, Xi(qi», then the local representative of TXis of the form (qi, Vl) ~ (q, Xk(qi), vi, XS,,(qi)V'). A vector field on Q induces a first-order 
differential equation on Q in the following way. Let qo be a configuration. We say 
that the motion m on Q, with m(O) = qo, is the solution of the differential equation 
induced by X if its lifting dm is the restriction of X to the image of m. It follows 
that if (qi, Xi(qi» are the coordinates of X, the coordinates of the solution curve 
qi(t) satisfy the equation d/dt (ql)(t) = Xi(qi(t», which justifies the term. Similarly, 
a first-order equation on TQ is induced by a vector field Y: TQ ~ T2Q on TQ. A 
vector field Y on TQ is a second-order differential equation if r TQ ° Y = Tr QO Y, or 
equivalently, if the coordinates of Yare of the form (q, vi, vk, YS(qi». If (q(t),vi(t» 
are the coordinates of the solution curve on TQ to a second-order differential 
equation, they satisfy the relation d/dt (qi) = vi, d/dt (vi)(t) = yi(qi(t», so that the 
use of the term is justified. 

IV. The Cotangent Bundle and Forces in Statics 

Let qeQ and let T*Qq denote the dual vector space to TqQ. We call T*Qq the 
cotangent space to Q at q and we call T*Q = UqeQT*Qq the cotangent bundle 
of Q. An element of T*Q will be referred to as a covector, and nQ: T*Q ~ Q will 
denote the mapping that assigns to any covector f, the configuration q such 
that / e T*Qq. We endow T*Q with the structure of a differentiable 
manifold as follows. Let q> be a chart in a neighborhood U of q, then the chart 
<1>*: nQ I(U) ~ Rn x Rn is defined by <1>*(/) = (qi, jj) = (qi, fee)~, where ei is the 
tangent vector whose natural coordinates are (0, ... , 1, ... ,0), with 1 in the jth 
place. In other words, if (qi, jj) are the coordinates off, thenf (v) = !jvi, where vi are the natural coordinates of v. One can easily show that if a coordinate transformation 
qi' = qi' (qi) is given in a neighborhood of q, then, j;, = j;q:j' , i.e. the coordinates of f are related by the transpose of the matrix of the partial derivatives. 

Let h: Q ~ Q' be a differentiable mapping. Note that for q e Q we have a mapping 
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T*hh(q):T*Q~(q) ~ T*Qq which is the adjoint of Tqh and th~~efore its local rep­
resentative is the transpose of the matrix of T ;. 

Convectors represent mathematically the generalized/orees and the meaning of 
the real number obtained by the action of a force on a generalized velocity is 
simply the virtual work that the force performs on the virtual displacement or the 
power supplied by the force. Indeed, in order that the virtual work will be inde­
pendent of the coordinates by which we choose to represent the velocities, the 
transformation of coordinates for forces should be the one we obtained for co­
vectors. For example, let B be a rigid body and let Q be its configuration space. 
Choosing a Cartesian coordinate system which is fixed to the body and a coordinate 
system which is fixed in space, we can find for each configuration qo a neighborhood 
of qo in which the rectangular components of the origin of the body frame and the 
rotations of the body axes about the space axes can serve as coordinates. In this 
coordinate system the components of the generalized velocity will be composed of 
the three components of the linear velocity of the origin of the body frame and the 
three components of the angular velocity of the body frame. The coordinates of a 
generalized force will be composed of the three components of the force acting on 
the body and the three components of the torque (by torque we mean the com­
ponents of the generalized force that correspond to the rotations). Let A be a point 
in B. Using the space frame, the configuration space of A can be identified with 
the Euclidean space R 3 and the coordinates of a generalized force are simply the 
components of the force acting on A. We can write the mapping h: Q ~ R3 which 
assigns to any configuration q of the body the corresponding position of the point 
A in space. Then, for any configuration q, the linear mapping T*h: T*Rl(q) ~ 
T*Qq will assign a force acting on the body to any force acting on A. It turns out 
that the torque 6n B due to a force f acting on A is given by the vector product 
r x f where r is the position vector of point A in the body frame. 

V. The Riemannian Metric and the Kinetic Energy 

Let g: TQ ~ T*Q be a differentiable mapping such that for each qE Q the 
restriction of g to q is an isomorphism TqQ ~ T*Qq. The mapping g induces a 
nonsingular bilinear form K on TQ by K(v,u) = }g(v) (u). If the induced bilinear 
form is symmetric and positive definite g is called a Riemannian metric on Q. The 
dynamical properties of a mechanical system are represented by a Riemannian 
metric g in the following way. For every velocity v, the kinetic energy of the system 
at that velocity is K(v, v) = }g(v)(v) and the generalized momentum is the element 
g(v) of T*Q. 

Since the restriction of g to TqQ for any q E Q is a symmetric linear trans­
formation, it is represented locally by a symmetric tensor gks called the metric 
tensor such that if / = g(v), the coordinates jj of / are given by gJsif, where if are 
the coordinates of v. The local expression for K is given by the same tensor in the 
form K(v, u) = }gijViuJ• Since K is a symmetric bilinear form it can be given the 
interpretation of a scalar product so that 2K(u, v) is the scalar product between u 
and v, and (2K(u, u» 1/2 is the length of the vector u. One can easily verify that if 
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qi' = l'(q) is a coordinate transformation, then the coordinatetr;~sfor7riation for 
the metric tensor is gi'j' = 9 ij if)' q:i" 

As we saw earlier, the derivative of a vector field is a mapping from TQ into 
T2Q. Similarly, the acceleration is an element of T2Q. We will see in the following 
that one can use the metric in order that the acceleration, and any other member 
of T2Q, can be identified with an element of TQ. In such a case, the derivative of 
a vector field will be a linear mapping from TQ into TQ and the same will hold for a second-order differential equation. 

We recall that although all the tangent spaces are isomorphic to Rn, these 
isomorphisms are induced by the charts and therefore they are not unique. If 
however, we were given isomorphisms of the tangent spaces in a certain neigh­
borhood of a configuration q to a given vector space, we could associate with any 
vector v in TqQ a unique vector v' E Tq,Q. Given such isomorphisms this operation 
is called a parallel translation. 

Let m be a motion on TQ and let w denote the element of T2Q that this motion 
represents. Using the parallel translation we can associate with w the element c(w) 
of Tqq, q = 'rQ(m(O)), which is given by c(w) = dldt (m'(t))lt=o, where m'(t) is the 
result of the parallel translation of m(t) to TqQ. (We note that the differentiation 
makes sense because we calculate the derivative ofa curve in the vector space TqQ.) 
Such a mapping c: T2Q ~ TQ is called the connection mapping of the parallel 
translation. Given a motion m on TQ, we can use the parallel translation to define 
the curve Vm: R ~ TQ by Vm(to) = dldt (u')(t o) = c(dm(to)), where u' is the parallel 
translation of m(t) from Tq,Q, q' = 'rQ(m(t)), to TqQ, q = 'rQ(m(to)). 

Given a vector field X whose coordinates are (qi, Xi) and parallel translations in 
neighborhoods of all points in Q, we can define the covariant derivative V X: TQ ~ 
TQ as follows. The restriction of V X to q is a linear mapping TqQ ~ TqQ whose 
representing, matrix is Xij = oloqj(X'i), where Xli are the coordinates of the parallel 
translation of X(q') to TqQ. Given a vector field Y whose coordinates are (qi, yj) 
we denote the evaluation of the covariant derivative of X on Y by V yX. The 
coordinates of the vector field VyX are Xijyi. 

Assuming that a Riemannian metric is given on Q it can be shown that there is 
a unique parallel translation on Q that satisfies the following properties: 

(i) parallel translation preserves the kinetic energy, i.e. Kq,(u, v) = Kq(u', v'), 
where u' and v' are the parallel translations of u and v from Tq,Q to TqQ; 

(ii) if ei is the vector field in the neighborhood of q whose coordinates satisfy 
(Xl) = (0, ... ,1, ... ,0), where the 1 is in the ith place, then o~ej = Veiei. 

Let (qi, vi, uk, w') be the coordinates in the natural chart of the element w of 
T2Q. It can be shown that with the unique parallel translation that has the two 
aforementioned properties, the coordinates of c(w) are (qi, w' + rjkviuk), where 
rjk = r~j = ifl(gsk,j+gis,k-gjk,s) (ffi denote the components of the inverse matrix 
of gjk)' The coefficients rjk are called the Christoffel symbols. 

Let (qi(t), viet)) be the local expression for the curve m in TQ, so that the 
coordinate representation of dm in the standard chart in T2Q is given by (qi(t), 
viet), dldt (t)(t), dldt (VS)(t)). It follows that the coordinate representation of Vm 
is (qi(t), dldt (VS)(t) + nkvk dldt (ql)(t)). In the particular case where m = dmo, where 
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mo is a curve on Q whose coordinates are (q), the local represent~tive ofVm = V dmo 
is (ql(t), d2/dt2(qS)(t)+n~i d/dt(q") d/dt(qi)(t)). Similarly, any second-order ,differ­
ential equation w: TQ ~ T2Q whose local representative is (qi, vi, v\ W(qi, vi)), 
induces a mapping cow: TQ ~ TQ, which is given locally by (qi, W+rjkvivk). Ifmo 
is the solution of the second-order differential equation w, it satisfies the equation 
V dmo = cod2mo = cowomo, so that second-order differential equations can be writ­
ten on TQ. In addition, it can be shown that with this parallel translation we have 
X lj = X:j + rjkX". In conclusion, we note that for a given q E Q the mapping 
c: T 2Qlq ~ TqQ x TqQ x TqQ, given by w ~ (LTQ(W), TLQ(W), c(w)) is one to one 
and onto and it can be used to identify any element of T2Q with a triplet of elements 
ofTQ. 

VI. The Equations of Motion 

Consider the tangent bundle to the cotangent bundle T(T*Q), equipped with the 
projections LT*Q: T(T*Q) ~ T*Q and TnQ: T(T*Q) ~ TQ which are given locally 
in the form (qi,jj,V\gs) ~ (qi,jj) and (qi,jj,V\gs) ~ (qi, vk), respectively. Letp be 
a member of (T*Q)q for some configuration q and consider curves m in T*Q with 
the property met) = q for each t. Since these curves do not leave (T*Q)q they are 
of the formp+f(t) where f(t)E(T*Q)q for all t, and each such curve is tangent 
to the line p + if (0). It follows that the collection of tangents to these curves 
form the vector space Tp(T*Q) and that the elements of Tp(T*Q) have natural 
coordinates of the form (qi,pj' 0, fk) where (qi, fk) are the coordinates of f (0). 
Hence, given two elements p and f of (T*Q)q, an element of Tp(T*Q) is induced 
by the line p + if. Given pin T*Q, we denote by Ip the mapping (T*Q)q ~ Tp(T*Q), 
q = nQ(p), given, by f ~ d/dt (p = lif).This map is clearly an isomorphism 
and it follows that any force f can be identified with ~/f), where Oq is the zero 
element of (T*Q)q, and conversely, any element of ToiT*Q) (the coordinates of 
such an element are in the form (qi. 0, O,jj)),induces a unique force whose natural 
coordinates are (qi, jj). 

In general, there is no natural mapping which acts as I;; I to associate two 
members of T*Q with an element of T(T*Q). However, given a Riemannian 
metric, the connection mapping c induces a connection mapping c*: T(T*Q) ~ 
T*Q given by c* = gocoTg- 1 so that the following diagram is commutative. 

2 Tg 
T Q ------+) T(T*Q) 

e1 Ie. 
TQ _-.:::..g ~l T*Q 

Let (qi,pj' vk, Ps) be the coordinates of an element p of T(T*Q), then the coordinates 
of Tg-l(p) are given by (qi,gi'pj,v\g~;vlp,+gS'p,) so that the coordinates of 
C(Tg-l(p)) are (qi, r~kgj'pjVk+g~;vlp,+gS'p,). Thus, the coordinates of c*(p) are 

(qi, g/sr:kgi'pjVk + g/sg~;vlp, + g/sgS' p,) = (qi, g/sCkgi'PjVk - if' g/S,IV1p, + pD. 

Here again c* induces an identification C*: T(T*Q) ~ T*Q x TQ x T*Q which is 
given by p ~ (LT*Q(P), Tn(p), c*(p)). 
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Let v E TqQ and let p = g(v) be the momentum associated' ;ith th;' generalized 
velocity v. Then, given a force / E (T*Q)g, the effective force acting on the system 
due to / at the velocity v is C* - l(p, v,/) E T(T*Q),q' Assuming that (qi, vj) and (ql,i1J are the coordinates of v and f, respectively, the coordinates of the effective 
force due to / at the velocity v are (qi, girvr, vk, i1- glsCtVrVt + gls,tVV). Using the 
symmetry of the product vtvs and the relation between r:t and gj" the last expression reduces to (qi, gjrVr, v\ h+ glsr:tvrvl 

A/orcefieldfis a mapping TQ -+ T*Q such that 'lrQ(f(v» = LQ(V). Given a force 
field f and a Riemannian metric g on the configuration space Q, a second-order 
differential equation p: TQ -+ T2Q is induced on Q by 

p(v) = Tg-1oC*-I(g(V), v, f(v». 

Assuming that the local representatives off are given in the form (qi, jj(qk, VS», one can calculate the components of Tg-1oC*-I(g(V), v, f(v» to obtain (qi, vj, vk,gsrj,_ 
CtvrVt) so that p is indeed a second-order differential equation. We say that p is 
the acceleration field induced by the force fieldf, and we note that if the motion m 
is a solution of this second-order differential equation, its local representatives 
(qi(t» satisfy 

d 2/dt2 (qi)(t) = girj,(qi(t), d/dt (qj) (t» - r~s d/dt (qr) dldt (qS)(t). 
From this last expression it follows that if m is a solution of the acceleration 
field induced by f, then m satisfies g(Vdm(t» = f(m(t» which is the required 
generalization of Newton's second low. 

VII. Free Motion and Norl{1la/ Coordinates 

By a free motion or a geodesic we mean a motion of the mechanical system 
under the zero force field. It follows that a free notion satisfies the equation 
Vdm = 0, and in coordinates 

d2/dt2(qi)(t)+r~s d/dt(qr)d/dt(if)(t) = O. 
The following properties of free motion can be proved [see (2, 3)] for the case of 

a compact configuration space. 

a. For every configuration q and every velocity VE TqQ there exists a unique free 
motion met) such that m(O) = q and dm(O) = v. 

b. Let a: R -+ R be a change of scale of the time domain in the form 
aCt) = at+j3.Then, if m:R -+ Q is a free motion, i.e. a solution of Vdm = 0, 
satisfying the initial condition m(O) = v, the motion moa is also a free motion 
satisfying the same initial condition. In addition, the free motion m' satisfying 
the initial condition yv can be obtained by a reparametrization of m and it 
satisfies m'(t) = m(yt), dm'(t) = ydm(yt). 

c. The kinetic energy is conserved along a free motion, i.e. 

d/dt (K(dm(t), dm(t») = O. 
d. Consider the mapping <1>: R x TQ -+ TQ, defined by <1>(t, v) = dm(t), where m is 
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the unique free motion whose initial condition is ~. This ni1.pping, called the 
geodesic flow, can be shown to be differentiable. 

The differentiable mapping exp: TQ ~ Q defined by exp (v) = m(1) = 
LQ(<I>(1,V)) is called the exponential mapping. The restriction eXPq: TqQ ~ Q 
of the exponential mapping to TqQ induces a one to one and onto differ­
entiable mapping from a neighborhood V of the zero vector in TqQ onto a 
neighborhood U of q in Q. Thus, choosing a basis in TqQ we can con­
struct a chart on U in the following way. For every point q' in U let its 
coordinates Vi be the components of the vector v in V such that q' = 

exp (v) = m(l) (m is the free motion with initial condition v). This chart in the 
neighborhood U of q is called the normal chart. In particular, we can choose 
an orthonormal basis in TqQ so that gij = bij (the Kronecker b) in the normal 
chart. It can be shown that in the normal chart we have rjk = o. Thus, using 
the compactness assumption, it follows that Q can be covered by a finite number 
of normal charts in which the equations of motion are of the form 

d 2qi 

dt 2 = j;. 

e. The configuration space Q is geodesic ally complete, i.e. for any two con­
figurations q and q' there exists a free motion which starts at q and ends at q'. 

f. Given the configurations q and q', the functional 

L(m) = .r' (K(dm(t), dm(t)) 1/2 dt 

which can be interpreted as the length of the curve joining the two configurations, 
and the functional 

E(m) = r (K(dm(t), dm(t))dt 

are at a local minimum if m is a free motion between q and q'. 

VIII. Conclusions 

In the preceding sections, we presented the Newtonian mechanics of mechanical 
manipulators from a geometric point of view. Generalized forces that serve as the 
control parameters in the control of robots were introduced as elements of the 
cotangent bundle of the configuration space. The kinetic energy was modelled by 
a Riemannian metric and the isomorphism it induces between the tangent and 
the cotangent spaces was used in order to obtain the generalized momentum 
corresponding to a given generalized velocity. The generalized accelerations, which 
are elements of the second tangent bundle, were related to the forces by using the 
connection induced by the Riemannian metric (kinetic energy). To the best of our 
knowledge this is the first geometric invariant formulation of the equations of 
motion for a multi-degrees of freedom mechanical system in the form of Newton's 
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second law. In addition, the standard form of the equation~ ;;[ motion found in 
the literature, i.e. 

M(q)q+B(q,q)q = f 

which is written in a coordinate non-invariant form, can be interpreted now as 
follows: M is the matrix of the metric tensor (kinetic energy) and B is composed 
of the covariant Christoffel symbols r ijk = girrSk of the connection induced by the 
metric. 

The introduction of the normal coordinates provides us with a procedure for the 
linearization and decoupling of the equations of motion in the case where we 
do not consider generalized forces due to gravity [ef (4,5)]. We note that the 
configuration spaces of most mechanical manipulators are compact differentiable 
manifolds. For example, the configuration spaces of mechanical systems composed 
of rigid bodies that are joined together so that one of the bodies rotates about a 
fixed point and the rest of the degrees of freedom of the system are rotations, are 
compact manifolds. It follows that the results of the previous section regarding 
compact manifolds are all applicable. 
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