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Abstract

For an in-depth understanding of the failure of structural materials the study of
deformation mechanisms in the material bulk is fundamental. In situ synchro-
tron computed laminography provides 3D images of sheet samples and digital
volume correlation yields the displacement and strain fields between each step
of experimental loading by using the natural contrast of the material. Difficul-
ties arise from the lack of data, which is intrinsic to laminography and leads to
several artifacts, and the little absorption contrast in the 3D image texture of
the studied aluminum alloy. To lower the uncertainty level and to have a better
mechanical admissibility of the measured displacement field, a regularized digi-
tal volume correlation procedure is introduced and applied to measure localized
displacement and strain fields.

Keywords: Artifacts, Digital Volume Correlation, Laminography,
Regularization, Strain localization

1. INTRODUCTION

Thin sheet structures are widely used in the transportation industry but
their failure behavior is not always well understood. The three stages of ductile
fracture, namely, void nucleation, growth and coalescence, are established but
bulk data are still needed to assess the interaction between damage and strain
localization at low levels of triaxiality, as shown in Figure 1. Thanks to the
development of 3D imaging and full-field measurement techniques, quantitative
data can be obtained to address these issues. Synchrotron X-ray computed la-
minography (akin to tomography) allows 3D imaging to be performed at the
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micrometer scale for sheet like samples at the cost of additional noise due to the
lack of information [1, 2, 3, 4].

Figure 1: Illustration of typical ductile fracture path of aluminum alloy sheet loaded in
opening mode

The volumes that are naturally contrasted can be used in digital volume
correlation (DVC) analyses to measure 3D displacement and strain fields in
the bulk. DVC is an extension of 2D digital image correlation [5] to 3D si-
tuations [5, 6]. The first implementations of DVC have consisted of registering
small interrogation volumes (or subvolumes) to determine their mean rigid body
translations [7]. Local rotations have been added later on [8]. The warping of
the interrogation volume has also been introduced in DVC codes [9]. All these
approaches are referred to as local, since each analysis is local (i.e., at the scale
of the interrogation volume) and no kinematic constraint is prescribed between
neighboring subvolumes.

Global approaches to DVC have been introduced thereafter [10]. Contrary
to local approaches, the displacement field is defined over the whole region of
interest. In particular, in many instances, its continuity is enforced a priori. For
example, the kinematics associated with finite element discretizations have been
considered [10]. If cracks are to be analyzed, enriched kinematics have also been
implemented to account for displacement discontinuities [11, 12]. One further
step is to regularize the correlation problem by requiring the measured displa-
cement field to satisfy mechanical constraints such as the equilibrium [13, 14].
In particular, in areas where the image texture is not sufficiently contrasted,
mechanics is utilized to extrapolate the displacement field. If this type of in-
formation is not available, then the displacement measurement in these areas
would not be possible. This issue is particularly important in 3D imaging as no
artificial texture (e.g., secondary particles) can be added without altering the
behavior of the studied material.

The aim of the present study is to evaluate the potential of these regularized
approaches in the case of little absorption contrast in the 3D images in addition
to the fact that complex kinematic fields are sought (i.e., strain localization).
The main challenge is related to the fact that if the regularization is too strong, it
may smear out the localized region. Conversely, if the regularization is too weak,
the DVC calculations may not converge. One additional question is related to the
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impact of noise induced by laminography. It was shown that the measurement
uncertainty achieved by C8-DVC (i.e., global approach to DVC using 8-noded
cubes) reaches levels [4] that are significantly higher than those achieved by
analyzing tomographic data [15, 16]. The latter are themselves higher than what
is usually observed when dealing with standard 2D images [5, 6].

The paper is organized as follows. The experiment analyzed herein is introdu-
ced in Section 2. It deals with the analysis via laminography of a notched sample
made of aluminum alloy. Section 3 summarizes the regularized DVC approach
to be used to measure displacement fields of the reconstructed volumes. The
proposed regularization combines different functionals, which requires scaling
to be performed. Associated with a given choice of normalizing displacement
fields, new length scales are obtained. Strain resolutions are first determined
in Section 4.1. A scaling strategy is proposed to get a almost unique tendency
for different trial displacement fields. For the measured displacement field it
is possible to determine strain data (Section 4.2). The cumulative total strain
fields are shown and the effect of regularization length is assessed in terms of
capturing localized strain fields.

2. EXPERIMENT

2.1. Laminography

Synchrotron radiation computed tomography (CT) is a 3D non-destructive
technique for objects extended in one direction and thin in the other two di-
rections. By inclining the specimen with an angle θ < 90 degrees with respect
to the beam direction, a region of interest that expands along two directions
can be scanned [1], see Figure 2. This technique is referred to as synchrotron
radiation computed laminography (CL). A filtered-backprojection algorithm is
then used to reconstruct the 3D volume [1, 2].

Figure 2: Schematic view of the CT (a) and CL (b) setup with the ESRF parallel beamline
(after [4])
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The 3D images utilized herein were obtained at beamline ID19 of the Euro-
pean Synchrotron Radiation Facility (Grenoble, France) with a monochromatic
beam of 25 keV, with a 65-degree rotation axis inclination angle and 1,500 pro-
jections. The reconstructed volumes have a size of 2, 040×2, 040×2, 040 voxels,
with a voxel size of 0.7 µm. More details on the experimental configuration
and on analyses of the reconstructed volumes themselves can be found in Refe-
rence [17].

2.2. Material and experimental setup

The material used for this study is a commercial Al-Cu aluminum alloy
(AA 2198) in T8 condition. The geometry of the flat and notched specimen is
schematically shown in Figure 3(a). The 1-mm thick sample (60-mm in width
and 70-mm in height) has a notch that has been machined by EDM leading to
a radius of 0.17 mm. The loading consists of opening the notch mouth with a
displacement controlled by 2-screw device. Stepwise loading has been applied
between each laminography scan. An anti-buckling device, which is not shown,
has been mounted around the specimen, leaving a window close to the notch
to scan the volume close to the notch. From the scanned region, the region of
interest for DVC analyses is chosen to be away from the notch root (Figure 3(b)).

(a) (b)

Figure 3: (a) Schematic view of the analyzed test [4]. The x-axis lies along the thickness of
the plate, the y-axis corresponds to the main propagation direction, and the z-axis is aligned
with the load direction. (b) The scanned volume is sketched as a cube delineated in black.
The region of interest is a parallelipedic volume away from the notch, which can be seen as a
dark region for small y. It is a gray volume limited by white lines for large y

For the analyzed region of interest, the amount of information is quite low,
as shown in the histogram of gray level in Figure 4(a) and in the volume with
enhanced contrast from Figure 4(b). Further, the inclusion volume fraction is
of 0.3-0.4 %. The presence of ring and reconstruction artifacts can be noticed
in Figure 4(b) and makes DVC difficult because it has to be based on true
microstructure and not on artifactual features. It is interesting to assess the
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(a) (b)

Figure 4: (a) Gray level histogram of (b) the view of the region of interest with an enhanced
contrast to reveal reconstruction artifacts

development of strains and in particular the strain pattern in such type of
experiment and its impact on the final damage change. To address this issue,
there is a need for reliable kinematic measurements (i.e., displacement and
strain fields) in the presence of very poor textures (Figure 4). Once such data
are available, the next question to answer is linked with the detection of damage.
These two points are solved by resorting to global and regularized digital volume
correlation thanks to the measured displacement fields and the corresponding
correlation residuals.

3. REGULARIZED DIGITAL VOLUME CORRELATION

3.1. Global DVC

DVC consists of registering two reconstructed volumes, namely, a volume
f in the reference configuration, and volume g in the deformed configuration
assuming gray level conservation

f(x) = g(x+ u(x)) (1)

where x is the position of any voxel and u the unknown displacement. Because
the strict conservation is not satisfied, especially in CL where noise appears due
to reconstruction artifacts due to missing information/angles [3], the correlation
residual φc(x) expressed as

φc(x) = |f(x)− g(x+ u(x))| (2)

is used in the sum of squared differences

Φ2

c =

∫

ROI

φ2

c(x)dx (3)
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that is minimized with respect to kinematic unknowns. This problem is ill-posed
and nonlinear. Thus a weak formulation based on C8 finite element is chosen in
which the displacement is decomposed as

u(x) =
∑

n

unψn(x) (4)

where un are the degrees of freedom (to be measured) associated with the trili-
near shape functions ψn of C8 elements. By using a modified Newton iterative
procedure [10], linear systems are to be solved

[M]{δu} = {b} (5)

where [M] is the correlation matrix, {δu} the correction to vector {u} gathering
all unknown degrees of freedom, and {b} the RHS vector that needs to decrease
so that convergence is achieved (i.e., the corrections {δu} become vanishingly
small).

3.2. Regularized DVC

Regularization consists of adding some mechanical requirements with ad-
ditional functionals, some based on the equilibrium gap method [18], which
constrains the displacement field to be the solution to an elastic problem with
known body forces

[K]{u} = {f} (6)

where [K] is the stiffness matrix, and vector {f} gathers all the nodal forces.
Equilibrium residuals arise for (usually unloaded) inner nodes if u does not
satisfy equilibrium. The equilibrium gap functional reads

Φ2

m = {u}t[K]t[K]{u} (7)

When the latter vanishes, equilibrium is strictly satisfied for inner nodes so that
mechanical admissibility is satisfied.

The previous strategy cannot be used as such for boundary nodes, except
those that belong to a free edge. In that case the previous setting is extended to
these particular nodes. For the other boundary nodes, an edge regularization is
considered in the same spirit as what was recently proposed for 2D situations [19]

Φ2

b = {u}t[L]t[L]{u} (8)

where matrix [L] behaves on the ROI boundaries.
These three functionals cannot be added since they do not have the same

physical units [14]. Consequently, a reference displacement field v is needed to
normalize each functional. The three normalized functionals are dimensionless
and thus can be combined. A weight wm and wb is given to functionals Φ2

m and
Φ2

b , thereby defining regularization lengths that act as cut-off wavelength of low
pass filters [14, 19]. The regularized correlation procedure consists of iteratively
solving linear systems

([M] + [N]){δu} = {b} − [N]{u} (9)
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with

[N] = wm

{v}t[M]{v}
{v}t[K]t[K]{v} [K]t[K] + wb

{v}t[M]{v}
{v}t[L]t[L]{v} [L]

t[L] (10)

In the present case, displacement v is associated with a wave of vector k so that
the two weights are defined as

wm = wb = (2π|k|ℓr)4 (11)

where ℓr is the regularization length.
Regularization makes use of a constitutive law, which in the present case is

that of a linear and isotropic elastic medium. Based on a decomposition of the
strain tensor ǫ into a spherical part, ǫsph = (1/3)tr(ǫ)I, and a deviatoric part,
ǫdev = ǫ− ǫsph, the stress tensor σ reads

σ = 3Ktr(ǫ)I + 2Gǫdev (12)

where K (resp. G) is the bulk (resp. shear) modulus, and I the second order
identity tensor. The moduli ratio is given by

K

G
=

2(1 + ν)

3(1− 2ν)
(13)

As Poisson’s ratio ν approaches the incompressibility limit, i.e., ν = 1/2, or
ν = 1/2− η with η → 0, K/G ∼ 1/(2η).

The expression of the equilibrium gap density in the continuum limit reads

‖div(σ)‖2 =
∑

i

((3K + 2G/3)uj,ji +Gui,jj)
2 (14)

Among the two elastic constants that come into play in this expression, one di-
sappears through the normalization (or can be included in the prefactor of Φm).
However, the relative weight of the deviatoric and volumetric strain terms in the
sum, which is controlled by K/G, allows for some flexibility in the introduction
of the kinematic regularization as discussed below.

Let us stress that this regularization does not necessarily imply that the
solid is linearly elastic and described accurately by the above constitutive law.
Seen as a mere ad hoc regularization to smooth out high spatial frequencies,
it can be shown that the most general form of linear operator acting on the
displacement field that is invariant under a rigid body motion (translation and
rotation) has precisely the form of Lamé’s operator div(σ). For a solid medium
that is loaded away from its elastic limit, a tangent stiffness ∂σ/∂ǫ can be
defined, which looks alike the above elastic constant. As will be argued below,
as plastic flow occurs at constant volume, a Poisson’s-like ratio close to 1/2 may
be chosen to prescribe incompressibility rather than the actual elastic Poisson’s
ratio. The actual limitation comes from the assumption of a uniform stiffness,
which is generally untrue for nonlinear mechanical behaviors. However, as the
mechanical filter affects only the small scales, this inhomogeneity may not have
severe consequences unless too much weight is given to the regularization kernel.
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4. DVC RESULTS

In the sequel, four volumes will be considered. Two volumes in the undefor-
med configuration are reconstructed to assess the resolution level of the DVC
technique. The third volume has been acquired at an early stage of the test,
and the fourth at a later stage. In both latter cases, yielding has already occur-
red. Consequently, the cumulative total strain will be reported. Since the elastic
strains are very small, the cumulative total strain cannot be distinguished from
the cumulative plastic strain peq. The size of the volume of interest (see Fi-
gure 4(a)) is 650× 450× 700 voxels, and the region of interest (ROI) for DVC
has a size of 448× 288× 544 voxels. The discretization is based on C8 elements
with an edge size ℓ of 16 pixels. The regularization lengths ℓr considered he-
reafter are equal to 500 voxels (i.e., most of the weight is put on regularization
since ℓr ≫ ℓ), 50, 40, 30, 10 and 5 voxels (regularization effects become negli-
gible when ℓr < ℓ). In the early loading stages considered herein, no damage
nucleation on intermetallic particles was observed in the region of interest. This
finding stands in contrast to a related study [20] where damage at very brittle
particles occurs very early on. However, these particles were of different nature
(i.e., Mg2Si) than those found herein (i.e., Fe-based) and of substantially bigger
individual size favoring early fracture/debonding.

(a) (b) (c)

Figure 5: Slices parallel to the x−z plane taken from the undeformed volume (a), the volume
at early (b) and late (c) stages of the test

4.1. Resolution analysis

The resolution analysis consists of correlating the first two volumes. Very
small displacements have occurred between the two acquisitions. However, be-
cause of various artifacts, these two volumes are not identical but essentially
corrupted by noise. Regularized DVC is run and the results yield nodal displa-
cements associated with the finite element discretization. The mean displace-
ment gradient in each element is then evaluated. From the latter, the Green
Lagrange strain tensor is computed and its second invariant (i.e., the cumula-
tive Von Mises’ strain) is obtained. More details can be found in Reference [21].
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The standard deviation of the measured values is reported. It is referred to as
standard strain resolution since it corresponds to the largest level below which
the measurement can be confused with noise. Three different displacement fields
v are considered for the normalization procedure of regularized DVC. The first
displacement field involves a change of volume

v0x = v0y = v0z = sin(2πkx) sin(2πky) sin(2πkz) (15)

while the two others are incompressible






v1x = sin(2πky)
v1y = sin(2πkz)
v1z = sin(2πkx)

(16)

and






v2x = sin(2πky) sin(2πkz)
v2y = sin(2πkx) sin(2πkz)
v2z = sin(2πkx) sin(2πky)

(17)

where k is a wavenumber equal to 0.1 voxel−1. The aim of the following ana-
lysis is to study the influence of the normalization displacement field on the
measurement results.

Two different values for Poisson’s-like ratio will be considered (i.e., ν = 0.27
and ν = 0.49). The former corresponds to a rough estimate of the actual Pois-
son’s ratio of the studied material. However, since plasticity is likely to occur, a
value of Poisson’s-like ratio close to 0.5 allows the displacements to be quasi in-
compressible. Figure 6(a) shows the change of the mean correlation residuals, in
percent of the dynamic range of the ROI, for the different regularization lengths
ℓr and for the four normalizing displacement fields. There is virtually no varia-
tion (note the very small dynamic range in the figure) of the residuals. From
a pure correlation stand point, all the results are equivalent and have properly
converged.

However, the standard strain resolution shown in Figure 6(b) does not fol-
low the same trend. The larger the regularization length ℓr, the smaller the
resolution. As expected [14], the regularization length defines the spatial reso-
lution of regularized DVC once it becomes greater than the element size ℓ. The
overall trend is identical for any chosen displacement field v. However, the re-
lative levels are different. For field v0 two results are reported by using the two
Poisson’s-like ratio values. When ν = 0.49, the deviatoric strain field is very
weakly regularized. Therefore it is expected that the strain and displacement
fluctuations are larger than those obtained for ν = 0.27. This is observed in Fi-
gure 6(b). As the regularization length increases, this effect is more pronounced
since the mechanical regularization has a larger weight. Let us note that wha-
tever the regularization length and the normalization field, the standard strain
resolution is still lower than without regularization for the same element size as
can be seen by comparing Figure 6(b) and Figure 6(c).

As the limit of an incompressible material is considered, it is to be emphasi-
zed that the reference displacement field v chosen to normalize the regularization
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(a) (b)

(c)

Figure 6: Mean correlation residuals (in percentage of the dynamic range of the volume in
the reference configuration) (a) and corresponding standard strain resolution (b) for different
regularization length ℓr and normalizing fields v. (c) Standard strain resolution for different
C8 element sizes without regularization

part may have a very strong weight on the result. Let us consider a dimensional
analysis, where terms such as ua,jk are assumed to be of order U/λ2 where U is a
characteristic displacement magnitude and λ the characteristic scale over which
the displacement varies. If the displacement field is not isochoric, then the order
of magnitude of the equilibrium gap is (to dominant order) K2U2/λ4, while if it
is divergence-free, the equilibrium gap amounts to G2U2/λ4. The ratio of these
two terms is therefore of order 1/η2.

In fact, there are not one but two regularization lengths. They can be consi-
dered as of the same magnitude when ν differs significantly from 0.5. However
in the incompressible limit, they have to be distinguished as their ratio diverges.
One length is relative to the volume change, ℓsph, while the second is linked to
the deviatoric part, ℓdev. Their ratio is given by the square root of the ratio of
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elastic properties, K/G, and hence

ℓsph
ℓdev

≈ 1√
η

(18)

In the cases considered below, when ν = 0.49, a factor of 10 is expected
in the ratio of these two length scales. The cut-off length that was introduced
earlier ℓr will essentially set ℓsph = ℓr if the reference displacement field v

has the volumetric strain of the same magnitude as the equivalent deviatoric
strain. However, if the reference displacement field is traceless, then ℓdev = ℓr. It
should be emphasized that the ratio between length scales (see Equation (18))
is independent of the choice of ℓr, and hence changing the reference field from
non-isochoric to isochoric can be exactly compensated for by a corresponding
change in ℓr. In terms of displacement field wavelength, λ, three regimes are to
be considered :

– at large wavelength, λ > ℓsph, DVC is the dominant contribution,
– at intermediate wavelength, ℓdev < λ < ℓsph, the DVC functional is opti-

mized in the subspace of isochoric displacement fields,
– at small wavelength, λ < ℓdev, the displacement field has to be the solution

to an elastic incompressible problem. Within this much more constrained
choice, image registration decides for the best candidate.

Last, let us also note that the boundary regularization can also be affected if
the corresponding length scale is linked to (and, in the present case, even equal
to) ℓr.

It is difficult to compare the results given by different normalizations because
each of them has a different influence on matrix [N] (see Equation (10)). A way
to circumvent this issue is to consider that the main part of the regularization
is associated with the equilibrium gap (of inner nodes). An equivalent regulari-
zation length ℓreq appears if the weight on that term is equal for a given length
for every displacement field vi considered

wvi,ℓreq
m = wvi,ℓri

m

{vi}t[M]{vi}
{vi}t[K]t[K]{vi}

{v1}t[K]t[K]{v1}
{v1}t[M]{v1}

(19)

The rescaling is performed by considering the regularization length of v1 as a
reference (i.e., for v1, lr = lreq). The effect of the previous rescaling is shown in
Figure 7. The trends in terms of mean correlation residuals and standard strain
resolutions are virtually identical for all four normalizing fields. The fact that
the collapse is not perfect is due to the other regularization terms. Figure 7(b)
shows that for small equivalent regularization lengths ℓreq, the standard strain
resolution tends to 0.3 %. This level is associated with the resolution of C8-
DVC (with an element size ℓ). Conversely, very small resolutions are observed
for large equivalent regularization lengths (i.e., less than 10−4) even though the
texture is very difficult.

4.2. Equivalent strain measurement

Now that the uncertainty is assessed, the study will focus on measurements
between one of the undeformed volumes and the ones at early and late stages of
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(a) (b)

Figure 7: Mean correlation residuals (in percentage of the dynamic range of the volume in
the reference configuration) (a) and corresponding standard strain resolution (b) for different
equivalent regularization lengths ℓreq and normalizing fields v when the rescaling has been
applied

loading. The orientation and position of all the volumes shown are those of Fi-
gure 4(a). The mean correlation residual of the different correlations (Figure 8)
is almost the same as the levels obtained in the resolution analysis Figure 7.
The same quality of registration is obtained for all the analyses performed he-
rein. There is a slight degradation for the last stage of loading when larger
regularization lengths are considered.

(a) (b)

Figure 8: Mean residual for correlations between the undeformed volume and early (a) and
later (b) stages of loading for different equivalent regularization lengths ℓreq and normalizing
fields v when the rescaling has been applied.

The influence of the equivalent regularization length on the strain fields is
shown in Figure 9. If too much weight is put on the regularization (i.e., ℓreq
increases), the measured equivalent strain field is smeared out over a length
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that is proportional to ℓreq. Strain localization due to plasticity is not properly
captured. This effect explains why the correlation residuals degrade as the equi-
valent regularization length increases (Figure 8). Figure 9(b) shows that with a
length ℓreq = 30 voxels, which is of the same order of magnitude as the element
size (i.e., ℓ = 16 voxels), many fluctuations of the strain field are filtered out.
An equivalent regularization length of ℓreq = 10 voxels seems to be the best
candidate, because the small fluctuation have been filtered out while essentially
keeping the same level of residuals and a similar shape of the strain field (Fi-
gure 9(c)). Moreover the strain uncertainty, which is less than 0.1%, is more
than three times smaller than that obtained without regularization (Figure 7).
Larger values of ℓreq correspond to a significant increase in the residuals, thereby
indicating that the correlation results are less trustworthy.

As shown in Figure 8(a), for a small equivalent regularization length close
to 5 voxels (i.e., less than the element size), the mean value of the residual
field and the equivalent strain field shown in Figure 10, is almost the same
regardless of the displacement field used for the normalization procedure. This
result can be explained by the fact that a low weight is put on the regularization
part compared to the one put on the correlation itself. However, the strain
resolution shown in Figure 7(b) for each normalization and regularization length
is different.

For the later stage of loading and an equivalent regularization length of the
same order as the element size (i.e., 30 voxels as indicated in Figure 8(b)), the
mean value of the residual field and the equivalent strain fields (Figure 11(a,b))
for v1 and v2 are similar. For v0, the incompressibility is prescribed by the
Poisson’s-like ratio, thus the equivalent strain field obtained with a Poisson’s-
like ratio of 0.49 (Figure 11(c)) looks like the ones of v1 and v2. However the
mean value of the residual field, Figure 8(b), is higher.

5. CONCLUSIONS

Using computed laminography in situ experiments have been performed on
plate-like specimen with sub-micrometer spatial resolution. The 3D images have
then been successfully registered by regularized digital volume correlation to
measure displacement and strain fields in spite of very little contrast due to a
low content of particle used as markers. This is the case of the aluminum alloy
that was analyzed herein.

To lower the measurement uncertainties, a regularization procedure was fol-
lowed. Within the framework of global approaches to digital volume correlation,
it consists of prescribing additional constraints on inner nodes (i.e., minimiza-
tion of the equilibrium gap) and boundary nodes (i.e., minimizing displacement
fluctuations). The weight put on various regularization terms translates into
regularization lengths that can be compared to the underlying finite element
discretization. The standard strain resolution could be decreased from an initial
level of 0.3 % (for 16-voxel elements) to less than 0.01 % for large regularization
lengths (i.e., greater than 100 voxels).
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(a) (b)

(c) (d)

(e) (f)

Figure 9: Equivalent strain for the early stage of loading without regularization (a) and
with the normalizing displacement field v1 and different equivalent regularization lengths
ℓreq = 5 voxels (b), ℓreq = 10 voxels (c), ℓreq = 30 voxels (d), and ℓreq = 500 voxels (e). (f)
Frame and location of the region of interest

It is worth noting that the regularization length corresponds to the cut-off
length of a low pass mechanical filter. Special care should be exercised when
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(a) (b)

(c) (d)

Figure 10: Equivalent strain for the early stage of loading with an equivalent regularization
length of 5 voxels (see Figure 8(b)) that corresponds for field v1 to a length of 5 voxels (a),
about 5 voxels for field v2 (b), 30 voxels for field v0 with Poisson’s ratio of 0.49 (c), and 50
voxels for the Poisson’s ratio of 0.27 (d). The frame is identical to that of Figure 9(f)

localization phenomena are studied. If a too large regularization length is se-
lected, the kinematic fields are no longer faithfully evaluated. Conversely, when
too small regularization lengths are chosen, measurement uncertainties become
more pronounced. Consequently a trade-off is needed to account for these two
opposite effects. Last, the mechanical regularization used herein is based on
elastic assumption for the underlying behavior of the analyzed material. This
limitation was partially circumvented by assuming quasi isochoric displacement
and strain fields. However, to better capture localized bands other routes may
be followed.

The method developed herein reveals to be viable for the study of complex
strain patterns arising during ductile tearing. Larger regions are to be studied
and the entire load history up to fracture to be analyzed to gain new insight
into the ductile failure mechanisms at play.
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