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Abstract

Nonparametric regression quantiles can be obtained by inverting a kernel esti-
mator of the conditional distribution. The asymptotic properties of this estimator
are well-known in the case of ordinary quantiles of fixed order. The goal of this
paper is to establish the strong consistency of the estimator in case of extreme con-
ditional quantiles. In such a case, the probability of exceeding the quantile tends
to zero as the sample size increases, and the extreme conditional quantile isthus
located in the distribution tails.

1 Introduction
Quantile regression plays a central role in various statistical studies. In particu-
lar, nonparametric regression quantiles obtained by inverting a kernel estimator
of the conditional distribution function are extensively investigated in the sample
case [3, 27, 29, 30]. Extensions to random fields [1], time series [14], functional
data [11] and truncated data [25] are also available. However, all thesepapers are
restricted to conditional quantiles having a fixed orderα ∈ (0,1). In the follow-
ing, α denotes the conditional probability to be larger than the conditional quan-
tile. Consequently, the above mentioned asymptotic theories do not apply in the
distribution tails,i.e whenα = αn → 0 or αn → 1 as the sample sizen goes to in-
finity. Motivating applications include for instance environmental studies [16, 28],
finance [31], assurance [4] and image analysis [26].

The asymptotics of extreme conditional quantile estimators have been estab-
lished in a number of regression models. Chernozhukov [6] and Jurecková [22]
considered the extreme quantiles in the linear regression model and derived their
asymptotic distributions under various error distributions. Other parametric mod-
els are considered in [10, 28]. A semi-parametric approach to modelingtrends
in extremes has been introduced in [9] basing on local polynomial fitting ofthe
Generalized extreme-value distribution. Hall and Tajvidi [21] suggesteda non-
parametric estimation of the temporal trend when fitting parametric models to
extreme-values. Another semi-parametric method has been developedin [2] us-
ing a conditional Pareto-type distribution for the response. Fully nonparametric
estimators of extreme conditional quantiles have been discussed in [2, 5]including
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local polynomial maximum likelihood estimation, and spline fitting via maximum
penalized likelihood. Recently, [15, 18] proposed, respectively, a moving-window
based estimator for the tail index and extreme quantiles of heavy-tailed conditional
distributions, and they established their asymptotic properties.

In the kernel-smoothing case, the asymptotic theory for quantile regression in
the tails is still in full development. [19, 20] have analyzed the caseαn = 1/n in
the particular situation where the responseY givenX = x is uniformly distributed.
The asymptotic distribution of the kernel estimator of extreme conditional quantile
is established by [7, 17] for heavy-tailed conditional distributions. This result is
extended to all types of tails in [8].

Here, we focus on the strong consistency of the kernel estimator for extreme
conditional quantiles. Our main result is established in Section 2. Some illustrative
examples are provided in Section 3. The proofs of the main results are given in
Section 4 and the proofs of the auxiliary results are postponed to the Appendix.

2 Main results
Let (Xi ,Yi)1≤i≤n be independent copies of a random pair(X,Y) ∈ R

d ×R
+ with

density f(X,Y). Let g be the density ofX that we suppose strictly positive. The
conditional survival function ofY givenX = x is denoted by,

F̄(y|x) = P(Y > y|X = x) =
1

g(x)

∫ +∞

y
f(X,Y)(x,z)dz

The kernel estimator of̄F(y|x) is, for x such that∑n
i=1Kh(x−Xi) 6= 0,

F̄n(y|x) =
∑n

i=1Kh(x−Xi)1IYi>y

∑n
i=1Kh(x−Xi)

,

whereh = hn → 0 asn → ∞ andKh(u) = 1
hd K( u

h), the kernelK is a measurable
function which satisfies the conditions:

(K1)K is a continuous probability density.

(K2)K is with compact support:∃R > 0 such thatK(u) = 0 for any‖u‖ ≤ R.
Defineκ := ‖K‖∞ = supx∈Rd K(x) < ∞.

Recall that, for a class of functionG , N (ε,G ,dQ) denotes the minimal number
of balls{g,dQ(g,g′) < ε} of dQ-radiusε needed to coverG anddQ is theL2(Q)-
metric. LetK be the set of functionsK = {K((x− ·)/h), h > 0,x ∈ R

d} and
N (ε,K ) = supQN (ε‖K‖∞,K ,dQ) where the supremum is taken over all the

probability measureQ onR
d ×R. Suppose that,

(K3)for someC,ν > 1, N (ε,K ) ≤Cε−ν for anyε ∈]0,1[.

A number of sufficient conditions for which(K3) holds are discussed in [13] and
the references therein. Finally suppose that

(A1)for all α ∈ (0,1) there exists an uniqueq(α |x)∈R such thatF̄(q(α |x)|x) = α .

The conditional quantileq(α |x) is then the inverse of the function̄F(·|x) at the
point α . Let (αn) be a fixed sequence of levels with values in[0,1]. For any
x∈ R

d, defineq(αn|x) as the unique solution of the equation,

αn = F̄(q(αn|x)|x), (1)
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whose existence is guaranteed by Assumption(A1). The kernel estimator of the
conditional quantilesq(α |x) is:

q̂n(α |x) = inf{y∈ R, F̄n(y|x) ≤ α}. (2)

Finally, denote by ˆgn(x) the kernel density estimator of the probability densityg
i.e.

ĝn(x) =
1
n

n

∑
i=1

Kh(x−Xi).

Our main result is the following.

Theorem 1 Let (Xi ,Yi)1≤i≤n be independent copies of a random pair(X,Y) ∈
R

d ×R
+ with density f(X,Y). Let g be the density of X that we suppose bounded

and strictly positive. Suppose that assumption(A1) is satisfied. Let(αn) be a
sequence of levels in[0,1] for which

limsup
n→∞

sup
x∈Rd

q̂n(αn|x)
q(αn|x)

≤Cst, (3)

almost surely. Suppose that the kernel K satisfies Conditions(K1),(K2),(K3).
Define

A(y,z,x,hn) = sup
u:d(u,x)≤Rhn

∣

∣

∣

∣

F̄(y|u)

F̄(z|x) −1

∣

∣

∣

∣

.

Suppose that for some fixed positiveε0 and for z∈ {q(αn|x),(1+ ε)q(αn|x)}
limsup

n→∞
sup

x∈Rd,|ε|≤ε0

A((1+ ε)q(αn|x),z,x,hn) ≤C < ∞. (4)

If, moreover,

lim
n→∞

nhd
nαn = ∞ and lim

n→∞

ln(αnhd
n ∧α 2

n)

nhd
nαn

= 0, (5)

then there exists a positive constant C, not dependent on x, such that one has for n
sufficiently large

∣

∣

∣

∣

1− F̄(q̂n(αn|x)|x)
F̄(q(αn|x)|x)

∣

∣

∣

∣

≤ C sup
|ε|≤ε0

A((1+ ε)q(αn|x),(1+ ε)q(αn|x),x,hn)

+
C

ĝn(x)

√

ln(α−1
n h−d

n )∨ ln lnn

nαnhd
n

, almost surely.

The first term of the bound can be interpreted as a bias term due to the kernel
smoothing. The second term can be seen as a variance term,nαnhd

n being the
effective number of points used in the estimation. The following propositiongives
conditions under which (3) is satisfied.

Proposition 1 Suppose that g is Lipschitzian and bounded above by gmax. Let
vd =

∫

‖v‖≤1 dv be the volume of the unit sphere. If A(q(αn|x),q(αn|x),x,0,h) → 0
and there existε > 0 such that

∞

∑
n=1

nhdαnexp{−vdgmaxnhdαn(1+ ε)} = ∞, (6)

then,

limsup
n→∞

sup
x∈Rd

q̂n(αn|x)
q(αn|x)

≤ 1, almost surely.

Some examples of distributions satisfying condition (4) are provided in the next
section.
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3 Examples
Let us first focus on a conditional Pareto distribution defined as

F̄(y|x) = y−θ(x), for all y > 0. (7)

Here,θ(x) > 0 can be read as the inverse of the conditional extreme-value index.
The above distribution belongs to the so-called Fréchet maximum domain of at-
traction which encompasses all distributions with heavy tails. As a consequence
of Theorem 1, we have:

Corollary 1 Let us consider a conditional Pareto distribution (7) such that0 <
θmin ≤ θ(x) ≤ θmax for all x ∈ R

d. Assume thatθ is Lipschitzian. If the se-
quences(αn) and (hn) are such that hn logαn → 0 as n→ ∞ and (5), (6) hold,
thenq̂n(αn|x)/q(αn|x) → 1 almost surely as n→ ∞.

Let us now consider a conditional exponential distribution defined as

F̄(y|x) = exp(−θ(x)y), for all y > 0, (8)

whereθ(x) > 0 is the inverse of the conditional expectation ofY givenX = x. This
distribution belongs to the Gumbel maximum domain of attraction which collects
all distributions with a null conditional extreme-value index. These distributions
are often referred to as light-tailed distributions. In such a case, Theorem 1 yields
a stronger convergence result than in the heavy-tail framework:

Corollary 2 Let us consider a conditional exponential distribution (8) with0 <
θmin ≤ θ(x) ≤ θmax for all x ∈ R

d. Assume thatθ is Lipschitzian. If the se-
quences(αn) and (hn) are such that hn logαn → 0 as n→ ∞ and (5), (6) hold,
then(q̂n(αn|x)−q(αn|x)) → 0 almost surely as n→ ∞.

4 Proofs

4.1 Proof of Theorem 1
Clearly, by (1),

|F̄(q(αn|x)|x)− F̄(q̂n(αn|x)|x)|
F̄(q(αn|x)|x)

≤ |αn− F̄n(q̂n(αn|x)|x)|
F̄(q(αn|x)|x)

+
|F̄n(q̂n(αn|x)|x)− F̄(q̂n(αn|x)|x)|

F̄(q(αn|x)|x)
.

First, from (2),|αn− F̄n(q̂n(αn|x)|x)| is bounded above by the maximal jump of
F̄n(y|x) at some observation point(Xj ,Yj ):

|αn− F̄n(q̂n(αn|x)|x)| ≤
maxj=1,...,nKh(x−Xj )

∑n
i=1Kh(x−Xi)

.

It follows from (K2) that

|αn− F̄n(q̂n(αn|x)|x)|
F̄(q(αn|x)|x)

≤ κ
nhdαnĝn(x)

.
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Let us then focus on the second term:

|F̄n(q̂n(αn|x)|x)− F̄(q̂n(αn|x)|x)|
F̄(q(αn|x)|x)

=
F̄(q̂n(αn|x)|x)
F̄(q(αn|x)|x)

∣

∣

∣

∣

F̄n(q̂n(αn|x)|x)
F̄(q̂n(αn|x)|x)

−1

∣

∣

∣

∣

. (9)

We write q̂n(αn|x) = (1+ ε)q(αn|x), with ε =
q̂n(αn|x)
q(αn|x) −1. Condition (3) allows

to deduce that there exists, forn sufficiently large,ε0 not dependent onx such
that |ε| ≤ ε0. Consequently and taking into account (9) there exists a positive
constantε0 not dependent onx andn such that (for the sake of simplicity, we write
q = q(αn|x))

∣

∣

∣

∣

F̄(q̂n(αn|x)|x)
F̄(q(αn|x)|x)

−1

∣

∣

∣

∣

≤ κ
nhdαnĝn(x)

+ sup
|ε|≤ε0

(

F̄(q(1+ ε))|x)
F̄(q|x)

∣

∣

∣

∣

F̄n(q(1+ ε)|x)
F̄(q(1+ ε))|x) −1

∣

∣

∣

∣

)

.(10)

Our purpose now is to control the term
∣

∣

∣

F̄n(q(1+ε)|x)
F̄(q(1+ε)|x) −1

∣

∣

∣
of (10). For this, write

F̄n(y|x) =
∑n

i=1Kh(x−Xi)1IYi>y

∑n
i=1Kh(x−Xi)

=:
ψ̂n(y,x)
ĝn(x)

,

with

ψ̂n(y,x) =
1
n

n

∑
i=1

Kh(x−Xi)1IYi>y, ĝn(x) =
1
n

n

∑
i=1

Kh(x−Xi).

We need the following lemma.

Lemma 1 Suppose that Condition (K2) holds. Then, for each n, one has for any
y∈ R and x∈ R

d for whichF̄(y|x)ĝn(x) 6= 0,
∣

∣

∣

∣

F̄n(y|x)
F̄(y|x) −1

∣

∣

∣

∣

≤ A(y,y,x,hn)+(1+A(y,y,x,hn))
|ĝn(x)−Eĝn(x)|

ĝn(x)
+

|ψ̂n(y,x)−E(ψ̂n(y,x)) |
F̄(y|x)ĝn(x)

.

The proof is postponed to the Appendix. According to Lemma 1, we have to

control the two quantitiesE |ĝn(x)−Eĝn(x)| and |ψ̂n(y,x)−E(ψ̂n(y,x))|
F̄(y|x) . This is the

purpose of Propositions 2 and 3 below.

Proposition 2 Einmahl-Mason (2005).
Suppose that g is a bounded density onR

d, and that the assumptions(K.i), · · · ,(K.iv)
of [13] are all satisfied. Then, for any c> 0,

limsup
n→∞

sup
{clnn/n≤hd

n≤1}

√

nhd
n

ln(h−d
n )∨ ln lnn

sup
x∈Rd

|ĝn(x)−Eĝn(x)| =: K(c) < ∞,

almost surely.

Our task now is to control|ψ̂n(y,x)−E(ψ̂n(y,x))|
F̄(y|x) . Let ε be a fixed real in[−ε0,ε0] for

some arbitrary positiveε0. The following proposition evaluates the almost sure
asymptotic behaviour of

|ψ̂n(q(1+ ε),x)−E(ψ̂n(q(1+ ε),x))|
F̄(q|x) .
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Proposition 3 Let (αn) be a sequence in[0,1] and for x∈ R
d, q= q(αn|x) be the

conditional quantile as defined by (1). Define the set of functionsF by,

F =

{

(u,v) 7−→ K

(

x−u
h

)

Iv>q(1+ε), n∈ N, h > 0, x∈ R
d, |ε| ≤ ε0

}

(11)

and suppose thatN (ε,F ) ≤Cε−ν , for some C,ν > 1 and all ε ∈]0,1[. Suppose

also that Condition (4) is satisfied. If nhd
nαn → ∞ and ln(αnhd

n∧α 2
n)

nhd
nαn

→ 0 as n→ ∞,

then there exists a positive constant C1 such that

limsup
n→∞

√

nαnhd
n

ln(α−1
n h−d

n )∨ ln lnn
sup

x∈Rd,|ε|≤ε0

|ψ̂n(q(1+ ε),x)−E(ψ̂n(q(1+ ε),x))|
F̄(q|x) ≤C1,

almost surely.

Proof of Proposition 3.We have,

1
F̄(q|x) (ψ̂n(q(1+ ε),x)−E(ψ̂n(q(1+ ε),x)))

=
1

nF̄(q|x)
n

∑
i=1

[Kh(x−Xi)1IYi>q(1+ε) −E(Kh(x−Xi)1IYi>q(1+ε))]

=
1

nhd
n

n

∑
i=1

(vh,x,ε(Xi ,Yi)−E(vh,x,ε(Xi ,Yi))) =
1

hd
n
√

n
βn(vh,x,ε),

where,

vh,x,ε(u,v) = K(
x−u

h
)
1Iv>q(1+ε)

F̄(q|x) , βn(g) =
1√
n

n

∑
i=1

(g(Xi ,Yi)−E(g(Xi ,Yi)))

Define the class of functions:

G := Gn,h = {vh,x,ε , x∈ R
d,ε ∈ [−ε0,ε0]} (12)

and let‖βn‖G = supg∈G |βn(g)| and

Θn = sup
x∈Rd,ε∈[−ε0,ε0]

|ψ̂n(q(1+ ε),x)−E(ψ̂n(q(1+ ε),x)) |
F̄(q|x) .

Consequently, for anyγ > 0,

P(Θn > γ) ≤ P

(√
n‖βn‖G > γnhd

)

≤ P

(

max
1≤m≤n

√
m‖βm‖G > γnhd

)

(13)

We have then to evaluate max1≤m≤n
√

m‖βm‖G . By Talagrand Inequality, (see
A.1. in [12]), we have for anyt > 0 and suitable finite constantsA1,A2 > 0,

P

(

max
1≤m≤n

√
m‖βm‖G > A1

(

E‖
n

∑
i=1

εig(Xi ,Yi)‖G + t

))

≤ 2exp(−A2t2/nσ2)+2exp(−A2t/M),

where(εi)i is a sequence of independent Rademacher random variables indepen-
dent of the random vectors(Xi ,Yi)1≤i≤n and

sup
g∈G

‖g‖∞ ≤ M, sup
g∈G

Var(g(X,Y)) ≤ σ2.
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Here‖g‖∞ ≤ ‖K‖∞
αn

=: M, and

Var(v2
h,x,ε(X,Y)) ≤ E(v2

h,x,ε(X,Y)) =
1

F̄2(q|x)E(K2(
x−X

h
)1IY>q(1+ε))

=
1

F̄(q|x)

∫

K2(
x−u

h
)
F̄(q(1+ ε)|u)

F̄(q|x) g(u)du

≤ hd
n

αn
sup

x∈Rd,ε∈[−ε0,ε0]

(1+A(q(1+ ε),q,x,h))‖K‖2
2‖g‖∞ =

hd
n

αn
L =: σ2,(14)

for some positive constantL, since forn sufficiently large

sup
x∈Rd,ε∈[−ε0,ε0]

A(q(1+ ε),q,x,h) ≤ cst.

We obtain combining this with the above Talagrand’s Inequality,

P

(

max
1≤m≤n

√
m‖βm‖∞ > A1

(

E‖
n

∑
i=1

εig(Xi ,Yi)‖G + t

))

≤ 2exp(−A2t2 αn

nhd
nL

)+2exp(−A2t
αn

‖K‖∞
). (15)

The last bound together with (13) gives

P

(

Θn > A1n−1h−d
n

(

E‖
n

∑
i=1

εig(Xi ,Yi)‖G + t

))

≤ 2exp(−A2t2 αn

nhd
nL

)+2exp(−A2t
αn

‖K‖∞
). (16)

We have now to evaluateE‖∑n
i=1εig(Xi ,Yi)‖G . We will argue as for the proof of

Proposition A.1. in [12]. We have by (6.9) of Proposition 6.8 in [24],

E‖
n

∑
i=1

εig(Xi ,Yi)‖G ≤ 6tn +6E(max
i≤n

‖εig(Xi ,Yi)‖G ) ≤ 6tn +6
‖K‖∞

αn
, (17)

where we have defined

tn = inf

{

t > 0,P

(

‖
n

∑
i=1

εig(Xi ,Yi)‖G > t

)

≤ 1
24

}

.

Our purpose is then to controltn. Define the event

Fn =

{

n−1 sup
g∈G

n

∑
j=1

g2(Xj ,Yj ) ≤ 64σ2

}

,

whereσ2 is as in (14). Letg0 be a fixed element ofG . We have,

E|
n

∑
i=1

εig0(Xi ,Yi)1IFn| ≤ 8σ
√

n.

By (A8) of [12], we have now to controlN (ε,G ,dn,2). Recall thatN (ε,G ,dQ)
is the minimal number of balls{g,dQ(g,g′) < ε} of dQ-radiusε needed to cover
G , dQ is theL2(Q)-metric and

dn,2( f ,g) = dQn( f ,g) =
∫

( f (x)−g(x))2dQn(x),
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with Qn = 1
n ∑n

i=1δ(Xi ,Yi). In other words

dn,2( f ,g) =
1
n

n

∑
i=1

( f (Xi ,Yi)−g(Xi ,Yi))
2.

We note first that, on the eventFn,

N (ε,G ,dn,2) = 1, wheneverε > 16σ .

We will suppose thenε ≤ 16σ . We have

N (ε,G ,dn,2) = N (ε,G ,dQn) ≤ N (εαn,F ,dQn),

whereF is as defined by (11). Recall thatN (ε,F ) = supQN (ε‖K‖∞,F ,dQ)

where the supremum is taken over all the probability measureQ on R
d ×R. We

have supposed that,
N (ε,F ) ≤Cε−ν .

for someC,ν > 1 and allε ∈]0,1[. Consequently,

N (ε,G ,dn,2) ≤C(
αnε
‖K‖∞

)−ν , (18)

as soon asαnε < ‖K‖∞. Hence, we have almost surely on the eventFn,

∫ ∞

0

√

ln(N (ε,G ,dn,2))dε =
∫ 16σ

0

√

ln(N (ε,G ,dn,2))dε

≤
∞

∑
i=0

∫ 2−i16σ

2−i−116σ

√

ln(C)+ν ln(
‖K‖∞
αnε

)dε

≤
∞

∑
i=0

2−i−116σ

√

ln(C)+ν ln(
2i+1‖K‖∞

αn16σ
)

≤ C2

∞

∑
i=0

√
i +1

2i+1

√

σ2max(ln(C1), ln(
1

α 2
nσ2 )),

for some positive constantsC1,C2 that depend only onC, ν and‖K‖∞. We con-
clude, using (A8) of [12],

E

(

‖
n

∑
i=1

εig(Xi ,Yi)‖G 1IFn

)

≤C′
2

√

nσ2max(ln(C1), ln(
1

α 2
nσ2 )). (19)

We now use Inequality A2 in [12] (which is due to Giné and Zinn), witht =

64
√

nσ2. We obtain, form≥ 1, since for anyg∈ G , ‖g‖∞ ≤ ‖K‖∞
αn

,

P(Fc
n ) = P

(

n−1 sup
g∈G

n

∑
j=1

g2(Xi ,Yi) > 64σ2

)

≤ 4P(N (ρn−1/4,G ,dn,2) ≥ m)+8mexp(−nσ2α 2
n/‖K‖2

∞)

wheren−1/4ρ = n−1/4min(σn1/4,n1/4) = min(σ ,1). Hence by (18),

N (ρn−1/4,G ,dn,2) ≤C(
αnmin(σ ,1)

‖K‖∞
)−ν ,
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Consequently, we have form= [2C(
αn min(σ ,1)

‖K‖∞
)−ν ],

P(Fc
n ) ≤ 16C(

αnmin(σ ,1)

‖K‖∞
)−ν exp(−nσ2α 2

n/‖K‖2
∞)

The last bound together with (19) gives,

P

(

‖
n

∑
i=1

εig(Xi ,Yi)‖G > t

)

≤ P(Fc
n )+

1
t
E

(

‖
n

∑
i=1

εig(Xi ,Yi)‖G 1IFn

)

≤ 16C(
‖K‖∞

αnmin(σ ,1)
)ν exp(−nσ2α 2

n/‖K‖2
∞)

+
C′

2
t

√

nσ2max(ln(C1), ln(
1

α 2
nσ2 )). (20)

Let us control the second term in (20). Recall that by (14),σ2 = L hd
n

αn
and thus

α 2
nσ2 = Lhd

nαn for some positive constantL. This fact together withhd
nαn → 0 as

n→ ∞ allows to deduce that forn sufficiently large,

C′
2
t

√

nσ2max(ln(C1), ln(
1

α 2
nσ2 )) ≤ Cst

t

√

nhd
n

αn
ln(

1
αnhd

n
). (21)

Our task now is to control the first term in (20). We have,

16C(
‖K‖∞

αnmin(σ ,1)
)ν exp(−nσ2α 2

n/‖K‖2
∞)

≤ Lν/2
0 exp

(

−nhd
nαn(L1 +

ν
2nhd

nαn
ln(αnhd

n ∧α 2
n))

)

,

which tends to 0 asn → ∞ as soon asnhd
nαn → 0 and ln(αnhd

n∧α 2
n)

nhd
nαn

→ 0. Hence

for t ≥ 48Cst

√

nhd
n

αn
ln( 1

αnhd
n
) =: tn, Inequalities (20) and (21) give forn sufficiently

large and fort ≥ tn

P

(

‖
n

∑
i=1

εig(Xi ,Yi)‖G > t

)

≤ 1
24

.

We conclude using this fact together with Inequality (17),

E‖
n

∑
i=1

εig(Xi ,Yi)‖G ≤ c

(

1
αn

+

√

nhd
n

αn
ln(

1
αnhd

n
)

)

= O

(

√

nhd
n

αn
ln(

1
αnhd

n
)

)

. (22)

Recalling that

Θn = sup
x∈Rd,ε∈[−ε0,ε0]

|ψ̂n(q(1+ ε),x)−E(ψ̂n(q(1+ ε),x)) |
F̄(q|x) ,

and collecting (22), (16), yields

P

(

Θn > A1n−1h−d
n

(

E‖
n

∑
i=1

εig(Xi ,Yi)‖G + t

))

≤ 2

[

exp

(

−A2L̃2 ln(ln(n))

L

)

+exp

(

− A2L̃
‖K‖∞

√

nhd
nαn ln(lnn)

)]

, (23)

9



for anyt ≥
(

Cst

√

nhd
n

αn
ln( 1

αnhd
n
)

)

∨ L̃
√

nhd
n

αn
ln(lnn) and somẽL > 0. Now,

lnn

nαnhd
n

+
ln(αnhd

n ∧α 2
n)

nαnhd
n

≤ ln(nαnhd
n)

nαnhd
n

,

which tends to 0 asn tends to infinity, since limn→∞ nαnhd
n = ∞. Hence,

lim
n→∞

lnn

nαnhd
n

= 0,

which proves that forn sufficiently largenhd
nαn ≥ lnn. We conclude then from

(23) that,

P

(

Θn > A1n−1h−d
n

(

E‖
n

∑
i=1

εig(Xi ,Yi)‖G + t

))

≤ 4(lnn)−ρ ,

since we havenhd
nαn ≥ lnn. We choosẽL in such a way thatρ > 1. Proposition 3

is proved thanks to Borel-Cantelli lemma.

We continue the proof of Theorem 1. Inequality (10), together with Lemma1 and
Condition (4), gives for some universal positive constantC

∣

∣

∣

∣

F̄(q̂n(αn|x)|x)
F̄(q(αn|x)|x)

−1

∣

∣

∣

∣

≤ κ
nhdαnĝn(x)

+C sup
|ε|≤ε0

A(q(1+ ε),q(1+ ε),x,hn)

+C sup
|ε|≤ε0

(1+A(q(1+ ε),q(1+ ε),x,hn))
|ĝn(x)−Eĝn(x)|

ĝn(x)

+C sup
|ε|≤ε0

|ψ̂n(q(1+ ε),x)−E(ψ̂n(q(1+ ε),x)) |
F̄(q|x)ĝn(x)

. (24)

We first use Einmahl and Mason’s result (cf. Proposition 2 above). All the require-
ments of Einmahl and Mason result are satisfied from that of Theorem 1. This
gives that, forclnn/n≤ hd

n ≤ 1,
√

nhd
n

ln(h−d
n )∨ ln lnn

sup
x∈Rd

|ĝn(x)−Eĝn(x)| < C, (25)

almost surely. Our task now is to apply Proposition 3. We first claim that

Lemma 2 Under Condition(K3), the class of functionF defined by(11) satisfies
N (ε,F ) ≤Cε−ν , for C > 0,ε > 0,ν > 1.

Proof of Lemma 2. Define the set of functionF = K I , where the set of func-
tionsK isK =

{

u 7−→ K
( x−u

h

)

,x∈ R
d, h > 0

}

, andI = {v 7−→ 1Iv>q(1+ε), x∈
R

d,n∈N, |ε| ≤ ε0}. The proof of Lemma 2 follows from Lemma A.1 of [12] since
N (ε,{v 7−→ 1Iv>y, y∈ R}) ≤Cε−ν̃ with ν̃ > 0 andC > 0.

10



Consequently, all the requirements of Proposition 3 are satisfied from that of The-
orem 1. The conclusion of Proposition 3 together with (25), (24) and the facts
that

√

ln(h−d
n )∨ ln lnn

nhd
n

≤

√

ln(α−1
n h−d

n )∨ ln lnn

nhd
nαn

,

1
nhd

nαn
≤

√

ln(α−1
n h−d

n )∨ ln lnn

nαnhd
n

complete the proof of Theorem 1.

4.2 Proof of Proposition 1

Let us introduceZ(n)
i (x) for i = 1, . . . ,n a triangular array of i.i.d. random variables

defined byZ(n)
i (x) =Yi I‖x−Xi‖≤h. Their common survival distribution function can

be expanded as:

Ψ̄n(t,x) = P(Z(n)
1 (x) > t) =

∫

‖x−u‖≤h
F̄(t|u)g(u)du

= hd
∫

‖v‖≤1
F̄(t|x−hv)g(x−hv)dv,

or equivalently,

Ψ̄n(t,x)

hdF̄(t|x)g(x)
=

∫

‖v‖≤1
dv

+
∫

‖v‖≤1

(

F̄(t|x−hv)
F̄(t|x) −1

)

g(x−hv)
g(x)

dv

+
∫

‖v‖≤1

(

g(x−hv)
g(x)

−1

)

dv.

Letting vd =
∫

‖v‖≤1dv the volume of the unit sphere, and assuming thatg is Lips-
chitzian, it follows,

Ψ̄n(t,x)

hdF̄(t|x)g(x)
= vd +o(1)+O(A(t, t,x,0,h))

and introducingβn(x) = nΨ̄n(q(αn|x)|x), we obtain

βn(x) = vdg(x)nhdαn(1+o(1))

under conditionA(q(αn|x),q(αn|x),x,0,h) → 0 asn→ ∞. We now need the fol-
lowing lemma (also available to triangular arrays).

Lemma 3 (Klass, 1985) [23] Let Z,Z1,Z2, . . . be a sequence of i.i.d. random
vectors and define Mn = max{Z1, . . . ,Zn}. Suppose that(bn) is nondecreasing,
P(Z > bn) → 0 and nP(Z > bn) → ∞ as n→ ∞. If, moreover,

∞

∑
n=1

P(Z > bn)exp{−nP(Z > bn)} = ∞,

thenlimsupn→∞ Mn/bn < 1 a.s.

11



From Lemma 3, a sufficient condition for

limsup
n→∞

max1≤i≤nZ(n)
i (x)

q(αn|x)
< 1 a.s. (26)

is
∞

∑
n=1

βn(x)
n

exp{−βn(x)} = ∞,

which is fulfilled under (6). Finally,

q̂n(αn|x)
q(αn|x)

≤ max1≤i≤nZ(n)
i (x)

q(αn|x)

and the conclusion follows from (26).

4.3 Proofs of corollaries
Proof of Corollary 1.For all τ ∈ [0,1] and(u,x) such thatd(u,x) ≤ Rhn, we have

F̄(q(αn|x)(1+ ε)|u)

F̄(q(αn|x)(1+ ε)τ |x) = q(αn|x)θ(x)−θ(u)(1+ ε)τθ (x)−θ(u)

= exp

{

θ(u)−θ(x)
θ(x)

logαn +(τθ (x)−θ(u)) log(1+ ε)

}

= exp{O(hn logαn)+O(τθ (x)−θ(u))}
= (1+O(hn logαn))exp{O(τθ (x)−θ(u))}. (27)

Assuming thathn logαn → 0 asn→∞, it follows that (27) is bounded above for all
τ ∈ [0,1] and(u,x) such thatd(u,x) ≤ Rhn and therefore condition (4) is fulfilled.
If, moreover,τ = 1 thenO(θ(x)−θ(u)) = O(hn) and thus (27) tends to zero asn
goes to infinity. Proposition 1 then entails that assumption (3) holds. Theorem 1
implies that

∣

∣

∣

∣

1− F̄(q̂n(αn|x)|x)
F̄(q(αn|x)|x)

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

1−
(

q̂n(αn|x)
q(αn|x)

)−θ(x)
∣

∣

∣

∣

∣

→ 0

almost surely asn→ ∞. The conclusion follows.

Proof of Corollary 2.For all τ ∈ [0,1] and(u,x) such thatd(u,x) ≤ Rhn, we have

F̄(q(αn|x)(1+ ε)|u)

F̄(q(αn|x)(1+ ε)τ |x) = exp

{

(1+ ε) log(αn)

(

θ(u)−θ(x)
θ(x)

+1− (1+ ε)τ−1
)}

= exp{O(hn logαn)}exp
{

(1+ ε) log(αn)
(

1− (1+ ε)τ−1
)}

= (1+O(hn logαn)o(1) = o(1). (28)

Assuming thathn logαn → 0 asn→ ∞, it follows that (28) tends to zero asn goes
to infinity. Assumptions (3) and (4) both hold. Theorem 1 implies that

∣

∣

∣

∣

1− F̄(q̂n(αn|x)|x)
F̄(q(αn|x)|x)

∣

∣

∣

∣

= |1−exp((q(αn|x)− q̂n(αn|x))θ(x))| → 0

almost surely asn→ ∞. The conclusion follows.
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Appendix: proof of auxiliary results
Proof of Lemma 1.Clearly,

∣

∣

∣

∣

F̄n(y|x)
F̄(y|x) −1

∣

∣

∣

∣

≤
∣

∣

∣

∣

F̄n(y|x)
F̄(y|x) − E(ψ̂n(y,x))

F̄(y|x)E(ĝn(x))

∣

∣

∣

∣

+

∣

∣

∣

∣

E(ψ̂n(y,x))
F̄(y|x)E(ĝn(x))

−1

∣

∣

∣

∣

(29)

We have,

E(ψ̂n(y,x)) =
1
n

n

∑
i=1

E(Kh(x−Xi)1IYi>y) = E(Kh(x−X1)1IY1>y)

= E(Kh(x−X1)P(Y1 > y|X1)) =
∫

Kh(x−z)P(Y1 > y|X1 = z)g(z)dz

=
∫

Kh(x−z)F̄(y|z)g(z)dz,

andE(ĝn(x)) = 1
n ∑n

i=1E(Kh(x−Xi)) = E(Kh(x−X1)). Consequently,

E(ψ̂n(y,x))
F̄(y|x)E(ĝn(x))

−1 =

=
1

E(Kh(x−X1))

(

∫

Kh(x−z)

[

F̄(y|z)
F̄(y|x) −1

]

g(z)dz

)

=
1

E(Kh(x−X1))

(

∫

Kh(u)

[

F̄(y|x−u)

F̄(y|x) −1

]

g(x−u)du

)

.

We conclude, since the kernelK is compactly supported, that for someR> 0,
∣

∣

∣

∣

E(ψ̂n(y,x))
F̄(y|x)E(ĝn(x))

−1

∣

∣

∣

∣

≤ sup
{x′,d(x,x′)≤hR}

∣

∣

∣

∣

F̄(y|x′)
F̄(y|x) −1

∣

∣

∣

∣

= A(y,y,x,h). (30)

Now,
∣

∣

∣

∣

F̄n(y|x)
F̄(y|x) − E(ψ̂n(y,x))

F̄(y|x)E(ĝn(x))

∣

∣

∣

∣

≤ |ψ̂n(y,x)−E(ψ̂n(y,x)) |
F̄(y|x)ĝn(x)

+
E(ψ̂n(y,x)) |ĝn(x)−Eĝn(x)|

F̄(y|x)ĝn(x)Eĝn(x)

≤ |ψ̂n(y,x)−E(ψ̂n(y,x)) |
F̄(y|x)ĝn(x)

+(1+A(y,y,x,h))
E |ĝn(x)−Eĝn(x)|

ĝn(x)
,

by (30). The last bound together with (30) and (29) prove Lemma 1.
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