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Abstract. This paper presents a practical and simple fully nonparametric multivariate smoothing
procedure that adapts to the underlying smoothness of the true regression function. Our estimator is
easily computed by successive application of existing base smoothers (without the need of selecting an
optimal smoothing parameter), such as thin-plate spline or kernel smoothers. The resulting smoother
has better out of sample predictive capabilities than the underlying base smoother, or competing
structurally constrained models (MARS, GAM) for small dimension (3 ≤ d ≤ 7) and moderate sample
size n ≤ 1000. Moreover our estimator is still useful when d > 10 and to our knowledge, no other
adaptive fully nonparametric regression estimator is available without constrained assumption such
as additivity for example. On a real example, the Boston Housing Data, our method reduces the out
of sample prediction error by 20%. An R package ibr, available at CRAN, implements the proposed
multivariate nonparametric method in R.
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1. Introduction

Regression is a fundamental data analysis tool for uncovering functional relationships between pairs of ob-
servations (Xi, Yi), i = 1, . . . , n. The traditional approach specifies a parametric family of regression functions
to describe the conditional expectation of the response variable Y given the multivariate predictor variables
X ∈ R

d, and estimates the free parameters by minimizing the squared error between the predicted values and
the data. An alternative approach is to assume that the regression function varies smoothly in the exogenous
variable x and then estimate locally the conditional expectation m(x) = E[Y |X = x]. This results in nonpara-
metric regression estimators. We refer the interested reader to [10] for a more in depth treatment of various
classical regression smoothers. Operationally, the vector of n fitted values at X1, . . . , Xn from linear smoothers
can be written as m̂ = SY, where S is a n×n smoothing matrix which depends on observations X1, . . . , Xn and
on a tuning parameter λ (which we suppress for ease of notation). The tuning parameter governs the tradeoff
between the smoothness of the estimate and the goodness-of-fit of the smoother to the data, by controlling
the effective size of the local neighborhood of the explanatory variable over which the responses are averaged.
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We parameterize the smoothing matrix such that large values of λ will produce very smooth curves while small λ
will produce a more wiggly curve that almost interpolates the data. For example, the tuning parameter λ is the
bandwidth for kernel smoother, the span size for running-mean smoother, the scalar that governs the smoothness
penalty term for Thin Plate Splines (TPS). . .

It is well known that given n uniformly distributed points in the unit ball {x ∈ R
d : ‖x‖ ≤ 1}, the expected

number of points that are covered by a ball centered at the origin with radius ε < 1, is nεd. This is to
say that covariates in high dimension are typically sparse. This phenomenon is sometimes called the curse of
dimensionality. As a consequence, nonparametric smoothers must average over larger neighborhoods, which in
turn produces more heavily biased smoothers. Optimally selecting the smoothing parameter to balance bias
squared and variance does not alleviate this problem.

The challenge of nonparametric estimation in high dimension is also reflected in the optimal rate of conver-
gence. Specifically, when the regression function m mapping R

d to R belongs to some finite smoothness functional
classes (Hölder, Sobolev, Besov) the optimal mean squared error rate of convergence is n−2ν/(2ν+d) where ν is
the smoothing index. As a result, common wisdom suggest avoiding all general nonparametric smoothing in
moderate dimensions (say d > 5) and focus instead on fitting structurally constrained regression models, such
as additive [19] and projection pursuit models [14]. The popularity of additive models stems in part from the
interpretability of the individual estimated additive components, and from the fact that the estimated regression
function converges to the best additive approximation of the true regression function at the optimal univariate
mean squared error rate of n−2ν/(2ν+1). While additive models do not estimate the true underlying regression
function, one hopes for the approximation error to be small enough so that for moderate sample sizes, the
prediction mean square error of the additive model is less than the prediction error of a fully nonparametric
regression model.

The impact of the curse of dimensionality is lessened for very smooth regression functions. For regression
functions with ν = 2d continuous derivatives, the optimal rate is n−4/5, a value recognized as the optimal
mean squared error of estimates for twice differentiable univariate regression functions. The difficulty is that in
practice, the smoothness of the regression function is typically unknown. Nevertheless, there are large potential
gains (in terms of rates of convergence) if one considers multivariate smoothers that adapt to the smoothness
of the regression function. Since the pioneer work of [22], adaptive nonparametric estimation became a major
topic in mathematical statistics, see for example [17]. Adaptive nonparametric estimator can be achieve either by
direct estimation (see Lepski’s method and related papers) or by aggregation of different procedures, see [31].
This paper presents a practical and simple nonparametric multivariate smoothing procedure that adapts to
the underlying smoothness of the true regression function. Our estimator is easily computed by successive
application of existing smoothers, such as TPS or kernel smoother.

Section 2 introduces our procedure and motivates it as repeated corrections to the bias of a smoother, where
the number of corrections is chosen by Generalized Cross-Validation (GCV). Section 3 applies the iterative bias
reduction procedure to multivariate TPS smoothers. TPS smoothers have attractive theoretical properties that
facilitate proofs of adaptation to the unknown smoothness of our procedure. However, implementation of the
TPS is limited by the need of the sample size to be larger than the size of its parametric component. The
latter grows exponentially with the dimension of the covariates d. For practical considerations, we consider,
in Section 4, the iterative bias reduction procedure using kernel smoothers and nearest neighbor smoothers.
We provide both positive and negative results showing that the desirable properties of iterative bias correction
scheme are not universal. In particular, we show that iterative bias correction of nearest neighbor smoothers,
and kernel smoothers whose kernel are not positive definite do not enjoy the desirable behavior of TPS. The
simulation results presented in Section 5 show that for moderate dimensions of the covariates (e.g. 3 ≤ d ≤ 7),
and sample sizes ranging from n = 50 to n = 800, our iterated smoother has significantly smaller prediction
error than the base smoother with using an “optimal smoothing” parameter. We end this section with the
prediction of the classical Boston housing data set (n = 506 and d = 13). The interested reader can download
an R implementation of our procedure with optimized computations for moderate sample size [6]. Finally, the
proofs are gathered in the Appendix A.
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2. Iterative bias reduction

This section presents the general iterative bias reduction framework for linear regression smoothers and shows
that the resulting smoother, when combined with GCV, adapts to the underlying smoothness of the regression
function. The advantage of our smoother is its simplicity: we only need to repeatedly estimate the current bias.
Suppose that the pairs (Xi, Yi) ∈ R

d × R are related through the regression model

Yi = m (Xi) + εi, i = 1, . . . , n, (2.1)

where m(·) is an unknown smooth function, and the disturbances εi are independent mean zero and variance σ2

random variables that are independent of all the covariates (X1, . . . , Xn). It is helpful to rewrite equation (2.1)
in vector form by setting Y = (Y1, . . . , Yn)T (where T denotes the matrix transpose), m = (m(X1), . . . , m(Xn))T

and ε = (ε1, . . . , εn)T , to get
Y = m + ε. (2.2)

Linear smoothers can be written as
m̂ = SY, (2.3)

where S is an n × n smoothing matrix and m̂ = (Ŷ1, . . . , Ŷn)T , denotes the vector of fitted values. Let I be
the n × n identity matrix. The bias of the linear smoother (2.3), conditionally on the observed values of the
covariates Xn

1 = (X1, . . . , Xn), is

E [m̂|Xn
1 ] − m = (S − I)m = −E [(I − S)Y |Xn

1 ] . (2.4)

2.1. Bias reduction of linear smoothers

Let us start with an initial estimator m̂1 = S1Y . Expression (2.4) suggests that the bias can be estimated by
smoothing the negative residuals −r1 = −(Y − m̂1) = −(I − S)Y or alternatively by plugging in an estimator
m̃1 = SY for m into the expression of the bias (2.4). In both cases, correcting the pilot smoother m̂1 by
subtracting the estimated bias yields a bias corrected smoother m̂2. Since m̂2 is itself a linear smoother, it is
possible to correct its bias as well. Repeating the bias reduction step k − 1 times produces two kind of linear
smoother. If we consider using a possibly different smoothing matrices Sk at each iteration k we have:

• The k-times bias corrected smoother obtained by smoothing the current residuals:

m̂k = S1Y + S2 (I − S1)Y + . . . + Sk (I − Sk−1) . . . (I − S1)Y

= [I − (I − Sk) (I − Sk−1) . . . (I − S1)] Y. (2.5)

• The k-times bias corrected smoother obtained by plugging in an estimator of m in the bias:

m̂k = S1Y + (I − S1) S2Y + . . . + (I − S1) (I − S2) . . . SkY

= [I − (I − S1) (I − S2) . . . (I − Sk)] Y. (2.6)

While in general, these two estimates for the bias lead to distinct bias corrected smoothers (2.5) and (2.6), they
are identical when the same smoothing matrix is used at every step of the procedure. Taking S = S1 = S2 =
. . . = Sk, both the plug-in estimator and the residual smoothing estimator agree and the k-times bias corrected
smoother can be written as

m̂k = m̂0 + b̂1 + . . . + b̂k (2.7)

= S
[
I + (I − S) + (I − S)2 + . . . + (I − S)k−1

]
Y

= m̂k−1 + Srk−1

=
[
I − (I − S)k

]
Y. (2.8)
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This closed form shows that the behavior of the sequence of iterative bias corrected smoothers m̂k is governed
by the spectrum of I−S. If the eigenvalues λj of I−S are in [0, 1) then as k tends to infinity, the bias converges
to 0 and the variance increases to nσ2 and the resulting smoother will interpolate the data. A reduction in the
bias of an estimator increases its variance. Thus for bias correction procedures to be practical, we need to start
with a pilot smoother that oversmooths (and hence is heavily biased), and the question of “when to stop the
iterative bias reduction procedure” is addressed in Section 2.3.

In the univariate case, smoothers of the form (2.7) arise from the L2-boosting algorithm with a symmetric
base smoother S and a convergence factor μk equal to one, see [13] for a definition of this factor. Thus we
can interpret the L2-boosting algorithm as an iterative bias reduction procedure fitting residuals with the same
smoother at each iteration.

From a historical perspective, the idea of estimating the bias from residuals to correct a pilot estimator of a
regression function goes back to the concept of twicing introduced by [27] to estimate the bias of misspecified
multivariate regression models. [26], in the fixed equispaced design in [0, 1] twiced the kernel estimator and
obtained

m̂SM(x) =
2
n

n∑
i=1

Kh (x − xi)Yi − 1
n

n∑
i=1

Kh (x − xi)
n∑

j=1

Kh (xi − xj)Yj .

The last term is an approximation of K ∗K (the convolution of K by K). They prove that K2 = 2Kh−Kh ∗Kh

is a higher order kernel. Using [1] idea of iterating that procedure replacing K for example by K2 will lead
to Kh + K2 − Kh ∗ K2 which is again a higher order kernel. Iterating that procedure with an initial kernel of
order r, one will obtain at step k and (k−1)r order kernel. So iterating in equidistant fixed design our procedure
could be seen as choosing the order of the kernel. However, this result does not generalize to non-equidistant or
random design. That is, the iterative bias reduction estimator is not equivalent to using higher order kernels.

The idea of iterative debiasing regression smoothers is also present in [2] in the context of the bagging
algorithm. More recently, the interpretation of the L2-boosting algorithm as an iterative bias correction scheme
was alluded to in ’s discussion of the paper on the statistical interpretation of boosting of [15].

Bühlmann and Yu [4] presented the statistical properties of the L2-boosted univariate smoothing splines and
show that if the true unknown function belongs to a Sobolev space of order μ, the L2-boosted smoother m̂k

achieves the optimal mean squared error convergence rate. We are generalizing their results to the multidimen-
sional case directly without proposing additive boosting.

Di Marzio and Taylor [9] describe the behavior of univariate kernel smoothers after a single bias-correction
iteration. They show that the bias is decreased by 2-steps Nadaraya−Watson estimator with its optimal band-
width compared to the pilot estimator (1 step) with optimal bandwidth. Moreover, whenever the number of
steps k is chosen, an optimal bandwidth have to be found.

2.2. Properties of iterative bias corrected smoothers

The squared bias and variance of the kth iterated bias corrected smoother m̂k given in (2.8) are

E ([m̂k|Xn
1 ] − m) E ([m̂k|Xn

1 ] − m)T = (I − S)km mT
(
(I − S)k

)T
var (m̂k|Xn

1 ) = σ2
(
I − (I − S)k

) ((
I − (I − S)k

))T
.

This shows that the behavior of the sequence of iterative bias corrected smoothers m̂k can be related to the
spectrum of I − S: if the eigenvalues λj of I − S are between 0 and 1, the bias will decrease to 0 as n increases.
Not all linear smoothers satisfy the condition on the spectrum of I − S. In Section 4, we give examples of
common smoothers for which λj > 1, and show numerically that for these shrinkage smoothers, the iterative
bias correction scheme fails.

The number of iterations of the bias correction scheme is analogous to smoothing parameters of more classical
smoothers: For small numbers of iterations, the smoother is very smooth, becoming increasingly wiggly as the
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number of iterations increases, to ultimately interpolate the data. Smoothers at either extreme (oversmoothing
or interpolating the data) may have large prediction errors, and the presumptions is that along the sequence of
bias corrected smoothers, there will be smoothers that have significantly smaller prediction errors. In Section 3,
we show no only that this fact holds for TPS, but that there exists smoothers in that sequence that “adapts
to the unknown smoothness” of the regression function and achieves the optimal rate of convergence. Since
standard TPS smoothers are not adaptive, this demonstrates the usefulness of iterative bias correction.

2.3. Data-driven selection of the number of steps

The choice of the number of iterations is crucial since each iteration of the bias correction algorithm reduces
the bias and increases the variance. Often a few iterations of the bias correction scheme will improve upon
the pilot smoother. This brings up to the important question of how to decide when to stop the iterative bias
correction process.

Viewing the latter question as a model selection problem suggests stopping rules for the number of iterations
based on Akaike Information Criteria (AIC), modified AIC [21], Bayesian Information Criterion (BIC), cross-
validation, L-fold cross-validation, Generalized cross validation [8], and data splitting. Each of these data-driven
model selection methods estimate an optimum number of iterations k of the iterative bias correction algorithm
by minimizing estimates for the expected squared prediction error of the smoothers over some pre-specified set
Kn = {1, 2, . . . , Mn} for the number of iterations. Extensive simulations of the above mentioned model selection
criteria, both in the univariate and the multivariate settings [5] have shown that GCV

k̂GCV = arg min
k∈Kn

{
log σ̂k

2 − 2 log
(

1 − trace (Sk)
n

)}

is a good choice, both in terms of computational efficiencies and of producing good final smoothers and asymp-
totic results (cf. Thm. 3.2). At each iteration, σ̂k

2 corresponds to the estimated variance of the current residuals.
Strongly related to the number of iteration is the smoothness of the pilot smoother, since the smoother the
pilot is, the bigger is the number of iteration. One has to be sure that the pilot smoother oversmooths. We will
discuss that point in the simulation part, since it depends on the type of smoother (TPS, kernel).

3. Iterative bias reduction of multivariate thin-plate splines smoothers

We study the statistical properties of the iterative bias reduction of multivariate TPS smoothers. Suppose the
unknown function m from R

d → R belongs to the Sobolev space H(ν)(Ω) = H(ν), where ν is an unknown integer
such that ν > d/2 and Ω is an open bounded subset of R

d. Given a smoothing parameter λ, the thin-plate
smoother of degree ν0 minimizes on H(ν) [see 16,30]

n∑
i=1

(Yi − f (Xi))
2 + λ

⎡
⎢⎣ ∑

i1, . . . , id ≥ 0
i1 + . . . + id ≤ ν0

∫
Rd

∣∣∣∣ ∂i1+...+id

∂xi1 . . . ∂xid

f(x)
∣∣∣∣
2

dx

⎤
⎥⎦ . (3.1)

The first part of the functional to be minimized controls the data fitting while the second part, controls the
smoothness. TPS are an attractive class of multivariate smoothers for two reasons: first, a closed form solution
of (3.1) can be found and it is a linear smoother see [16], and second, the eigenvalues of the smoothing matrix
are approximatively known [28].

3.1. Numerical example

The eigenvalues of the associated smoothing matrix lie between zero and one. In light of Section 2.2, the
sequence of bias corrected TPS smoothers, starting from a pilot that oversmooths the data, will converge to
an interpolant of the raw data. As a result, we anticipate that after some suitable number of bias correction
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Figure 1. True regression function m(x1, x2) (3.2) on the square [0, 1] × [0, 1] used in our
numerical examples and a sample of size 100 with errors and a sample of 100 points.

x1

0.0

0.2

0.4

0.6

0.8

1.0

x2

0.0

0.2

0.4

0.6

0.8

1.0

f(x1,x2)

0.0

0.2

0.4

0.6

0.8

1.0

x1

0.0

0.2

0.4

0.6

0.8

1.0

x2

0.0

0.2

0.4

0.6

0.8

1.0

f(x1,x2)

0.0

0.2

0.4

0.6

0.8

1.0

x1

0.0

0.2

0.4

0.6

0.8

1.0

x2

0.0

0.2

0.4

0.6

0.8

1.0

f(x1,x2)

0.0

0.2

0.4

0.6

0.8

1.0

)c()b()a(

Figure 2. TPS regression smoothers from 100 noisy observations from (3.2) (see Fig. 1) evalu-
ated on a regular grid on [0, 1]× [0, 1]. Panel (a) shows the pilot smoother, panel (b) graphs the
bias corrected smoother after 500 iterations and panel (c) graphs the smoother after 50 000 it-
erations of the bias correction scheme.

steps, the resulting bias corrected smoother will be a good estimate for the true underlying regression function.
This behavior is confirmed numerically in the following pedagogical example of a bivariate regression problem:
Figure 1 graphs Wendelberger’s test function [29]

m(x, y) =
3
4

exp
(
− (9x − 2)2 + (9y − 2)2

4

)
+

3
4

exp
(
− (9x + 1)2

49
+

(9y + 1)2

10

)

+
1
2

exp
(
− (9x − 7)2 + (9y − 3)2

4

)
− 1

5
exp
(−(9x − 4)2 − (9y − 7)2

)
(3.2)

that is sampled at 100 locations on the regular grid {0.05, 0.15, . . . , 0.85, 0.95}2. The disturbances are mean zero
Gaussian with variance producing a signal to noise ratio of five.

Figure 2 shows the evolution of the bias corrected smoother, starting from a nearly linear pilot smoother
in panel (a). At iteration k = 500 (or 499 iterative bias reduction steps), the smoother shown in panel (b) is
visually close to the original regression function. Continuing the bias correction scheme will eventually lead to a
smoother that interpolates the raw data. This example shows the importance of suitably selecting the number
of bias correction iterations.



RECURSIVE BIAS ESTIMATION FOR MULTIVARIATE REGRESSION SMOOTHERS 489

3.2. Adaptation to smoothness of the regression function

Let Ω be an open set of R
d satisfying an uniform cone condition and having a Lipschitz boundary see [28].

Suppose that the unknown regression function m belongs to the Sobolev space H(ν)(Ω) = H(ν), where ν is an
integer such that ν > d/2. Let S denote the smoothing matrix of a thin-plate spline of order ν0 ≤ ν which is
symmetric and admits M0 =

(
ν0+d−1

ν0−1

)
eigenvalues equal to one (in practice we will take the smallest possible

value ν0 = �d/2� + 1) and fix the smoothing parameter λ0 > 0 to some reasonably large value. Our next
Theorem states that there exists a number of iterations k = k(n), depending on the sample size, for which the
resulting estimate m̂k achieves the optimal rate of convergence. In light of that Theorem, we expect that an
iterative bias corrected smoother, with the number of iterations selected by GCV, will achieve the optimal rate
of convergence.

Theorem 3.1. Assume that the design Xi ∈ Ω, i = 1, . . . , n satisfies the following assumption: Define

hmax(n) = sup
x∈Ω

inf
i=1,...,n

|x − Xi| , and hmin(n) = min
i�=j

|Xi − Xj| ,

and assume that there exists a constant B > 0 such that

hmax(n)
hmin(n)

≤ B ∀n.

Suppose that the true regression function m ∈ H(ν). If the initial estimator m̂1 = SY is obtained with S a TPS
of degree ν0, with �d/2� + 1 ≤ ν0 < ν and a fixed smoothing parameter λ0 > 0 not depending on the sample
size n, then there is an optimal number of iterations k(n) such that the resulting smoother m̂k satisfies

E

⎡
⎣ 1

n

n∑
j=1

(
(m̂k (Xj) − m (Xj))

2
]

= O
(
n−2ν/(2ν+d)

)
,

which is the optimal rate of convergence for m ∈ H(ν).

Obviously, the hypothesis on the design implies that Ω is bounded. This hypothesis is fulfilled for example for
uniform design see [4]. While adaptation of the L2-boosting algorithm applied to univariate smoothing splines
was proven by [4], the application of bias reduction to achieve adaptation to the smoothness of multivariate
regression function has not been previously exploited. Rate optimality of the smoother m̂k is achieved by suitable
selection of the number of bias correcting iterations, while the smoothing parameter λ0 remains unchanged. That
is, the effective size of the neighborhoods the smoother averages over remains constant. Selecting the optimal
number of iterations is important and we prove that result with GCV criterion using Theorem 3.2 of [23].

Theorem 3.2. Suppose that the hypothesis on Ω and the design of Theorem 3.1 are fulfilled and the initial
estimator is the same as in Theorem 3.1. Let k̂GCV ∈ Kn = {1, . . . , �nγ�}, 1 ≤ γ ≤ (2ν0)/d, denote the index
in the sequence of bias corrected smothers whose associated smoother minimize the generalized cross-validation
criteria. Suppose that the noise ε in (2.1) has finite 4qth absolute moment, where q > γ(2ν/d + 1), that is,
E[|ε|4q] < ∞. Then as the sample size n grows to infinity,

‖m̂k̂GCV
− m‖2

infk∈Kn ‖m̂k − m‖2
−→ 1, in probability.

The moment condition is satisfied for Gaussian or subgaussian errors.
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4. Iterative bias reduction of kernel and K-nearest neighbor smoothers

The matrix S of TPS is symmetric and has eigenvalues in (0, 1] see for example [28]. In particular, the first
M0 =

(
ν0+d−1

ν0−1

)
eigenvalues are all equal to one, corresponding to the parametric component of the smoothing

spline. The sample size n needs to be at least M0, and since from Theorem 3.1 we want ν0 > d/2, it follows
that M0 grows exponentially fast in the number of covariates d. In particular the dimension of the parametric
component is 5, 28, 165, 1001 for d = 4, 6, 8, 10, respectively, and more generally, M0 grows like 3d/2 × (3/2)d

for large d. This feature limits the practical usefulness of TPS smoothers. For example, the regression model in
Section 5 for the Boston housing data set that has 13 covariates can not be fit with a TPS because its sample
size n = 506 < 27 500 ≈ M0.

A possible solution is to approximate the TPS smoother with a kernel smoother, with an appropriate kernel.
In this section, we discuss kernel based smoothers and we give a necessary and sufficient condition on the kernel
that ensures that the iterative bias correction scheme is well behaved.

4.1. Nearest neighbor smoother

Our first result is that K-nearest neighbor (KNN) smoothers are not suited for the iterative bias reduction
scheme (L2 boosting) because the matrix I − S has eigenvalues larger than one. This result is somewhat
surprising, as nearest neighbor classifiers are the weak classifiers of choice for boosting algorithm of machine
learning. Recall that the smoothing matrix of the K-nearest neighbor smoother has entries Sij = 1/K when Xj

belongs to the K-nearest neighbor of Xi, and Sij = 0 otherwise. By definition Xi does not belong to its K-
nearest neighbor, so that Sii = 0. It follows that the trace of S is zero, and since S is a stochastic matrix, it
has at least one eigenvector with eigenvalue equal to one. It follows that there exists an eigenvector having a
negative eigenvalue, which implies that the spectrum of I − S is not contained in the unit interval [0, 1].

Lemma 4.1. Let S be the smoothing matrix of the K nearest neighbor smoother with K ≥ 1. Then S has at
least one negative eigenvalue.

4.2. Kernel type smoothers

The matrix S of kernel estimators has entries Sij = K(dh(Xi, Xj))/
∑

k K(dh(Xi, Xj)), where K(.) is typ-
ically a symmetric function in R (e.g., uniform, Epanechnikov, Gaussian), and dh(x, y) is a weighted distance
between two vectors x, y ∈ R

d. The particular choice of the distance d(·, ·) determines the shape of the neighbor-

hood. For example, the weighted Euclidean norm dh(x, y) =
√∑d

j=1(xj − yj)2/h2
j , where h = (h1, . . . , hd) de-

notes the bandwidth vector, gives rise to elliptic neighborhoods. While the smoothing matrix S is not symmetric,
it has a real spectrum. Write S = DK, where K is symmetric matrix with general element Kij = K(dh(Xi, Xj))
and D is diagonal matrix with elements Dii = 1/

∑
j K(dh(Xi, Xj)). If q is an eigenvector of S associated to

the eigenvalue λ, then
Sq = DKq = D1/2

(
D1/2

KD1/2
)

D−1/2q = λq,

and hence (
D1/2

KD1/2
)(

D−1/2q
)

= λ
(
D−1/2q

)
.

The symmetric matrix A = D1/2
KD1/2 has the same spectrum as S. Since S is row-stochastic, all its eigenvalues

are bounded by one. Thus, in light of results of Section 2.2, we seek conditions on the kernel K to ensure that
its spectrum is non-negative. Necessary and sufficient conditions on the smoothing kernel K for S to have a
non-negative spectrum are given in the following Theorem.

Theorem 4.2. If the inverse Fourier-Stieltjes transform of a kernel K(·) is a real positive finite measure, then
the spectrum of the Nadaraya−Watson kernel smoother lies between zero and one.

Conversely, suppose that X1, . . . , Xn are an independent n-sample from a density f (with respect to Lebesgue
measure) that is bounded away from zero on a compact set strictly included in the support of f . If the inverse
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Figure 3. Gaussian kernel smoother of m(x1, x2) from n = 100 equidistributed points on
[0, 1] × [0, 1], evaluated on a regular grid with (a) k = 1, (b) 50 and (c) 10 000 iterations.

Fourier−Stieltjes transform of a kernel K(·) is not a positive finite measure, then with probability approaching
one as the sample size n grows to infinity, the maximum of the spectrum of I − S is larger than one.

Remark 4.3. The assumption that the inverse Fourier−Stieltjes transform of a kernel K(·) is a real positive
finite measure is equivalent to the kernel K(·) being positive-definite function, that is, for any finite set of
points x1, . . . , xm, the matrix K is positive definite. We refer to [25] for a detailed study of positive definite
functions.

Remark 4.4. [9] proved the first part of the Theorem in the context of univariate smoothers. Our proof of the
converse shows that for large enough sample sizes, most configurations from a random design lead to smoothing
matrix S with negative eigenvalues.

The Gaussian and triangular kernels are positive definite kernels (they are the Fourier transform of a fi-
nite positive measure, [11]). In light of Theorem 4.2, the iterative bias correction of Nadaraya−Watson kernel
smoothers with these kernels produces a sequence of well behaved smoother.

The anticipated behavior of iterative bias correction for Gaussian kernel smoothers is confirmed in our
numerical example. Figure 3 shows the progression of the sequence of bias corrected smoothers starting from
a very smooth surface (see panel (a)) that is nearly constant. Fifty iterations (see panel (b)) produce a fit
that is visually similar to the original function. Continued bias corrections then slowly degrade the fit as the
smoother starts to over-fit the data. Continuing the bias correction scheme will eventually lead to a smoother
that interpolates the data. This example hints at the potential gains that can be realized by suitably selecting
the number of bias correction steps.

The uniform and the Epanechnikov kernels are not positive definite. Theorem 4.2 states that for large enough
samples, we expect with high probability that I−S has at least one eigenvalue larger than one. When this occurs,
the sequence of iterative bias corrected smoothers will behave erratically and eventually diverge. Lemma 4.5
below strengthens this result by giving an explicit condition on the configurations of the design points for which
the largest eigenvalue of I − S is always larger than one.

Lemma 4.5. Denote by Ni the following set: {Xj : K(dh(Xj , Xi)) > 0}.
If there exists a set Ni which contains (at least) two points Xj , Xk different of Xi such that dh(Xi, Xj) < 1,

dh(Xi, Xk) < 1 and dh(Xj , Xk) > 1, then the smoothing matrix S for the uniform kernel smoother has at least
one negative eigenvalue.

If there exits a set Ni that contains (at least) two points Xj , Xk different of Xi that satisfy

dh (Xj , Xk) > min {dh (Xi, Xj) , dh (Xi, Xk)} ,

then the smoothing matrix S for the Epanechnikov kernel smoother has at least one negative eigenvalue.
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Figure 4. Epanechnikov kernel smoother of m(x1, x2) from n = 100 equidistributed points on
[0, 1] × [0, 1], evaluated on a regular grid with (a) k = 1, (b) 5 and (c) 25 iterations.

The failure of the iterated bias correction scheme using Epanechnikov kernel smoothers is illustrated in the
numerical example shown in Figure 4. As for the Gaussian smoother, the initial smoother (panel (a)) is nearly
constant. After five iterations (panel (b)) some of the features of the function become visible. Continuing the bias
corrections scheme produces an unstable smoother. Panel (c) shows that after only 25 iterations, the smoother
becomes noisy. Nevertheless, when comparing panel (a) with panel (b), we see that some improvement is possible
from a few iterations of the bias reduction scheme.

5. Simulations and a real example

This section presents the results of a modest simulation study to compare the empirical mean squared error

MSE =
1
n

n∑
i=1

(m̂ (Xi) − m (Xi))
2 (5.1)

of our procedure to its competitors for two functions, in dimensions d = 3, 5, 7 and sample sizes n = 50, 100,
200, 500, 800, with a noise to signal ratio of 10%. In order to exploit our theoretical result, the pilot smoother
has to oversmooth otherwise the pilot smoother will have very small bias and our iterative debiasing procedure
has no more justification. So starting with a small λ will lead to zero or a small number of iterations. Oppositely,
starting with a big λ will normally lead to a large number of iterations. We decide in this section to use the
values by default in the ibr R-package.

The TPS is governed by a single parameter λ that weights the contribution of the roughness penalty. For
estimating a d-valued regression function, the parametric component is M0 =

(
ν0+d−1

ν0−1

)
and we choose λ such

that the initial degree of freedom of the pilot smoother equals 1.5 M0. The implementation for the kernel
smoother is different since we could choose a different bandwidth for each explanatory variables. We choose
one bandwidth for each explanatory variable Xi such as the effective degree of freedom for the one-dimensional
smoothing matrix related to Xi has a trace equal to 1.1 (more degree than a constant but less than a linear
model). For such values, the pilot smoothers always oversmooth.

Our simulations was designed to allow us to investigate three aspects: first, compare the performance of the
TPS with smoothing parameter selected by GCV with the IBR smoother using a TPS with a large smoothing
parameter. We expect that adaptation of our method will translate into a better performance of our smoother
over the optimal TPS smoother. Second, to compare the performance between ibr smoother using either TPS
and kernel based smoothers. Since kernel smoothers do not have a parametric component (which may, or may
not, be needed to fit the data), we believe that kernel smoothers use more effectively their degree of freedom,
which translates into better performance. Third, we want to compare the performance of fully nonparametric
smoothers and additive smoothers. While with additive models we estimate an approximation of the true
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Figure 5. Boxplot of Mean Squared Error (MSE) of smoothers for the regression func-
tions (from top to bottom) of three variables sin(2π(x1x2)1/2) + cos(2π(x2x3)1/2), five vari-
ables sin(2π(x1x2x3)1/3) + cos(2π(x3x4x5)1/3) and seven variables sin(2π(x1x2x3x4)1/4) +
cos(2π(x4x5x6x7)1/4), and of sample size (from left to right) of n = 50, 200, 800. Each panel
shows the boxplot of the MSE of a GAM smoother, TPS smoother, ibr with TPS smoother
and ibr with kernel smoother.

regression function, it is generally believed that the approximation error of an additive model is smaller than
the estimation error of a fully multivariate smoother even for dimensions for small sample sizes, e.g. n = 50,
100, and moderate dimensions of the covariates, e.g. d = 5. The results are summarized in Table 1 and Figure 5.

Figure 5 shows nine panels each containing the boxplots of the MSE from 500 simulations, on a loga-
rithmic scale on the y-axis. Moving from top to bottom ranges the regression functions from the function
of three variables sin(2π(x1x2)1/2) + cos(2π(x2x3)1/2), to the function of five variables sin(2π(x1x2x3)1/3) +
cos(2π(x3x4x5)1/3) and to the function of seven variables sin(2π(x1x2x3x4)1/4) + cos(2π(x4x5x6x7)1/4). All
the covariates are i.i.d. uniforms on the interval (1, 2). Moving from left to right changes the sample size from
n = 50, 200, 800. Within each panel, the boxplot of MSE is shown, in the order from left to right, of additive
models using the function gam from the R package mgcv, TPS with optimal smoothing parameter using the
function Tps from the R package fields, iterative bias reduction with TPS smoother using the function ibr
from the ibr R package and iterative bias reduction with kernel smoothers, using again the ibr function. For
reasons explained in Section 4, no TPS smoothers can be evaluated for the d = 7, n = 50 panel.
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Table 1. Ratio of median MSE over 500 simulations of a smoother and the median MSE
over 500 simulations of the kernel based IBR smoother. The smoothers, from left to right, are
Generalized Additive Model (GAM), TPS with optimally selected smoothing parameter (tps),
TPS based ibr (ibr-tps) and kernel based ibr (ibr-k).

function n gam tps ibr-tps ibr-k
50 2.59 1.63 1.39 1
100 4.59 1.89 1.58 1

x1x2x3 200 8.38 2.14 1.73 1
500 17.9 2.56 2.08 1
800 27.4 2.82 2.39 1
50 6.72 1.70 1.09 1
100 12.0 1.80 1.19 1

sin(2π(x1x2)
1/2) + cos(2π(x2x3)

1/2) 200 22.3 1.91 1.27 1
500 46.2 1.99 1.45 1
800 67.3 2.04 1.51 1
50 2.16 1.60 1.47 1
100 3.83 1.42 1.39 1

x1x2x3x4x5 200 6.64 1.28 1.24 1
500 13.17 1.24 1.22 1
800 19.44 1.26 1.23 1
50 3.62 1.26 1 1
100 6.32 1.76 1.15 1

sin(2π(x1x2x3)
1/3) + cos(2π(x3x4x5)

1/3) 200 10.0 1.95 1.31 1
500 18.6 2.06 1.38 1
800 26.5 2.18 1.46 1
50 2.05 – – 1
100 3.11 – – 1

x1x2x3x4x5x6x7 200 5.26 3.53 3.17 1
500 9.85 2.46 2.45 1
800 13.8 2.07 2.07 1
50 3.16 – – 1
100 4.38 – – 1

sin(2π(x1x2x3x4)
1/4) + cos(2π(x4x5x6x7)

1/4) 200 6.43 1.78 1.57 1
500 11.1 1.37 1.31 1
800 14.9 1.27 1.22 1

Figure 5 shows that a fully nonparametric smoother is always preferred to an additive smoother, even for
relative small sample sizes and moderate dimensions.

In extensive simulations [7], we observe that this qualitative conclusion holds over a wide variety of regression
functions. Generally, as expected, the TPS with optimal smoothing parameter has a somewhat worse perfor-
mance than the TPS ibr smoother. And finally, the kernel based ibr smoother is slightly better than the TPS
based ibr smoother, especially in higher dimensions.

Table 1 gives further insight into the performance of the various smoothers. Our table presents the ratio of
the median MSE (in 500 simulation runs) of various smoothers to the median MSE of the kernel based ibr
smoother. Since all the entries are larger than one, we conclude that kernel based ibr consistently outperforms
the other smoothing procedures over the range of sample size, number of covariates and regression functions we
considered in our study.

The improvement over a GAM model ranges from 100% to 6000%. This reinforces our conclusions that fully
nonparametric regressions are practical for moderately large number of covariates, even for sample sizes as small
as n = 50. The other notable observation is that the values in the ibr-tps column are always less than those in



RECURSIVE BIAS ESTIMATION FOR MULTIVARIATE REGRESSION SMOOTHERS 495

Table 2. Predicted mean Squared Error on test observations for Boston housing data.

Method Mean predicted squared error
Multivariate regression 20.09
L2Boost with component-wise spline 9.59
additive model (backfitted with R) 11.77
Projection pursuit (with R) 12.64 (4)
MARS (with R) 10.54
ibr kernel with 1.1 initial DDL
per variable and 1230 iterations 7.35

the tps column, showing that consistently, the TPS based ibr smoother has better performance than TPS with
optimal smoothing parameter. In our simulation study, the typical improvement is of 20%.

5.1. Boston housing data

We apply our method on the Boston housing data. This dataset, created by [18] has been extensively to
showcase the performance and behavior of nonparametric multivariate smoothers, see for example [3] and more
recently by [9]. The data contains 13 explanatory variables describing each of 506 census tracts in the Boston
area taken from the 1970 census, together with the median value of owner-occupied homes in $1000’s. The
sample size of the data is n = 506 and the number of explanatory variables d = 13.

We compare our method with the MARS algorithm of [12] as implemented in the R package mda, with
projection pursuit regression (function ppr), additive models using the backfitting algorithm of [19] as imple-
mented in the R package mgcv, and additive Boosting [4] from the R package mboost. The predicted mean
squared error is estimated by randomly splitting 30 times the data into training sets (size n = 350) and testing
sets (n = 156). We summarize the results of our analysis in the following table:

Table 2 again supports our claim that the fully multivariate method presented in the paper leads to a reduction
of more than 30% in the prediction mean squared error over competing state-of-the-art multivariate smoothing
methods. A similar comparison for responses on the logarithmic scale reveals the even larger reduction of 40% in
the prediction mean squared error. Since our fully nonparametric regression smoother has substantially smaller
prediction error over additive linear models and low-order interaction models, we conclude that there exist
higher order interactions in that data that are significant.

6. Conclusion

This paper introduces a fully multivariate regression smoother for estimating the regression function m
obtained by successive bias correction from a very smooth (biased) pilot smoother. We show that the resulting
smoother is adaptive to the underlying smoothness (see Thms. 3.1 and 3.2). This adaptation to the underlying
smoothness partially mitigates the effect from the curse of dimensionality in many practical examples, and make
it practical to use fully nonparametric smoother in moderate dimensions, even for smaller sample sizes.

As in L2 boosting, the proposed iterative bias correction scheme needs a weak learner as a base smoother S,
but all weak learners are not suitable. For instance, Epanechnikov kernel smoothers are not interesting (see
Thm. 4.2). We further note that one does not need to keep the same smoother throughout the iterative bias
correcting scheme. We conjecture that there are advantages to using weaker smoothers later in the iterative
scheme, and shall investigate this in a forthcoming paper. Finally, the R package ibr available at CRAN
implements the proposed multivariate nonparametric method in R.
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Appendix A.

We are omitting the proof of Theorem 3.1 since it is an multivariate extension of the proof given in [4] using
results of [28] about the eigen decomposition of S.

Proof of Theorem 3.2. We show that conditions (A.1) to (A.7) given by [23], in Theorem 3.2 are satisfied. To
make the proof self contained, we recall briefly these conditions:

(A.1) limn→∞ supk∈Kn
λ(Sk) < ∞;

(A.2) E(ε4q) < ∞;
(A.3)

∑
k∈Kn

(nRn(k))−q → 0; where Rn(k) = E(‖mn − m̂k,n‖2)/n;
(A.4) infk∈Kn n−1‖m̂k,n − mn‖2 → 0, in probability;

(A.5) for any sequence {kn ∈ Kn} such that n−1trace(SknST
kn

) → 0 we have {n−1trace(Skn )}2

n−1trace(Skn ST
kn

)
→ 0;

(A.6) supk∈Kn
n−1trace(Sk) ≤ γ1 for some 1 > γ1 > 0;

(A.7) supk∈Kn
{n−1trace(Sk)}2/{n−1trace(SkST

k )} ≤ γ2 for some 1 > γ2 > 0.

Conditions (A.1) to (A.4)
The eigenvalues of Sk (denoted λj(Sk), 1 ≤ j ≤ n or λj for brevity) are between 0 and 1 for all n. The first
M0 =

(
ν0+d−1

ν0−1

)
eigenvalues are equal to one and the remaining λj , M0 < j ≤ n are strictly less than 1 and

greater than 0. Thus the condition (A.1) is fulfilled.
To fulfill condition (A.3) we need to calculate

∑
k∈Kn

nRn(k)−q, where q is an integer to be found, mn =
(m(X1), . . . , m(Xn))T and m̂k,n = SkY . Using Theorem 3.1 we have that for an optimal choice of k, Rn(k) =
O(nd/(2ν+d)). Let us choose Kn such that its cardinal is of order nγ (1 ≤ γ ≤ (2ν0)/d), the order of an upper
bound of

∑
k∈Kn

nRn(k)−q is nγ− qd
2ν+d . To have (A.3) fulfilled we need that γ− qd

2ν+d < 0, that is q > γ(2ν/d+1).
Condition (A.4) is satisfied because of Theorem 3.1.
Conditions (A.5) to (A.7) are related the trace of the matrices Sk and S2

k. Recall that

1
n

trace(Sk) =
1
n

⎛
⎝M0 +

n∑
j=M0+1

[
1 − (1 − λj)k

]⎞⎠ ,

where M0 =
(
ν0+d−1

ν0−1

)
is the number of equal to 1 and the remaining n − M0 eigenvalues λj are less than 1,

bigger than 0 and decreasing. We have for all k, that

1 ≥ 1
n

trace(Sk) ≥ 1
n

trace(S2
k) ≥

(
1
n

trace(Sk)
)2

.

It follows that both trace(Sk) and trace(S2
k) are increasing with k, and we have limk→∞

(
1
n trace(Sk)

)
= 1 and

limk→∞ 1
n trace(S2

k) = 1. When all the eigenvalues of Sk equal 1 the corresponding smoother interpolates and it
is statistically inappropriate, let’s fix maxk∈Kn = nγ for some γ < α0, which will enable us to stop the iteration
step before reaching to interpolation. Thanks to [28], we have, when the smoothing parameter is λ0 > 0, the
following approximation:

λj ≈ 1
1 + λ0jα0

, α0 =
2ν0

d
> 1.

Let us write

(1 − λj)k ≈
[

λ0j
α0

1 + λ0jα0

]k
=
(
1 + λ−1

0 j−α0
)−k

,
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from which it follows that

1
n

trace(Sk) ≈ 1
n

M0 +
1
n

n∑
j=M0+1

(
1 − [1 + λ−1

0 j−α0
]−k
)

≈ 1
n

M0 +
1
n

n∑
j=M0+1

gk(j).

For fixed k and jn < n, we have that

gk(jn) = 1 − [1 + λ−1
0 j−α0

n

]−k

= 1 − exp [−k ln (1 + λ−1
0 j−α0

n )]

≈ 1 − exp [−kλ−1
0 j−α0

n ].

Let us consider the case where jn tends to infinity and −knj−α0
n tends to zero. Thus when n grows to infinity,

∀j ≥ jn we have the following approximation for gk(j):

gk(j) ≈ kj−α0λ−1
0 . (A.1)

Order of an upper bound of trace(Sk)/n.
For all k ∈ Kn, we have when n grows to infinity:

1
n

trace(Sk) ≈ M0

n
+

1
n

jn∑
j=M0+1

gk(j) +
1
n

n∑
j=jn+1

gk(j)

� jn

n
+

1
n

∫ n

jn

gk(j)dj

� jn

n
+

kj1−α0
n

n(α0 − 1)
λ−1

0

with the last approximation which follows from equation (A.1). Choosing jn such that kj−α0
n tends to zero, we

have an upper bound for trace(Sk)/n of order jn

n .

Order of a lower bound of trace(S2
k)/n.

For all k ∈ Kn, we have when n grows to infinity that

1
n

trace(S2
k) ≈ M0

n
+

1
n

jn∑
j=M0+1

g2
k(j) +

1
n

n∑
j=jn+1

g2
k(j)

≥ M0

n
+

g2
k(jn)
n

(jn − M0) +
1
n

∫ n+1

jn+1

g2
k(j)dj

≈ M0

n
+

jn − M0

n
g2

k(jn) +
k2λ−2

0

n

(jn + 1)−2α0+1

2α0 − 1
− k2λ−2

0

n

(n + 1)−2α0+1

2α0 − 1

with the last approximation which follows from equation (A.1).
Again, choosing jn such that kj−α0

n tends to zero, we get that a lower bound for 1
n trace(S2

k) is either of order
1
n or of order k2j−2α0+1

n

n if k2j−2α0+1
n → ∞.
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Condition (A.5) and (A.7)
For n > M0, we have at least two different eigenvalues for Sk. Thus the empirical variance of the eigenvalues
of Sk is positive i.e. 1

n

∑n
i=1 (λi − λ̄)2 > 0. This implies that for given n > M0

(trace(Sk)/n)2(trace(S2
k)/n)−1 < 1.

For n growing to infinity, let us show that (trace(Sk)/n)2(trace(S2
k)/n)−1 tends to 0 for all k ∈ Kn (implying

condition (A.5)).
Let us partition the grid Kn in two parts: K(1)

n = {1, . . . , �n 1
10 � − 1} and K(2)

n = {�n 1
10 �, . . . , nγ}. Consider

the following two cases:

• For k ∈ K(1)
n ;

choose jn = n
1
10 , so knj−α0

n tends to zero, thus, the previous calculated order can be used and we get an

upper bound for (trace(Sk)/n)2(trace(S2
k)/n)−1 of order

j2
n

n2

1
n

= j2
n

n . Thus,

(trace(Sk)/n)2(trace(S2
k)/n)−1 → 0.

• For k ∈ K(2)
n ;

for a given k, we have that k = O(nβ1)h(n) with h(n) = o(nβ3), ∀β3 > 0. We have that 1
10 ≤ β1 ≤ γ < α0.

We further assume that:
(a) kj−α0

n → 0
(b) k2j−2α0+1

n → ∞.
These conditions are satisfied for

jn = nβ2 , with β2 =
1
α0

( α0 − β1

η(2α0 − 1)
+ β1

)
and η = max(10α0, 3)

Indeed, condition (a) is obviously satisfied. Let us verify condition (b):

2β1 − 2β2α0 + β2 = 2β1 − 2
α0 − β1

η(2α0 − 1)
− 2β1 +

1
α0

(
α0 − β1

η(2α0 − 1)
+ β1

)

=
α0 − β1

η(2α0 − 1)
1 − 2α0

α0
+

β1

α0
=

β1 + β1η − α0

ηα0
> 0,

with the last inequality following from the fact that β1 ≥ 1/10 and η ≥ 10α0 > 10α0 − 1
10 .

Using the previous calculated order, we get that the upper bound of (trace(Sk)/n)2(trace(S2
k)/n)−1 is of

order j2α0+1
n

nk2 . This quantity tends to 0 because

(2α0 + 1)β2 − 1 − 2β1 = β2 + 2
α0 − β1

η(2α0 − 1)
+ 2β1 − 1 − 2β1 =

α0 − β1

α0η(2α0 − 1)
+

β1

α0
+ 2

α0 − β1

η(2α0 − 1)
− 1

=
α0 − β1

α0η

(
1

2α0 − 1
+

2α0

2α0 − 1

)
+

β1 − α0

α0
=

α0 − β1

α0η

(
2α0 + 1
2α0 − 1

− η

)
< 0

with the last inequality following from the fact that 2α0+1
2α0−1 < 3 (as α0 > 1) and η > 3.

Let us denote k∗
n = arg maxk∈Kn(trace(Sk)/n)2(trace(S2

k)/n)−1 (for a given n, Kn is finite). For all k ∈ Kn we
have the following limit: (trace(Sk)/n)2(trace(S2

k)/n)−1 → 0. It implies that (trace(Sk∗
n
)/n)2(trace(S2

k∗
n
)/n)−1 →

0. It exists a finite Nk∗
n

such that for all n > Nk∗
n

(trace(Sk∗
n
)/n)2(trace(S2

k∗
n
)/n)−1 will be less than 1/2.

This implies that condition (A.7) hold for all n > Nk∗
n
. For all n ≤ Nk∗

n
, n is finite (and k ∈ Kn too)
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and (trace(Sk)/n)2(trace(S2
k)/n)−1 ≤ maxk∈Kn,n≤Nk∗

n
(trace(Sk)/n)2(trace(S2

k)/n)−1) < 1. Thus the condi-
tion (A.7) holds.

Condition (A.6)
The n eigenvalues are non-increasing. Take jn = nζ with ζ fixed and less than one. We have that the maximal
value of the mean of the trace which occurs at kn = nγ is bounded by

1
n

trace(Sk) ≤ jn

n
+

(n − jn)
n

knj−α0
n .

We can easily show that the last quantity is less than a given value smaller than 1. The aim of setting kn equal
to nγ is to ensure that at the border of grid Kn, the smoother is not the identity, i.e. we are not interpolating
the data. When the smoother is too close to the identity matrix, conditions (A.6) and (A.7) are not longer
fulfilled. Moreover, being very close to identity is not interesting from a statistical viewpoint.

Proof of Theorem 4.2. For notational simplicity, we present the proof in the univariate case. Let X1, . . . , Xn

is an i.i.d. sample from a density f that is bounded away from zero on a compact set strictly included in the
support of f . Consider without loss of generality that f(x) ≥ c > 0 for all |x| < b. We are interested in the sign
of the quadratic form uT Au where the individual entries Aij of matrix A are equal to

Aij =
Kh(Xi − Xj)√∑

l Kh(Xi − Xl)
√∑

l Kh(Xj − Xl)
·

Recall the definition of the scaled kernel Kh(·) = K(·/h)/h. If v is the vector of coordinate vi =
ui/
√∑

l Kh(Xi − Xl) then we have uT Au = vT
Kv, where K is the matrix with individual entries Kh(Xi−Xj).

Thus any conclusion on the quadratic form vT
Kv carry on to the quadratic form uT Au. To show the existence

of a negative eigenvalue for K, we seek to construct a vector U = (U1(X1), . . . , Un(Xn)) for which we can show
that the quadratic form

UT
KU =

n∑
j=1

n∑
k=1

Uj(Xj)Uk(Xk)Kh(Xj − Xk)

converges in probability to a negative quantity as the sample size grows to infinity. We show the latter by
evaluating the expectation of the quadratic form and applying the weak law of large number.

Let ϕ(x) be a real function in L2, define its Fourier transform (and its Fourier inverse) by

ϕ̂(t) =
∫

e−2iπtxϕ(x)dx ϕ̂inv(t) =
∫

e2iπtxϕ(x)dx.

For kernels K(·) that are real symmetric probability densities, we have

K̂(t) = K̂inv(t).

From Bochner’s theorem, we know that if the kernel K(·) is not positive definite, then there exists a bounded
symmetric set A of positive Lebesgue measure (denoted by |A|), such that

K̂(t) < 0 ∀t ∈ A. (A.2)

Let ϕ̂(t) ∈ L2 be a real symmetric function supported on A, bounded by B (i.e. |ϕ̂(t)| ≤ B). Obviously, its
inverse Fourier transform

ϕ(x) =
∫ ∞

−∞
e−2πixtϕ̂(t)dt
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is integrable and by virtue of Parseval’s identity

‖ϕ‖2 = ‖ϕ̂‖2 ≤ B2|A| < ∞.

Using the following version of Parseval’s identity see [11]∫ ∞

−∞

∫ ∞

−∞
ϕ(x)ϕ(y)K(x − y)dxdy =

∫ ∞

−∞
|ϕ̂(t)|2K̂(t)dt,

which when combined with equation (A.2), leads us to conclude that∫ ∞

−∞

∫ ∞

−∞
ϕ(x)ϕ(y)K(x − y)dxdy < 0.

Consider the following vector

U =
1

nh

⎡
⎢⎢⎣

ϕ(X1/h)
f(X1) I(|X1| < b)

...
ϕ(Xn/h)

f(Xn) I(|Xn| < b)

⎤
⎥⎥⎦ .

With this choice, the expected value of the quadratic form is

E[Q] = E

⎡
⎣ n∑

j,k=1

Uj(Xj)Uk(Xk)Kh(Xj − Xk)

⎤
⎦

=
1
n

∫ b

−b

1
f(s)h2

ϕ(s/h)2Kh(0)ds +
n2 − n

n2

∫ b

−b

∫ b

−b

1
h2

ϕ(s/h)ϕ(t/h)Kh(s − t)dsdt

= I1 + I2.

We bound the first integral

I1 =
Kh(0)
nh2

∫ b

−b

ϕ(s/h)2

f(s)
ds ≤ Kh(0)

nch

∫ b/h

−b/h

ϕ(u)2du ≤ B2|A|K(0)
ch2

n−1.

Observe that for any fixed value h, the latter can be made arbitrarily small by choosing n large enough. We
evaluate the second integral by noting that

I2 =
(

1 − 1
n

)
h−2

∫ b

−b

∫ b

−b

ϕ(s/h)ϕ(t/h)Kh(s − t)dsdt

=
(

1 − 1
n

)
h−2

∫ b

−b

∫ b

−b

ϕ(s/h)ϕ(t/h)
1
h

K

(
s

h
− t

h

)
dsdt

=
(

1 − 1
n

)
h−1

∫ b/h

−b/h

∫ b/h

−b/h

ϕ(u)ϕ(v)K(u − v)dudv. (A.3)

By virtue of the dominated convergence theorem, the value of the last integral converges to
∫∞
−∞ |ϕ̂(t)|2K̂(t)dt <

0 as h goes to zero. Thus for h small enough, (A.3) is less than zero, and it follows that we can make E[Q] < 0
by taking n ≥ n0, for some large n0. Finally, convergence in probability of the quadratic form to its expectation
is guaranteed by the weak law of large numbers for U -statistics. The conclusion of the theorem follows.

Proof of Proposition 4.5. To handle multivariate case, let each component hj of the vector h be larger than
the minimum distance between three consecutive points, and denote by dh(Xi, Xj) the distance between two
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Figure 6. Contour of an upper bound of det(K[3]) as a function of (x, y).

vectors. For example, if the usual Euclidean distance is used, we have d2
h(Xi, Xj) =

∑d
l=1(Xil − Xjl)2/h2

l .
The multivariate kernel evaluated at Xi, Xj can be written as K(dh(Xi, Xj)) where K is univariate. We are
interested in the sign of the quadratic form uT

Ku (see proof of Thm. 4.2). Recall that if K is semidefinite
positive then all its principal minor (see [20], p. 398) are nonnegative. In particular, we can show that A is not
semidefinite positive by producing a 3× 3 principal minor with negative determinant. Take the principal minor
K[3] obtained by taking the rows and columns (i1, i2, i3). The determinant of K[3] is

det(K[3]) = K(dh(0))
[
K(dh(0))2 − K(dh(Xi3 , Xi2))

2
]

− K(dh(Xi2 , Xi1)) [K(dh(0))K(dh(Xi2 , Xi1)) − K(dh(Xi3 , Xi2))K(dh(Xi3 , Xi1))]
+ K(dh(Xi3 , Xi1)) [K(dh(Xi2 , Xi1))K(dh(Xi3 , Xi2)) − K(dh(0))K(dh(Xi3 , Xi1))] .

Let us evaluate this quantity for the uniform and Epanechnikov kernels.

Uniform kernel. Choose 3 points in {Xi}n
i=1 with index i1, i2, i3 such that

dh(Xi1 , Xi2) < 1, dh(Xi2 , Xi3) < 1, and dh(Xi1 , Xi3) > 1.

With this choice, we readily calculate

det(K[3]) = 0 − Kh(0)
[
Kh(0)2 − 0

]− 0 < 0.

Since a principal minor of K is negative, we conclude that K and A are not semidefinite positive.

Epanechnikov kernel. Choose 3 points {Xi}n
i=1 with index i1, i2, i3, such that

dh(Xi1 , Xi3) > min(dh(Xi1 , Xi2), dh(Xi2 , Xi3))

and set dh(Xi1 , Xi2) = x ≤ 1 and dh(Xi2 , Xi3) = y ≤ 1. Using triangular inequality, we have

det(K[3]) < 0.75
(
0.752 − K(y)2

)− K(x)(0.75K(x) − K(y)K(min(x, y)))

− K(min(x, y))K(x)K(y) − 0.75K(x + y)2.

The right hand side of this equation is a bivariate function of x and y. Numerical evaluations of that function
show that small x and y leads to negative value of this function, that is the determinant of K[3] can be negative.

Thus a principal minor of K is negative, and as a result, K and A are not semidefinite positive.
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