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Abstract— This work extends the analysis and application
of a digital error correction method called Muller C-element
Decoding (MCD), which has been proposed for fault masking
in logic circuits comprised of unreliable elements. The proposed
technique employs cascaded Muller C-elements and XOR gates
to achieve efficient error-correction in the presence of internal
upsets. The error-correction analysis of MCD architecture and
the investigation of C-element’s robustness are first introduced.
We demonstrate that the MCD is able to produce error-correction
benefit in a high error-rate of internal faults. Significantly, for a
(3,6) short-length Low Density Parity Check (LDPC) code, when
the decoding process is internally error-free the MCD achieves
also a gain in terms of decoding performance by comparison
to the well-known Gallager Bit-Flipping method. We further
consider application of MCD to a general-purpose fault-tolerant
model, coded Dual Modular Redundancy (cDMR), which offers
low-redundancy error-resilience for contemporary logic systems
as well as future nanoeletronic architectures.

I. INTRODUCTION

Due to the rapid development of logic circuit manufac-

turing in the last two decades, electronic devices are now

miniaturized to nanoscale dimensions. Nanoscale devices are

increasingly sensitive to faults due to manufacturing defects,

environmental fluctuations, and electronic noise or interfer-

ence. From the circuit perspective, semiconductor faults fall

into three main categories: permanent, intermittent, and tran-

sient. Permanent faults are caused by manufacturing defects,

or device wear-out. They reflect irreversible physical changes.

Intermittent faults occur because of unstable or marginal

hardware; they can be activated and later reversed by en-

vironmental changes, like higher or lower temperature and

voltage. Transient defects occur on a shorter time-scale, arising

from device noise, interference or particle interactions. Due

to the size downscaling processes, digital logic circuits are

increasingly vulnerable to the transient faults [1].

Since any embedded fault-masking solution is implemented

using the same device as the logic it protects, it is important for

a fault-masking technique to be also tolerant of internal errors

within its own logic. Researchers previously investigated the

performance of a variety of error-correcting schemes under

the influence of intrinsic faults [2]–[7]. In many cases, the

proposed fault-masking solutions are limited to particular ap-

plications or algorithms. For example, an Algorithmic Noise-

Tolerance (ANT) technique was introduced by Shim et al.,

for reliable low-power digital signal processing [2]. The ANT

method is based on a reduced precision replica to achieve

low-power robust system in certain DSP algorithms. However,

the ANT method is difficult to adapt if the reduced precision

block cannot be done in an efficient way. An Error Resilient

System Architecture (ERSA) [3] was proposed for low-cost

robust systems, but incurs higher costs for general-purpose

applications. Thus, the need of an efficient general-purpose

fault-tolerant design is evident.

In the authors’ previous work [8], [9], an error-correction

method based on Muller C-elements was introduced and

shown to be robust against internal transient faults. This

method, referred as to MCD, is an implementation of iterative

Low Density Parity Check (LDPC) [10] decoders suitable for

embedding into digital logic circuits. The MCD method con-

sists primarily of C-elements and XOR gates which implement

a parity-check decoding algorithm. The MCD differs from

traditional parity-check algorithms in that its circuit topology

is designed to suppress internal upsets within the decoder.

In this paper, an extended work of MCD technique and

its implementation for embedded robust design are detailed.

The main contributions of this work are threefold: First

the error-correction analysis of MCD is shown. Second, the

study of error-resilience capacity inherited by C-element is

detailed. Lastly, we study a coded Dual Modular Redundancy

(cDMR) application with a short length MCD, which achieves

a significant gain in terms of decoding performance for both

error-free and noisy decoding cases.

II. BIT-FLIPPING METHOD AND MCD ARCHITECTURE

A. Gallager’s Bit-Flipping Method

LDPC decoding methods are traditionally described as

message-passing on a code’s Tanner graph [11]. The Tanner

graph contains two sets of nodes – variable nodes vi and

parity-check nodes pj . Some edges connect the variable nodes

to the parity-check nodes thanks to a sparse parity-check

matrix associated to each LDPC code. The degree of a node

is the number of edges connected to it in the Tanner graph.

Let dv be the degree of variable node vi, and let Vi be the

set of edges that are connected to vi. Similarly, let dc be the

degree of parity-check node pj , and let Pj be the set of edges

that are connected to pj . During the decoding process, binary
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messages are exchanged between the two sets of nodes. The

message passed from node vi to pj is written yij , and the

returning message from pj to vi is written fji. All nodes are

simple processing functions that follow the standard extrinsic

information principle: the outgoing message on edge k is

computed using information from all edges except k.

Gallager’s Bit-Flipping Methods (GBF) were among the

first LDPC decoding algorithms introduced by Gallager [10].

The GBF methods are defined for frames that were transmitted

over a Binary Symmetric Channel (BSC), as a binary hard

decision message-passing decoding method [12]. A GBF algo-

rithm can be described as follows. The variable nodes initially

transmit messages yij = xi for all i, j. For each parity-check

node, the outgoing message on edge k is equal to the modulo-

2 sum of all local incoming messages (excluding edge k). For

the variable nodes, the outgoing message along edge k is equal

to xi unless at least b incoming messages (excluding edge k)

disagree with the xi. Traditionally, there are two versions of

the algorithm. When b = (dv−1), all local incoming messages

are required to be unanimous, the method is known as the

Gallager-A algorithm. If b is fixed to a smallest integer during

the decoding iteration as explained in [10] and [12], then the

method is known as the Gallager-B algorithm.

B. The MCD Architecture

The MCD architecture is characterized by the processing

steps applied at the variable nodes. For each variable node vi,

a set of C-element gates Ck, 0 ≤ k < (dv − 1), is associated

as shown in Fig. 1(a) [8]. The circuit is a cascade of C-element

gates, modified for the initialization of the state memory. In

this figure, dv = 4. Each C-element has three inputs; the

left-side inputs are the usual inputs, and the top-side input is

the initial state for the C-element’s memory. Each C-element

gate Ck contains a single-bit storage element ck. Moreover, a

standard binary C-element circuit is shown in Fig. 1(b) [13].

The MCD decoding algorithm is described as follows:

1) Initialize yk = xi, for all k ∈ V .

2) Compute fji = ⊕m∈Pj\i
ymj for all j ∈ P .

3) Initialize each C-element memory as ck = fk′ , where

k′ = (k + dv − 1) mod dv .

4) The C-element’s port connections are as follows. For

C0, the inputs are f0 (f0 = xi) and f1, and the output

is c0. For Ck, the inputs are ck−1 and fk+1, and the

output is ck.

5) Iterate steps 2 and 4 during a fixed number of iterations,

as the restoration phase. Note that the initialization in

step 3 is performed only during the first iteration.

6) The corrected output is zi = c(dv−1).

This algorithm is guaranteed to correct a single error during

each iteration. It can also correct many multi-error patterns as

well [8], [9]. The MCD method can be regarded as a circuit-

level implementation for variable nodes in an LDPC decoder.

III. ERROR-CORRECTION ANALYSIS

An error obtained from fk may originate from an internal

error within the decoder. The C-element cascade helps to stop

Weak-keeper

A

B Q

C

(a) (b)

Fig. 1: A local implementation of a variable node (a), and a

standard Muller C-element circuit of which the state memory

ck is realized by a weak-keeper (b).

the propagation of such errors. As the error-correction analysis

done in [9], a single error event can be masked during an

iteration. In the rest of this subsection we study the cases of

double-error events in restoration phase during an iteration.

A. Double errors appear at fk and fl

If a variable node vi receives two erroneous messages at fk
and fl, such that |k − l| ≥ 1, there are three possible cases:

• If f0 and f1 are erroneous, the output of C0 is thus

erroneous. Since the rest of fk and storages are correct,

the error from C0 is masked.

• f0 and fk (k > 1) are incorrect. In this case, the output

of C0 is correct, and any erroneous fk can’t induce an

error event.

• fk and fl, (k �= l �= 0), are erroneous. In this case, any

single error event is waived.

B. Double errors appear at ck and cl

If a variable node vi generated two upsets at ck and cl, such

that |k − l| ≥ 1, these events can be sorted as a single error

event occurrence. Consequently, these cases are masked by the

inherent fault-tolerance by C-element.

C. Double errors appear at fk and cl

If two upsets occur at fk and cl of a variable node vi, where

|k − l| ≥ 0, three cases are possible:

• if k = (dv − 1) and l �= (dv − 2), the value of C-

element Cl, cl, is correct. Since only single-error event

is occurred among the C-elements except Cl, due to C-

element’s behavior another input of Cl is assured error-

free. In this case, only fk is erroneous that can not induce

an error at the output.

• When k �= (dv − 1) and l �= (dv − 2), fk and cl are

correct. Hence, the output from vi is correct as well.

• At last, if k = (dv − 1) and l = (dv − 2), fk and cl are

thus incorrect. In this case, the output is erroneous.

To sum up, a cascaded C-element set is able to correct any

single error event regardless of where those errors originate.

Any double-error events can be corrected, except a single

pattern, namely the local incoming message to the last C-

element and its storage are simultaneously flipped over. For the

burst errors, the C-element set can also correct some patterns.
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Fig. 2: Simulated error rate results obtained using the 0.6μm

CMOS model in Virtuoso Spectre.

IV. FAULT-TOLERANCE INHERITED BY C-ELEMENT

To further reveal the error-resilience inherited from C-

element, we study the reliability of a state memory of C-

element by comparison to a static logic gate, namely an

inverter. Without loss of generality, the state memory was

designed for a 0.6μm CMOS logic process. For comparison,

an inverter was also designed. Both circuits were simulated

in Virtuoso Spectre from Cadence, where signal errors are

set up in a large scale by the “noisescale” parameter. Fig. 2

shows an overlay of Monte Carlo transient simulation runs

form both the state memory and the static gate simulations.

The “noisescale” parameter is set as large scale in order to

induce enough upset cases to measure and compare the error

rate for those two components. An error occurs whenever the

difference crosses 0.05V threshold when 5V as the correct

output. More precisely, if the difference of output value to

the correct one (5V ) is bigger than 0.05V , then an error is

considered. The difference lower than 0.05V is bypassed. For

the static gate, errors appear quite frequently as indicated

by numerous threshold-crossings. By contrast, in the state

memory case, the amplitude of output noise fluctuations is

significantly cutoff. Thanks to the feedback mechanism in

the state memory, up to a magnitude of two orders as the

robustness gain. Consequently, by comparison to a static logic

gate, C-element is able to tolerates the upset events with error-

resilience gain between multiple times up to magnitude of two

orders.

V. THE CDMR TECHNIQUE BY APPLYING MCD

A. cDMR Technique

One of the authors (Winstead) proposed an LDPC-coded

Fault Compensation Technique (LFCT) in [5]. This technique

is relevant to higher LDPC codes resulting in a more powerful

error-correcting ability. With taking the principle of LFCT, a

coded Dual-Modular Redundancy (cDMR) technique can be

defined as shown in Fig. 3. More detailed can also be found

Original Function

F (u)

Parity-Mapped

Function

H · F (u)

ECC
s

r

[

ŝ

r̂

]

Fig. 3: Architecture of the cDMR model.

in [8] and [9]. A logic function F (u) is implemented using a

digital CMOS technology that is subject to errors at its output.

The original function F (u) is augmented by the addition of

a redundant parity-generator module, H · F (u), where H

represents the encoding function that generates parity bits

codeword space at the output of F (u) as explained in [5]. The

systematic output word s is then concatenated with the parity

outputs r from H ·F (u), yielding a complete codeword [s r].
According to the code’s H matrix, namely the parity-check

matrix that defines the error-correction code, an Error Control

Codes (ECC) is supposed to perform the error-correction in

the presence of internal faults.

B. Good Decoder Candidate for the ECC of cDMR

In this subsection, we demonstrate a good candidate for

the ECC of cDMR. By comparison to the GBF approach, the

performance improvement achieved with MCD was analyzed

using two metrics: the BER performances over BSC under a

error-free decoding process and faulty decoding process. For

the sake of facility, only LDPC code with dv = 3 is studied.

A (3,6) LDPC code of length 64 was simulated over

BSC in the cases of error-free and noisy decoding process,

respectively, as shown in Fig. 4. First, in the case of noisy

decoding as dashed curves, the GBF performance worsens

with increased iterations, but MCD does not suffer from this

degradation. Significantly, when the length of a LDPC code

is short, the MCD performs a gain in terms of decoding

performance, as shown the solid curves in Fig. 4. As such,

this short MCD decoder is a good candidate to the ECC

block. Consequently, with employing the MCD architecture,

the cDMR technique that can prevent the internal upsets

provides a general-purpose robust system to logic design.

VI. DISCUSSION: CDMR’S IMPLEMENTATION

To avoid the occurrence of correlated errors among s and

r, the most reliable approach is regarded in two cases: if

F (u) has low complexity, such like finite-state machines, F (u)
and H · F (x) then can be easily designed without resulting

correlated errors; if F (u) has a high complexity and large fanin

and fanout, a flat truth-table synthesis can be used, as is done

with cross-bar logic arrays [14]. To explain this constraint,

we may contrast the two circuits shown in Fig. 5. In Fig.

5(a), a ripple-carry implementation, a single gate error may

propagate to the several of the output signals. An example

of error propagation is indicated by the � symbol in Fig.

5(a). In the cDMR system, error-propagation may induce many

simultaneous faults in the [s r] codeword, which are not likely

to be correctable.
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Fig. 4: Simulation results of (3,6) LDPC code of length 64

under faulty and error-free decoding.

In the crossbar implementation, as shown in Fig. 5(b), logic

is implemented by fabrics of AND-logic and OR-logic. The

“dots” indicate the placement of junctions which physically

implement the logic operations. In this style of implementa-

tion, every operation is associated with only a single output. If

a momentary fault occurs at some junction, it will propagate

only to a single output. This implementation guarantees that

single-error events are correctable. The major disadvantage of

crossbar logic is that the operation counts are not optimal. The

crossbar adder in Fig. 5(b), for instance, is composed of 57

separate operations. Crossbar logic does not generally obtain

minimized gate complexity, but it offers improved reliability

by eliminating error propagations.

VII. CONCLUSION

The Muller C-element based Decoder, referred as to MCD,

has been proposed for efficient error-correction in the presence

of high error rate internal upsets. In this work, an extended

study of MCD is presented. The error-correction analysis of

MCD and the study of C-element’s fault-tolerance are first

introduced. By comparison to the well-known Gallager’s Bit-

Flipping method, for a (3,6) LDPC code of short length, the

MCD yields a gain in terms of decoding performance in the

cases of error-free and faulty decoding. At last, by applying

the MCD, a coded Dual-Modular Redundancy (cDMR) tech-

nique designed for robust hard-on to current logic or future

nanoelectronics is optimized.
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