PVis - Partitions' Visualizer: extracting knowledge by visualizing a collection of partitions

Abstract : Recent advances in cluster analysis highlight the importance of finding multiple meaningful partitions and point out to the need for approaches to evaluate them. They also suggest that the evaluation should consider knowledge of a domain expert. In this paper, we present a visualization method, called PVis (Partition's Visualizer), that allows the integrated visualization of a collection of partitions. PVis allows to compare the content of a set of partitions. The comparison can be done with respect to priori knowledge provided by an expert. PVis can be useful in the discovery of relevant information to the domain experts performing cluster analysis. In order to illustrate our approach, we give an example of how to perform an exploratory analysis of collections of partitions. In order to do so, we use a well-known dataset from the Bioinformatics domain, regarding molecular classification of cancer.
Type de document :
Communication dans un congrès
IEEE. IEEE IJCNN 2014, Jul 2014, Beijing, China. pp.3056-3061, 2014, 〈10.1109/IJCNN.2014.6889672〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00955577
Contributeur : Marcilio De Souto <>
Soumis le : mardi 4 mars 2014 - 17:14:19
Dernière modification le : jeudi 17 janvier 2019 - 15:10:02

Lien texte intégral

Identifiants

Collections

Citation

Katti Faceli, Tieme Sakata, Andre De Carvalho, Marcilio De Souto. PVis - Partitions' Visualizer: extracting knowledge by visualizing a collection of partitions. IEEE. IEEE IJCNN 2014, Jul 2014, Beijing, China. pp.3056-3061, 2014, 〈10.1109/IJCNN.2014.6889672〉. 〈hal-00955577〉

Partager

Métriques

Consultations de la notice

120