. Ph and . Angot, A unified fictitious domain model for general embedded boundary conditions, Comptes Rendus Mathématique Acad. Sci. Paris, vol.341, issue.11, pp.683-688, 2005.

. Ph, . Angot, . Ph, O. Auphan, and . Gù-es, Penalty methods for the hyperbolic system modelling the wall-plasma interaction in a tokamak, Finite Volumes for Complex Applications VI -Problems & Perspectives, pp.31-38, 2011.

. Ph, C. Angot, P. Bruneau, and . Fabrie, A penalization method to take into account obstacles in an incompressible flow, Numerische Mathematik, vol.81, issue.4, pp.497-520, 1999.

T. Auphan, Méthodes de pénalisation pour des systèmes hyperboliques et application au transport de plasma en bord de tokamak, 2010.

T. Auphan, Penalization for non-linear hyperbolic system Advances in Differential Equations, pp.1-29, 2014.

S. Benzoni-gavage and D. Serre, Multidimensional hyperbolic partial differential equations. First-order systems and applications . Oxford Mathematical Monographs, 2007.

F. Bouchut and F. James, One-dimensional transport equations with discontinuous coefficients, Nonlinear Analysis: Theory, Methods & Applications, vol.32, issue.7, pp.891-933, 1998.
DOI : 10.1016/S0362-546X(97)00536-1

F. Boyer and P. Fabrie, Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models Applied mathematical sciences, 2012.

T. Buffard, T. Gallouët, and J. Hérard, A sequel to a rough Godunov scheme: application to real gases, Computers & Fluids, vol.29, issue.7, pp.813-847, 2000.
DOI : 10.1016/S0045-7930(99)00026-2

T. Buffard, T. Gallouët, and J. Hérard, Un schéma simple pour leséquationsleséquations de Saint-Venant, Comptes Rendus de l'Académie des Sciences -Series I -Mathematics, pp.385-390, 1998.
DOI : 10.1016/s0764-4442(97)83000-5

G. Carbou and P. Fabrie, Boundary layer for a penalization method for viscous incompressible flow, Differential Equations, vol.8, issue.12, pp.1453-1480, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00295077

B. Fornet, Small viscosity solution of linear scalar 1-D conservation laws with one discontinuity of the coefficient, Comptes Rendus Mathematique, vol.346, issue.11-12, pp.11-12681, 2008.
DOI : 10.1016/j.crma.2008.03.029

T. Gallouët, J. Hérard, and N. Seguin, Some approximate Godunov schemes to compute shallow-water equations with topography. Computers and Fluids, pp.479-513, 2003.

. Ph, K. Ghendrih, H. Bodi, G. Bufferand, G. Chiavassa et al., Transition to supersonic flows in the edge plasma, Plasma Physics and Controlled Fusion, issue.5, p.53054019, 2011.

E. Godlewski and P. Raviart, Numerical approximation of hyperbolic systems of conservation laws, 1996.
DOI : 10.1007/978-1-4612-0713-9

J. M. Greenberg and A. Y. Le-roux, A Well-Balanced Scheme for the Numerical Processing of Source Terms in Hyperbolic Equations, SIAM Journal on Numerical Analysis, vol.33, issue.1, pp.1-16, 1996.
DOI : 10.1137/0733001

. Gù-es, Probì eme mixte hyperbolique quasi-linéaire caractéristique, Communications in Partial Differential Equations, vol.15, pp.595-654, 1990.

L. Isoardi, G. Chiavassa, G. Ciraolo, P. Haldenwang, E. Serre et al., Penalization modeling of a limiter in the Tokamak edge plasma, Journal of Computational Physics, vol.229, issue.6, pp.2220-2235, 2010.
DOI : 10.1016/j.jcp.2009.11.031

URL : https://hal.archives-ouvertes.fr/hal-00386101

R. Leveque, Finite Volume Methods for Hyperbolic Problems, 2002.
DOI : 10.1017/CBO9780511791253

Q. Liu and O. V. Vasilyev, A Brinkman penalization method for compressible flows in complex geometries, Journal of Computational Physics, vol.227, issue.2, pp.946-966, 2007.
DOI : 10.1016/j.jcp.2007.07.037

A. Paccou, G. Chiavassa, J. Liandrat, and K. Schneider, A penalization method applied to the wave equation, Comptes Rendus M??canique, vol.333, issue.1, pp.79-85, 2005.
DOI : 10.1016/j.crme.2004.09.019

A. Paredes, H. Bufferand, F. Schwander, G. Ciraolo, E. Serre et al., Penalization technique to model wall-component impact on heat and mass transport in the tokamak edge, Journal of Nuclear Materials, vol.438, issue.0, 2013.
DOI : 10.1016/j.jnucmat.2013.01.131

URL : https://hal.archives-ouvertes.fr/hal-01101342

F. Poupaud and M. Rascle, Measure solutions to the linear multi-dimensional transport equation with non-smooth coefficients, Communications in Partial Differential Equations, vol.1042, issue.1-2, pp.225-267, 1997.
DOI : 10.1070/SM1967v002n02ABEH002340

J. B. Rauch, Symmetric positive systems with boundary characteristic of constant multiplicity, Transactions of the American Mathematical Society, vol.291, issue.1, pp.167-187, 1985.
DOI : 10.1090/S0002-9947-1985-0797053-4

J. B. Rauch and F. J. Massey, Differentiability of solutions to hyperbolic initial-boundary value problems, Trans. Amer. Math. Soc, vol.189, pp.303-318, 1974.

H. Schlichting and K. Gersten, Boundary Layer Theory. Physic and astronomy, 2000.

P. Tamain, Etude des flux dematì ere dans le plasma de bord des tokamaks, alimentation, transport et turbulence, 2007.

B. Van-leer, Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method, Journal of Computational Physics, vol.32, issue.1, pp.101-136, 1979.
DOI : 10.1016/0021-9991(79)90145-1