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the Structure Function
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LURPA - ENS Cachan, 61 avenue du Président Wilson, Cachan, 94230, France

Abstract

This paper presents a probabilistic model of dynamic gates which allows to

perform the quantitative analysis of any Dynamic Fault Tree (DFT) from

its structure function. Both these probabilistic models and the quantitative

analysis which can be performed thanks to them can accommodate any failure

distribution of basic events. We illustrate our approach on a DFT example

from the literature.

Keywords: Dynamic fault tree, structure function, probabilistic model,

quantitative analysis.

1. Introduction

The structure function of a Static Fault Tree (SFT) – a Fault Tree (FT)

which only contains gates OR, AND, and K-out-of-N – is a Boolean function

which represents the failure of the Top Event (TE) according to the failure of

the basic events (BEs) of the FT. This algebraic model is classically used to
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perform both the qualitative and quantitative analysis of SFTs directly. For

complex systems, these analyses are most often performed thanks to BDD-

based methods [1, 2, 3, 4] or other techniques such as Petri Nets [5], Bayesian

Networks [6, 7], approximate reasoning methodologies [8], or combinatorial

techniques [9, 10].

The introduction of dynamic gates – gates PAND, FDEP, and Spare – in

FTs has changed the nature of the relation between the TE and the BEs.

In a Dynamic Fault Tree (DFT), the failure of the TE depends not only on

the failure of the BEs but also on the order of occurrence of these failures.

As this last aspect is not taken into account in the Boolean model of failures

(which only expresses whether a BE has occurred or not), a classic Boolean

function cannot represent the dynamic relations between the TE and the

BEs that exist in a DFT.

In a previous article, we presented an algebraic framework allowing to al-

gebraically model dynamic gates and determine the structure function of any

Dynamic Fault Tree (DFT) [11]. We also showed that the minimal cut sets

and sequences of DFTs can be determined directly from this structure func-

tion, in the same way that the minimal cut sets of SFTs can be determined

directly from their structure function.

In the current paper, we first present an algorithm which can calculate

the structure function of any DFT under a minimal canonical form with the

minimization criterion presented in [11]. Then, after recalling the probabilis-

tic models of dynamic gates which have been presented in [12, 13, 14], we

present a novel approach allowing to perform the quantitative analysis of

any DFT from its structure function, thanks to the probabilistic model of
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dynamic gates. Finally, we illustrate our approach on a DFT example from

the litterature by considering Weibull failure distributions for basic events,

which allows to emphasize the fact that our approach can accommodate any

failure distribution of basic events. We chose Weibull distributions because

they better model the aging of the pumps considered in our DFT example

than the usual Markovian distributions

This paper is organised as follows. The most common approaches used to

perform the quantitative analysis of DFTs are presented in Section 2. The

algebraic framework that we have introduced to model DFTs is recalled in

Section 3. Our approach and the probabilistic models of dynamic gates are

detailed in Section 4, and our approach is illustrated on a DFT example in

Section 5.

2. State of the art

Many approaches have been envisaged to perform the quantitative anal-

ysis of DFTs without using their structure function. In [15], each dynamic

gate of the considered DFT is replaced by the static gate corresponding to

its logic constraints; the minimal cut sets of the resulting SFT are then gen-

erated by using Zero-suppressed BDDs (ZBDDs), and these minimal cut sets

are expanded to minimal cut sequences by considering the timing constraints.

However, it can be noted that some constraints cannot be taken into account

during this conversion of dynamic gates into static gates as this conversion

leads to a too long list of sequences for the qualitative analysis: we showed

in [16] that, during the conversion of many Spare gates sharing a spare event

into static gates, the behaviour of the spare event cannot be correctly taken
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into account. The authors of [17] propose to convert the DFT into a failure

automaton which models the changing state of the system as failures oc-

cur. This failure automaton can then be converted into a Continuous Time

Markov Chain (CTMC), and the solution of the corresponding set of differ-

ential equations allows to determine the failure probability of the TE of the

DFT. These two approaches have been implemented in the Galileo tool [2].

Other model-based approaches also allow to perform the quantitative

analysis of DFTs. For instance, in [18], the whole DFT is converted into

a dynamic Bayesian Network and the failure probability of the TE of the

DFT can be determined by using inference algorithms. In [9], the dynamic

subtrees of DFTs are converted into a class of coloured Stochastic Petri Nets

called Stochastic Well-formed Net (SWN). This SWN can be converted into a

CTMC to determine the failure probability of the TE of the dynamic subtree,

and this failure probability can then be cast back into the original DFT. These

two approaches have been respectively implemented in the Windows [18] and

Linux [19] version of the Drawnet tool. Finally, in [20], all the gates of DFTs

are converted into Petri Nets, and counters are used to determine the number

of times that each transition has been fired, and hence the average rate of

occurrence of the system failure.

All these approaches, as well as the numerous ones which have not been

cited in this section, are more or less performant. However, most of them

can provide a litteral result only for exponential distributions, even though

numerical simulation allows to get an approximate result of the failure prob-

ability of the TE for any distribution of BEs, with a higher computational

effort.
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One of the main goals of our approach is to extend the structure-function-

based analysis approaches commonly used to analyze SFTs to DFTs, so

as to accommodate any distribution of BEs. In the case of SFTs, static

gates can be modelled by means of Boolean operators and the inclusion-

exclusion formula [21] is sufficient to determine the failure probability of

the TE of the FT thanks to the probabilistic model of static gates. In

the case of DFTs, the inclusion-exclusion formula can still be used, but as

we modelled dynamic gates by means of temporal operators, the expression

obtained will contain probabilities of algebraic terms containing temporal

operators, and a probabilistic model of dynamic gates is hence needed to

perform quantitative analysis. We hence propose a probabilistic model of

dynamic gates based on their behavioural model which was presented in

[11]. The algebraic framework which has been introduced to determine this

behavioural model of dynamic gates, and hence the structure function of

DFTs, is recalled in Section 3.

3. Algebraic framework for the modelling of DFTs

3.1. Hypotheses

The hypotheses considered in this work are as follows:

• the DFTs that we consider are the DFTs defined in [22], which include

static gates (OR, AND, and K-out-of-N) and dynamic gates (PAND,

FDEP, and Spare);

• events are not repairable, in accordance with [23], so that each event

has a single occurrence and can hence be assigned a single date of

appearance;

5



• basic events have continuous failure time distributions, as considered

in [24], so that independent basic events cannot occur simultaneously;

and

• intermediate events of a DFT can still occur simultaneously if the DFT

contains repeated events, as explained in [12].

3.2. Basics and notations of our algebraic framework

The Boolean model commonly used to model events and gates in SFTs

does not allow to take into account the order of appearance of events which is

needed to model dynamic gates. To be able to take into account this temporal

aspect and hence model sequences of events, we consider events as Boolean

functions defined on the set of positive times and which take Boolean values.

As we consider non-repairable events, each non-repairable event a can be

assigned a unique date of appearance d(a). The timing diagram of a non-

repairable event a is shown in Fig. 1.

Figure 1: A non-repairable event

The identity elements of operators OR and AND in Enr are denoted by

⊥, and ⊤, respectively, to which these dates can be assigned:

d(⊥) = +∞ , d(⊤) = 0.

⊥ is the never-occurring event whereas ⊤ is the always-occurring event.

6



In addition to classical operators OR (+) and AND (·), we have defined

three temporal operators on the set of non-repairable events (noted Enr) to

model dynamic gates. These operators are: non-inclusive BEFORE (✁),

SIMULTANEOUS (△), and Inclusive BEFORE (✂). Their complete defini-

tions can be found in [11] and are based on the date of appearance of their

operands, as illustrated by the definition of the temporal operator Inclusive

BEFORE:

d(a✂ b) =



























d(a) if d(a) < d(b)

d(a) if d(a) = d(b)

+∞ if d(a) > d(b)

The three operators satisfy the following theorems, which will be used in

the remainder of this paper, for all a, b ∈ Enr :

a · (a✁ b) = a✁ b (1)

a△ b = b△ a (2)

a · (a△ b) = a△ b (3)

(a✁ b) + (a△ b) + (a · (b✁ a)) = a (4)

The exhaustive list of all the theorems verified by these three operators,

as well as their proofs, can be found in [16].

3.3. Algebraic model of dynamic gates

The algebraic framework defined in [11] and recalled in Section 3.2 allows

to determine the algebraic model of dynamic gates, which is briefly recalled

in Fig. 2. In the case of gate FDEP, AT and BT denote the global failure
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of basic events A and B, which can be caused by the failure of A and B by

themselves, or by the failure of the trigger event T . We have showed in [13]

that each –dynamic– FDEP gate is equivalent to a set of –static– OR gates,

and that gate FDEP hence has a static behavior. In the case of gate Spare,

Bd and Ba respectively denote the dormant and active mode of the spare

event B.

Figure 2: Algebraic model of dynamic gates

Besides, the case of many Spare gates sharing a spare event has been

considered in [11]. This case is a bit more complex as spare events have

quite a specific behaviour: a spare event is used by the first gate whose

previous events have failed, and it is made unavailable to all the other gates.

For instance, the algebraic model of 2 Spare gates sharing a spare event is

recalled in Fig. 3.

Finally, we have shown in [11] that Cold and Hot Spare gates can be

considered as specific cases of Warm Spare gates. As the algebraic models of

Spare gates presented in Tables 2 and 3 are the general algebraic models of

Warm Spare gates, we will not detail the algebraic models of Cold and Hot
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Figure 3: Algebraic model of 2 Spare gates sharing a spare event

Spare gates in this paper.

4. Quantitative analysis of DFTs based on the structure function

4.1. Minimal canonical form of the structure function

The algebraic model of dynamic gates presented in Section 3.3 allows to

determine the structure function of any DFT. We have shown in [11] that

this structure function can be reduced to a sum-of-product canonical form:

TE =
∑

(

∏

bi ·
∏

(bj ✁ bk)
)

, j /∈ {i, k} , (5)

where {bi, i ∈ (1, ..., n)} are the basic events of the DFT, and that the re-

dundant terms of this canonical form – i.e. the algebraic terms which are

included in one or many other algebraic terms – can be removed to obtain a

minimal canonical form of the structure function. Such a minimal canonical

form can be obtained for any DFT thanks to Algorithm 1, the expression for

each intermediate and top event being determined under a canonical form
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thanks to Algorithm 2. The removal of redundant terms at the end of Algo-

rithm 1 guarantees that the expression obtained for the minimal canonical

form of the structure function will not contain terms which can absorb each

other. Indeed, any term A which may be absorbed by another term B will be

included in B (A ⊂ B) and removed from the structure function by applying

the minimization criterion presented in [12] (since A ⊂ B ⇒ A · B = A).

Algorithme 1: Calculation of the structure function of a DFT

Input : DFT with gates OR, AND, PAND, WSP, and CSP

Output : Structure function under a minimal canonical form (SF)

begin

// Initialisation

Event = TopEvent

// Determination of the canonical form

SF = CanonicalForm(Event)

// Removal of redundant terms

SF = RedundancyFree(SF)

return SF

It is possible to get an idea of the complexity of such an algorithm by

determining how many times each main function is called, thanks to the

characteristics of the DFT:

• the function CanonicalForm() is called (ni + 1) times, ni being the

number of intermediate events in the DFT

• the function ORComposition() is called (neOR
−nOR) times, neOR

being
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the number of input events to OR gates, and nOR being the number of

OR gates in the DFT

• the function ANDComposition() is called (neAND
−nAND) times, neAND

being the number of input events to AND gates, and nAND being the

number of AND gates in the DFT

• the function PANDComposition() is called nPAND times, nPAND being

the number of PAND gates in the DFT

• the function WSPComposition() is called nWSP times, nWSP being the

number of WSP gates in the DFT

• the function CSPComposition() is called nCSP times, nCSP being the

number of CSP gates in the DFT

This minimal canonical form of the structure function can be determined

for any DFT, whether it contains repeated events or not. Indeed, we showed

in [12] that two intermediate events may occur simultaneously in a DFT

which contains repeated events, and our approach is able to cope with this

simultaneity problem thanks to the introduction of the operator SIMULTA-

NEOUS.

Starting from (5), an expression of the failure probability of the TE of

the DFT can now be determined thanks to the inclusion-exclusion formula

[21]. On the one hand, this expression depends on the distribution functions

of basic events, which is known. On the other hand, it also depends on

the failure probability of algebraic terms containing the temporal operator

✁, which is unknown a priori. As these algebraic terms result from the

11



algebraic model of dynamic gates, a probabilistic model of dynamic gates is

then needed to determine the failure probability of such terms. A few useful

probabilistic formulas which are necessary to determine this probabilistic

model are recalled in Section 4.2, and the probabilistic model of dynamic

gates is presented in Section 4.3.

4.2. Some useful probabilistic formulas

It is necessary to recall some useful probabilistic expressions to be able to

determine the probabilistic model of dynamic gates. Let us consider an event

x with cumulative distribution function (Cdf) F (x) and probability density

function (pdf) f(x) (f(x) = F ′(x)). The following expressions hold under

the hypothesis of statistical independence [25, 24].

Pr {a · b} (t) = Fa(t)× Fb(t) (6)

Pr {a+ b} (t) = Fa(t) + Fb(t) − Fa(t)× Fb(t) (7)

Pr {a✁ b} (t) =

∫ t

0

fa(u)(1− Fb(u)) du (8)

Pr {b · (a✁ b)} (t) =

∫ t

0

fb(u)Fa(u) du (9)

4.3. Probabilistic model of dynamic gates

4.3.1. Probabilistic model of gate FDEP

An FDEP gate with 2 dependent basic events is depicted in Fig. 4. As

recalled in Section 3.3, the algebraic model of the FDEP gate is







AT = T+ A

BT = T+ B
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Figure 4: An FDEP gate with 2 dependent basic events

The FDEP gate hence is equivalent to a set of OR gates (one OR gate

for each basic event), as demonstrated in [13]. Its probabilistic model hence

is the same as the probabilistic model of the corresponding set of OR gates:







Pr {AT} (t) = Pr {T + A} (t) = FT (t) + FA(t)− FT (t)× FA(t)

Pr {BT} (t) = Pr {T +B} (t) = FT (t) + FB(t)− FT (t)× FB(t)

4.3.2. Probabilistic model of gate PAND

Figure 5: A PAND gate

A PAND gate is depicted in Fig. 5. As recalled in Section 3.3, the

algebraic model of the PAND gate is

Q = B · (A✂ B)
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The probability of occurrence of B · (A✁B) can be determined from the

expression (9), but the probability of occurrence of B · (A✂B) is not known.

We hence need to develop this expression to get expressions whose probability

of occurrence is known. According to the definition of the temporal operator

Inclusive BEFORE, a✂ b = a✁ b+ a△ b, so1

Q = B · (A✁ B + A△ B)

= B · (A✁ B) + B · (A△ B)

(2),(3)
= B · (A✁ B) + A△ B

If A and B are two statistically independent events, A△B = ⊥ and the

probabilistic model of the PAND gate can be determined as

FQ(t) = Pr {Q} (t) = Pr {B · (A✁ B)} (t)

(9)
=

∫ t

0

fB(u)FA(u) du

If A and B are two dependent events, A△B 6= ⊥. A and B must hence be

replaced by their corresponding expressions and the expression A△B must

be developed to be able to determine the failure probability of the gate.

4.3.3. Probabilistic model of Spare gates with 2 input events

Failure distribution of spare events. Let us consider a Spare gate with 2 input

events – the primary event A and one spare event B – as shown in Fig. 6.

1In the equation below, the notation
(2),(3)
= indicates that the expression B · (A✁B) +

A△ B is obtained from the expression B · (A ✁ B) + B · (A△ B) by applying theorems

(2) and (3). This notation will be used in the remainder of this paper.
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Figure 6: A single Spare gate with one primary event A and one spare event B

The failure distribution of the primary event A does not depend on B,

so the Cdf and pdf of A are mere functions of time noted FA(t) and fA(t),

respectively, as usual.

The failure distribution of the spare event B does not depend on A as

long as B is dormant (B ≡ Bd), so the Cdf and pdf of Bd also are mere

functions of time noted FBd
(t) and fBd

(t), respectively. However, the failure

distribution of the spare event B depends on A when B is active (B ≡ Ba),

since B becomes active at the failure date of A, which will be denoted by tA.

The Cdf and pdf of Ba hence depend both on time t and on the failure date

of A (tA). For the sake of clarity, we consider both functions as functions

of the two variables t and tA, which will be noted FBa
(t, tA) and fBa

(t, tA),

respectively.

Let us illustrate this aspect on the particular case of exponential distri-

butions, as this case is the most common one in reliability analyses. If A has

a failure rate λA, for all t ≥ 0, its Cdf and pdf are







FA(t) = 1− e−λAt

fA(t) = λAe
−λAt
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In the same way, if B has a failure rate λB and a dormancy α, for all

t ≥ 0, the Cdf and pdf of Bd are






FBd
(t) = 1− e−αλBt

fBd
(t) = αλBe

−αλBt

Regarding the Cdf of Ba, it is known that:

• it is exponential with failure rate λB;

• FB is equal to FBd
on [0, tA) and to FBa

on [tA,+∞), and is continuous

at the failure date of A (tA).

It can hence be assumed that FBa
(t, tA) = 1− e−λB(t−x(tA)), where x is a

function of tA. By using the continuity of FB at t = tA, we have

FBa
(tA, tA) = FBd

(tA)

⇔ 1− e−λB(tA−x(tA)) = 1− e−αλBtA

⇔ λB(tA − x(tA)) = αλBtA

⇔ tA − x(tA) = αtA

⇔ x(tA) = (1− α)tA

As a consequence, for all t ≥ (1− α)tA,






FBa
(t, tA) = 1− e−λB(t−(1−α)tA)

fBa
(t, tA) = λBe

−λB(t−(1−α)tA)

The notations used for the Cdf and pdf of the spare event B will be

retained in the remainder of this dissertation, and they can be used for any

spare event S by replacing tA with the failure date of the event on which S

depends, in the case of Spare gates with more than 2 input events.
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Case of a single Spare gate. As recalled in Section 3.3, the algebraic model

of a single Spare gate is

Q = Ba · (A✁ Ba) + A · (Bd ✁ A).

As B cannot be both in its dormant and active mode, Ba · (A✁Ba) ·A ·

(Bd ✁A)
(1)
= Ba · (A✁Ba) ·A ·Bd · (Bd ✁A) = ⊥, so the two algebraic terms

Ba · (A✁ Ba) and A · (Bd ✁ A) are disjoint and

Pr {Q} (t) = Pr {Ba · (A✁ Ba)} (t) + Pr {A · (Bd ✁ A)} (t)

On the one hand, the Cdf and pdf of Bd (B in its dormant mode) do

not depend on A, so the probability of occurrence of the second term –

Pr {A · (Bd ✁ A)} (t) – can be determined by means of the expression (9) as

Pr {A · (Bd ✁ A)} (t) =

∫ t

0

fA(u)FBd
(u) du

On the other hand, the Cdf and pdf of Ba (B in its active mode) depend

on the failure date of A, so Pr {Ba · (A✁ Ba)} (t) cannot be determined by

means of the expression (9). If we respectively denote by TA and TBa
the

failure dates of A and Ba, Pr {Ba · (A✁ Ba)} (t) can be defined as

Pr {Ba · (A✁ Ba)} (t) = Pr {TA ≤ TBa
≤ t}

= E
[

1{TA≤TBa}
1{TBa≤t}

]

,

where 1 is the indicator function [26] defined as

1S(X) =











1 if X ∈ S

0 if X /∈ S
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and E is the expectation value [26] defined as

E [1S(X)] = Pr {X ∈ S}

S represents a set and X represents an element which may belong to S or

not. For instance, in our case, 1{TBa≤t} is a shorter notation for 1[TBa ,+∞)(t),

and we should hence have E
[

1{TBa≤t}

]

= Pr {TBa
≤ t}.

According to the law of total expectation [27], ifX is an integrable random

variable and if Y is any random variable such that E [E [X|Y ]] has a meaning,

the following relation holds:

E [X] = E [E [X|Y ]]

As a consequence,

Pr {Ba · (A✁ Ba)} (t) = E
[

1{TA≤TBa}
1{TBa≤t}

]

= E
[

E
[

1{TA≤TBa}
1{TBa≤t}|TA

]]

=

∫ t

0

(
∫ t

v

fTB |TA
(u|TA = v)du

)

fTA
(v)dv

=

∫ t

0

(
∫ t

v

fBa
(u, v)du

)

fA(v)dv

Finally, the probabilistic model of a single Spare gate with 2 input events

hence is

FQ(t) = Pr {Q} (t) =

∫ t

0

(
∫ t

v

fBa
(u, v)du

)

fA(v)dv +

∫ t

0

fA(u)FBd
(u) du

This probabilistic model does not depend on the failure distribution con-

sidered for basic events. However, in the particular case of exponential distri-

butions, we have shown in [16] that the expression obtained with this prob-

abilistic model is the same as the expression obtained with Markov Chains.
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Figure 7: Two Spare gates sharing a spare event

Case of two Spare gates sharing a spare event. The case of two Spare gates

sharing a spare event is depicted in Fig. 7. As recalled in Section 3.3, the

algebraic model of any of two Spare gates sharing a spare event is






Q1 = Ca · (A✁ Ca) + A · (Cd ✁ A) + A · (B ✁ A)

Q2 = Ca · (B ✁ Ca) + B · (Cd ✁ B) + B · (A✁ B)

Let us first consider the expression for Q1:

Q1 = Ca · (A✁ Ca) + A · (Cd ✁ A) + A · (B ✁ A)

It can be noted that the two first algebraic terms Ca · (A ✁ Ca) and

A · (Cd ✁ A) do not contain B while the third algebraic term A · (B ✁ A)

does. These three algebraic terms are hence not disjoint. This expression for

Q1 can be transformed into another equivalent expression containing disjoint

terms only by introducing B in the two first algebraic terms.

The first algebraic term Ca · (A ✁ Ca) corresponds to the failure se-

quence [A,Ca], which does not depend on B. B can fail before A (se-

quence [B,A,Ca]), between A and C (sequence [A,B,Ca]), after C (sequence
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[A,Ca, B]), or B may not fail at all (sequence
[

A,Ca,��B
]

2). The algebraic

term Ca · (A✁ Ca) is hence equivalent to

Ca · (A✁ Ca) = Ca · (B ✁ A) · (A✁ Ca) + Ca · (A✁ B) · (B ✁ Ca)

+B · (A✁ Ca) · (Ca ✁ B) + Ca · (A✁ Ca) ·��B,

where the four terms represent the four possible sequences obtained by in-

cluding B in the sequence [A,Ca].

The second algebraic term A · (Cd ✁ A) corresponds to the failure se-

quence [Cd, A], which does not depend on B either. B can fail before C

(sequence [B,Cd, A]), between C and A (sequence [Cd, B,A]), after A (se-

quence [Cd, A,B]), or B may not fail at all (sequence
[

Cd, A,��B
]

). However,

if B fails before C, C will become active, which is impossible since C is dor-

mant in the term A · (Cd ✁ A). The algebraic term A · (Cd ✁ A) is hence

equivalent to

A · (Cd✁A) = A · (Cd✁B) · (B✁A)+B · (Cd✁A) · (A✁B)+A · (Cd✁A) ·��B,

where the three terms represent the three possible sequences obtained by

including B in the sequence [Cd, A].

The algebraic model of the gate hence becomes

Q1 = Ca · (B ✁ A) · (A✁ Ca) + Ca · (A✁ B) · (B ✁ Ca)

+B · (A✁ Ca) · (Ca ✁ B) + Ca · (A✁ Ca) ·��B

+A · (Cd ✁ B) · (B ✁ A) + B · (Cd ✁ A) · (A✁ B)

+A · (Cd ✁ A) ·��B + A · (B ✁ A)

2
��B is a symbolic representation of the fact that B does not appear at all.
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and can be transformed to

Q1
(1)
= A · Ca · (B ✁ A) · (A✁ Ca) + Ca · (A✁ B) · (B ✁ Ca)

+B · (A✁ Ca) · (Ca ✁ B) + Ca · (A✁ Ca) ·��B

+A · (Cd ✁ B) · (B ✁ A) + B · (Cd ✁ A) · (A✁ B)

+A · (Cd ✁ A) ·��B + A · (B ✁ A),

in which the terms A ·Ca · (B ✁A) · (A✁Ca) and A · (Cd ✁B) · (B ✁A) can

be absorbed by the term A · (B✁A), thus leading to the following simplified

expression

Q1 = Ca · (A✁ B) · (B ✁ Ca) + B · (A✁ Ca) · (Ca ✁ B)

+Ca · (A✁ Ca) ·��B +B · (Cd ✁ A) · (A✁ B)

+A · (Cd ✁ A) ·��B + A · (B ✁ A).

It can be noted that all the terms of this expression are now disjoint. The

failure probability of Q1 can hence be expressed as

Pr {Q1} (t) = Pr {Ca · (A✁ B) · (B ✁ Ca)} (t)

+Pr {B · (A✁ Ca) · (Ca ✁ B)} (t)

+Pr
{

Ca · (A✁ Ca) ·��B
}

(t)

+Pr {B · (Cd ✁ A) · (A✁ B)} (t)

+Pr
{

A · (Cd ✁ A) ·��B
}

(t) + Pr {A · (B ✁ A)} (t)

By using the same approach as previously, the six probabilities of the

six previous algebraic terms can be expressed under a form which does not
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depend on the failure distribution considered for basic events:

Pr {Ca · (A✁ B) · (B ✁ Ca)} (t) =

∫ t

0

(
∫ t

w

(
∫ u

w

fB(v)dv

)

fCa
(u, w)du

)

fA(w)dw

Pr {B · (A✁ Ca) · (Ca ✁ B)} (t) =

∫ t

0

(
∫ u

0

(
∫ u

v

fCa
(w, v)dw

)

fA(v)dv

)

fB(u)du

Pr
{

Ca · (A✁ Ca) ·��B
}

(t) = (1− FB(t))

∫ t

0

(
∫ t

v

fCa
(u, v)du

)

fA(v)dv

Pr {B · (Cd ✁ A) · (A✁ B)} (t) =

∫ t

0

(
∫ u

0

fA(v)FCd
(v)dv

)

fB(u)du

Pr
{

A · (Cd ✁ A) ·��B
}

(t) = (1− FB(t))

∫ t

0

fA(u)FCd
(u)du

Pr {A · (B ✁ A)} (t) =

∫ t

0

fA(u)FB(u)du
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The probabilistic model for Q1 can hence be deduced from these expres-

sions, and the probabilistic model for Q2 can be determined by symmetry:

FQ1(t) = Pr {Q1} (t) =

∫ t

0

(
∫ t

w

(
∫ u

w

fB(v)dv

)

fCa
(u, w)du

)

fA(w)dw

+

∫ t

0

(
∫ u

0

(
∫ u

v

fCa
(w, v)dw

)

fA(v)dv

)

fB(u)du

+(1− FB(t))

∫ t

0

(
∫ t

v

fCa
(u, v)du

)

fA(v)dv

+

∫ t

0

(
∫ u

0

fA(v)FCd
(v)dv

)

fB(u)du

+(1− FB(t))

∫ t

0

fA(u)FCd
(u)du

+

∫ t

0

fA(u)FB(u)du

FQ2(t) = Pr {Q2} (t) =

∫ t

0

(
∫ t

w

(
∫ u

w

fA(v)dv

)

fCa
(u, w)du

)

fB(w)dw

+

∫ t

0

(
∫ u

0

(
∫ u

v

fCa
(w, v)dw

)

fB(v)dv

)

fA(u)du

+(1− FA(t))

∫ t

0

(
∫ t

v

fCa
(u, v)du

)

fB(v)dv

+

∫ t

0

(
∫ u

0

fB(v)FCd
(v)dv

)

fA(u)du

+(1− FA(t))

∫ t

0

fB(u)FCd
(u)du

+

∫ t

0

fB(u)FA(u)du

This probabilistic model does not depend on the failure distribution con-

sidered for basic events. However, in the particular case of exponential distri-

butions, we have shown in [16] that the expression obtained with this prob-

abilistic model is the same as the expression obtained with Markov Chains.
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4.4. Quantitative analysis of DFTs based on the structure function

The knowledge of the minimal canonical form of the structure function, of

the probabilistic expressions provided in Section 4.2, and of the probabilistic

model of dynamic gates provided in Section 4.3 is sufficient to perform the

quantitative analysis of any DFT.

First, an expression for the failure probability of the Top Event of the

DFT can be determined thanks to the inclusion-exclusion formula [21]. In-

deed, as the structure function is expressed under its minimal canonical form:

TE =
∑

(

∏

bi ·
∏

(bj ✁ bk)
)

, j /∈ {i, k} , (10)

the inclusion-exclusion formula will allow to determine an expression for the

failure probability of TE under the form:

Pr {TE} (t) =
n

∑

k=1

(−1)k+1Pr
{

∏

bi′ ·
∏

(bj′ ✁ bk′)
}

(t), j′ /∈ {i′, k′} , (11)

each term
∏

bi′ ·
∏

(bj′ ✁ bk′) being the algebraic product of k terms
∏

bi ·
∏

(bj ✁ bk), n being the number of terms in (10). For instance, if the minimal

canonical form of a structure function is

TE = b · (a✁ b) + a · (c✁ a) + c · (d✁ c), (12)

then the inclusion-exclusion formula will allow to determine Pr {TE} (t) un-

der the form:

Pr {TE} (t) = Pr {b · (a✁ b)} (t) + Pr {a · (c✁ a)} (t)

+Pr {c · (d✁ c)} (t)− Pr {b · (c✁ a) · (a✁ b)} (t)

−Pr {b · c · (a✁ b) · (d✁ c)} (t)− Pr {a · (d✁ c) · (c✁ a)} (t)

+Pr {b · (d✁ c) · (c✁ a) · (a✁ b)} (t) (13)
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Each term of the expression in (10) can then be calculated. Two cases

can occur:

• if a term does not contain any spare event, the probabilistic expressions

presented in Section 4.2 are sufficient to determine its failure probabil-

ity;

• if a term contains spare events, the interdependence between these

spare events and the main event of the corresponding gate must be

taken into account: the probabilistic model of Spare gates presented in

Section 4.3.3 is hence required to determine the failure probability of

this term.

Finally, the failure probability of the TE of the DFT can be computed.

5. Quantitative analysis of a DFT example

We propose to perform the quantitative analysis of the DFT example

which was considered in [11]. It is extracted from [28] and is depicted in

Fig. 8.

This DFT models the failure of a cardiac assist system (HCAS) which is

divided into 4 modules: Trigger, CPU unit, motor section, and pumps. The

Trigger consists of a crossbar switch (CS) and a system supervisor (SS). The

failure of either CS or SS triggers the failure of both CPUs. The CPU unit

is a warm spare, which has a primary unit P and a spare unit B having a

dormancy of 0.5. The motor section fails if both MOTOR (M) and MOTORC

(MC) fail. The pumps unit is comprised of two cold spares, each having a

primary pump (P1 and P2), and sharing a common spare pump (BP). In
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Figure 8: The Dynamic Fault Tree of the HCAS, from [28]

order for the pumps unit to fail, all three pumps need to fail and the left-hand

side spare gate needs to fail before (or at the same time as) the right-hand

side spare gate, i.e. PAND gate.

The minimal canonical form of the structure function of the DFT in Fig.
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8 has been determined in [11] and is

TE = CS + SS +MOTOR ·MOTORC + P · (Bd ✁ P ) + Ba · (P ✁ Ba)

+BPa · (P2✁ P1) · (P1✁ BPa) + P2 · (P1✁ BPa) · (BPa ✁ P2)

To make the calculation of the failure probability of the TE easier, this

structure function can be divided into the 3 structure functions of the 3

subtrees of the DFT of the HCAS which were considered in [11]:

• subtree 1, which corresponds to the failure of the CPU unit: this sub-

tree contains one OR gate, one FDEP gate, and one Warm Spare gate,

and is hence dynamic;

• subtree 2, which corresponds to the failure of the motor section: this

subtree contains a single AND gate and is hence static;

• subtree 3, which corresponds to the failure of the pumps unit: this

subtree contains one PAND gate and two Cold Spare gates, and is

hence dynamic.

The TEs of these 3 subtrees are respectively denoted by TE1, TE2, and

TE3, and can be determined as [11]:

TE1 = CS + SS + P · (Bd ✁ P ) + Ba · (P ✁ Ba)

TE2 = MOTOR ·MOTORC

TE3 = BPa · (P2✁ P1) · (P1✁ BPa) + P2 · (P1✁ BPa) · (BPa ✁ P2)

The failure probability of the TE of the DFT can hence be determined
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as

Pr {TE} (t) = Pr {TE1 + TE2 + TE3} (t)

= Pr {TE1} (t) + Pr {TE2} (t) + Pr {TE3} (t)

−Pr {TE1} (t)× Pr {TE2} (t)

−Pr {TE1} (t)× Pr {TE3} (t)

−Pr {TE2} (t)× Pr {TE3} (t)

+Pr {TE1} (t)× Pr {TE2} (t)× Pr {TE3} (t) (14)

thanks to the inclusion–exclusion formula [21], since the 3 subtrees are sta-

tistically independent. The expressions for Pr {TE1} (t), Pr {TE2} (t), and

Pr {TE3} (t) can then be determined as follows.

5.1. Calculation of Pr {TE1} (t)

Pr {TE1} (t) = Pr {CS + SS + P · (Bd ✁ P ) + Ba · (P ✁ Ba)} (t)

According to the probabilistic model of a single Spare gate with 2 input

events presented in Section 4.3.3,

Pr {P · (Bd ✁ P ) + Ba · (P ✁ Ba))} (t) =

∫ t

0

(
∫ t

v

fBa
(u, v)du

)

fP (v)dv

+

∫ t

0

fP (u)FBd
(u)du

As a consequence, according to the inclusion–exclusion formula [21],

Pr {TE1} (t) = FCS(t) + FSS(t)− FCS(t)× FSS(t)

+(1− FCS(t)− FSS(t) + FCS(t)× FSS(t))

×

(
∫ t

0

(
∫ t

v

fBa
(u, v)du

)

fP (v)dv +

∫ t

0

fP (u)FBd
(u)du

)
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5.2. Calculation of Pr {TE2} (t)

The expression for Pr {TE2} (t) can be determined directly as

Pr {TE2} (t) = Pr {MOTOR ·MOTORC} (t)

= FMOTOR(t)× FMOTORC(t)

5.3. Calculation of Pr {TE3} (t)

The expression for Pr {TE3} (t) can be determined as

Pr {TE3} (t) = Pr {BPa · (P2✁ P1) · (P1✁ BPa)} (t)

+Pr {P2 · (P1✁ BPa) · (BPa ✁ P2)} (t)

=

∫ t

0

(
∫ t

w

(
∫ u

w

fP1(v)dv

)

fBPa
(u, w)du

)

fP2(w)dw

+

∫ t

0

(
∫ w

0

(
∫ w

v

fBPa
(u, v)du

)

fP1(v)dv

)

fP2(w)dw

thanks to the expression (9) and to the probabilistic model of Spare gates

presented in Section 4.3.3.

5.4. Failure probability of the TE of the DFT of the HCAS

The expressions obtained for Pr {TE1} (t), Pr {TE2} (t), and Pr {TE3} (t)

allow to determine the failure probability of the TE of the DFT of the HCAS

thanks to the relation (14). As the expressions obtained in Sections 5.1 to

5.3 are valid whatever the distribution considered for basic events, the failure

probability of the TE can always be calculated.

In order to compare our results to those obtained with DFT analysis

tools, if we consider exponential distributions with the failure rates given

in Table 1 and with a dormancy of 0.5 for the spare event B, relation (14)
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allows to determine an unreliability of 36.35% for the HCAS at mission time

T = 1, 000 hours. The Galileo tool provides the same result.

However, if the experts consider that a Weibull distribution would be

more suitable than an exponential distribution to model the failure behaviour

– and the aging – of pumps, Pr {TE} (t) can be calculated in the same way.

The Weibull distribution has the expression

F (t) = 1− e−(
t−γ
η )

β

λ(t) = β(t−γ)β−1

ηβ

so that

F (t) = 1− e−
∫ t
0
λ(u)du

Let us consider that the failure of the three pumps is modeled by a Weibull

distribution with a failure rate λ(t) = 1.5× 10−3− 4× 10−7t for t ∈ [0, 2500],

which means that the pumps have an ”infant mortality”, and a constant

failure rate λ = 5× 10−4 after 2, 500 hours. We thus obtain an unreliability

of 45.87% for the HCAS at mission time T = 1, 000 hours. It can be noted

that this unreliability is higher – and can be considered as a bit more rep-

resentative – than the unreliability obtained when the pumps were modeled

by exponential distributions.

6. Conclusion

In this paper, we showed that the structure function of DFTs, which

already allowed to perform the qualitative analysis of DFTs directly, can

also be used to perform the quantitative analysis of DFTs directly thanks

to a probabilistic model of dynamic gates. This quantitative analysis can
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accommodate any failure distribution for basic events as the probabilistic

models that we provided for dynamic gates do not depend on the distribution

considered for basic events.

This approach still needs to be implemented, as the underlying calcula-

tions allowing to determine the probability of appearance of the TE of the

DFT are quite important. Besides, numerical integration may be required to

take into account non-integrable failure distributions, and calculation algo-

rithms may be useful in the process. Finally, the events that we consider in

our approach are non-repairable, which severely limits its applicability since

most systems have repairable elements. Extending our algebraic framework

to the case of repairable events would hence represent a worthwhile advance,

even though it will require the definition of a new model of events, of new be-

havioral and probabilistic models for dynamic gates, and the theorems that

we presented in [11] will need to be updated as some of them may no longer

apply to repairable events.
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works. Università del Piemonte Orientale, Technical Report TR-INF-

2005-08-02-UNIPMN, 2005.

[19] Vittorini V, Franceschinis G, Gribaudo M, Iacono M, Mazzocca N.

Drawnet: Model objects to support performance analysis and simulation

of systems. Proc. of the 12th Int. Conf. on Modelling Tools and Tech-

niques for Computer and Communication System Performance Evalua-

tion, Springer Verlag - LNCS, 2324, 2002; 233-238.

[20] Adamyan A, He D. System Failure Analysis Through Counters of

Petri Net Models. Quality and Reliability Engineering International 2004;

20(4):317-335. DOI: 10.1002/qre.545

[21] Trivedi K. Probability & Statistics with Reliability, Queueing & Com-

puter Science applications (2nd edn). Wiley, 2001.

[22] Dugan JB, Bavuso S, Boyd M. Fault Trees and Sequence Dependencies.

Proc. of the Annual Reliability and Maintainability Symp., Los Angeles,

CA, USA, 1990; 286-293.

[23] Stamatelatos M., Vesely W. Fault Tree Handbook with Aerospace Ap-

plications, vol. 1.1. NASA Office of Safety and Mission Assurance, 2002;

205.

34



[24] Fussell JB, Aber EF, Rahl RG. On the Quantitative Analysis of Priority-

AND Failure Logic. IEEE Transactions on Reliability 1976, R-25(5):324-

326. DOI: 10.1109/TR.1976.5220025

[25] Amari S, Dill G, Howals E. A new approach to solve dynamic fault-trees.

Proc. of the Annual Reliability and Maintainability Symp., Tampa, FL,

USA, 2003; 374-379.

[26] Grimmett GR, Stirzaker DR. Probability and Random Processes (3rd

edn). Oxford University Press: USA, 2001.

[27] Billingsley P. Probability and measure. John Wiley & Sons: New York,

USA, 1995.

[28] Boudali H, Dugan JB. A discrete-time Bayesian network reliability mod-

eling and analysis framework. Reliability Engineering and System Safety

2005, 87(3):337-349. DOI: 10.1016/j.ress.2004.06.004

35



Algorithme 2: Calculation of the canonical form of a non-basic event

Input : Intermediate or top event (Event), output event of a gate P

Output : Canonical form of the expression for this intermediate or

top event (CanonicalForm(Event))

begin

// Calculation of the canonical form of the expression

for each input event of P

for each input ei of P do

CF(ei) = CanonicalForm(ei)

// Composition of canonical forms according to the type

of the gate P

switch type of the gate P do

case OR

CF = CF(e1)

for each other input event ei of P do

CF = ORComposition(CF(ei),CF)

case AND

CF = CF(e1)

for each other input event ei of P do

CF = ANDComposition(CF(ei),CF)

case PAND

CF = PANDComposition(CF(e1),CF(e2))

case WSP

CF = WSPComposition(CF(e1),CF(e2))

case CSP

CF = CSPComposition(CF(e1),CF(e2))

return CF
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Basic component Failure rate (10−4)

CS 1

SS 2

P, B 4

P1, P2, BP 5

MOTOR 5

MOTORC 1

Table 1: Failure rates of the basic events of the DFT of the HCAS
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