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We present strategic portgraph rewriting as a basis for the implementation of visual modelling and

analysis tools. The goal is to facilitate the specification, analysis and simulation of complex systems,

using port graphs. A system is represented by an initial graph and a collection of graph rewriting

rules, together with a user-defined strategy to control the application of rules. The strategy language

includes constructs to deal with graph traversal and management of rewriting positions in the graph.

We give a small-step operational semantics for the language, and describe its implementation in the

graph transformation and visualisation tool PORGY.
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1 Introduction

In this paper we present strategic portgraph rewriting as a basis for the design of PORGY – a visual,

interactive environment for the specification, debugging, simulation and analysis of complex systems.

PORGY has a graphical interface [23] and an executable specification language (see Fig. 1), where a

system is modelled as a portgraph together with portgraph rewriting rules defining its dynamics (Sect. 2).

Reduction strategies define which (sub)expression(s) should be selected for evaluation and which

rule(s) should be applied (see [19, 8] for general definitions). They are present in programming lan-

guages such as Clean [24], Curry [17], and Haskell [18] and can be explicitly defined to rewrite terms

in languages such as ELAN [7], Stratego [31], Maude [21] or Tom [4]. They are also present in graph

transformation tools such as PROGRES [29], AGG [12], Fujaba [22], GROOVE [28], GrGen [14] and

GP [27]. PORGY’s strategy language draws inspiration from these previous works, but a distinctive fea-

ture is that it allows users to define strategies using not only operators to combine graph rewriting rules

but also operators to define the location in the target graph where rules should, or should not, apply.

The main contribution of this paper is the definition of a strategic graph program (Sect. 3): it consists

of an initial located graph (that is, a portgraph with two distinguished subgraphs P and Q specifying the

position where rewriting should take place, and the subgraph where rewriting is banned, respectively),

and a set of rewrite rules describing its dynamic behaviour, controlled by a strategy. We formalise the

∗Partially supported by the French National Research Agency project EVIDEN (ANR 2010 JCJC 0201 01).
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2 Strategic portgraph rewriting

Figure 1: Overview of PORGY: (1) editing one state of the graph being rewritten; (2) editing a rule; (3)

all available rewriting rules; (4) portion of the derivation tree, a complete trace of the computing history;

(5) the strategy editor.

concept of strategic graph program, showing how located graphs generalise the notion of a term with a

rewrite position, and provide a small-step operational semantics for strategic graph programs (Sect. 4).

Strategies are used to control PORGY’s rewrite engine: users can create graph rewriting derivations

and specify graph traversals using the language primitives to select rewriting rules and the position where

the rules apply. A rewriting position is a subgraph, which can be interactively selected (in a visual way),

or can be specified using a focusing expression. Alternatively, rewrite positions could be encoded in

the rewrite rules using markers or conditions [27]. We prefer to deal with positions directly, following

Dijkstra’s separation of concerns principle [11].

PORGY and its strategy language were first presented in [1, 13]. Unlike those papers, the notion

of portgraph considered in this paper includes attributes for nodes, ports and also edges, which are

taken into account in the definition of portgraph morphism. In addition, the strategy language includes

a sublanguage to deal with properties of graphs, which facilitates the specification of rewrite positions

and banned subgraphs (to be protected during rewriting). The operational semantics of the language,

including the non-deterministic sublanguage, is formally defined using a transition system.

2 Port Graph Rewriting

Several definitions of graph rewriting are available, using different kinds of graphs and rewriting rules

(see, for instance, [10, 15, 5, 26, 6, 20]). In this paper we consider port graphs with attributes associated

to nodes, ports and edges, generalising the notion of port graph introduced in [2].

Intuitively, a port graph is a graph where nodes have explicit connection points called ports; edges

are attached to ports. Nodes, ports and edges are labelled and may have attributes. For instance, a port

may be associated to a state (e.g., active/inactive or principal/auxiliary) and a node may have properties

such as colour, shape, label, etc. Attributes may be used to define the behaviour of the modelled system

and for visualisation purposes (as illustrated later).
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Port Graph with Attributes. A labelled port graph with attributes is a tuple G = (VG, lvG,EG, leG)
where:

• VG is a finite set of nodes.

• lvG is a function that returns, for each v ∈ VG with n ports, a node label N (the node’s name), a

set {p1, . . . , pn} of port labels (each with its own set of attribute labels and values), and a set of

attribute labels (each with a value). The node label determines the set of ports and attributes. Thus,

we may write Interface(v) = Interface(N) = {p1, . . . , pn}.

• EG is a finite set of edges; each edge has two attachment ports (v1, p1),(v2, p2), where vi ∈VG, pi ∈
Interface(vi). Edges are undirected, so 〈(v1, p1),(v2, p2)〉 is an unordered pair, and two nodes may

be connected by more than one edge on the same ports.

• leG is a labelling function for edges, which returns for each e ∈ EG an edge label, its attachment

ports (v1, p1),(v2, p2) and its set of attribute labels, each with an associated value.

Variables may be used as labels for nodes, ports, attributes and values in rewrite rules.

Rewriting is defined using a notion of graph morphism:

Port Graph Morphism. Let G and H be two port graphs, where G may contain variables but H

does not. A port graph morphism f : G → H maps nodes, ports, edges with their respective attributes

and values from G to H, such that all non-variable labels are preserved, the attachment of edges is

preserved and the set of pairs of attributes and values for nodes, ports and edges are also preserved. If G

contains variable labels, the morphism must instantiate the variables. Intuitively, the morphism identifies

a subgraph of H that is equal to G except for variable occurrences.

Port Graph Rewrite Rule. Port graphs are transformed by applying port graph rewriting rules. A port

graph rewrite rule L ⇒ R can itself be seen as a port graph, consisting of two port graphs L and R called

the left- and right-hand side respectively, and one special node ⇒, called arrow node. The left-hand side

of the rule, also called pattern, is used to identify subgraphs in a given graph, which are then replaced by

the right-hand side of the rule. The arrow node describes the way the new subgraph should be linked to

the remaining part of the graph, to avoid dangling edges [15, 10] during rewriting.

Derivation. Given a finite set R of rules, a port graph G rewrites to G′, denoted by G →R G′, if there

is a rule r = L ⇒ R in R and a morphism g from L to G, such that G →g
r G′, that is, G′ is obtained by

replacing g(L) by g(R) in G and rewiring g(R) as specified by r’s arrow node. This induces a reflexive and

transitive relation on port graphs, called the rewriting relation, denoted by →∗
R

. Each rule application is

a rewriting step and a derivation, or computation, is a sequence of rewriting steps.

Derivation Tree. Given a port graph G and a set of port graph rewrite rules R, the derivation tree of

G, written DT (G,R), is a labelled tree such that the root is labelled by the initial port graph G, and its

children are the roots of the derivation trees DT (Gi,R) such that G →R Gi. The edges of the derivation

tree are labelled with the rewrite rule and the morphism used in the corresponding rewrite step. We will

use strategies to specify the rewrite derivations of interest.
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3 Strategic graph programs

Located graph. A located graph G
Q
P consists of a port graph G and two distinguished subgraphs P and

Q of G, called respectively the position subgraph, or simply position, and the banned subgraph.

In a located graph G
Q
P , P represents the subgraph of G where rewriting steps may take place (i.e., P is

the focus of the rewriting) and Q represents the subgraph of G where rewriting steps are forbidden. We

give a precise definition below; the intuition is that subgraphs of G that overlap with P may be rewritten,

if they are outside Q. The subgraph P generalises the notion of rewrite position in a term: if G is the tree

representation of a term t then we recover the usual notion of rewrite position p in t by setting P to be

the node at position p in the tree G, and Q to be the part of the tree above P (to force the rewriting step

to apply at p, i.e., downwards from the node P).

When applying a port graph rewrite rule, not only the underlying graph G but also the position and

banned subgraphs may change. A located rewrite rule, defined below, specifies two disjoint subgraphs

M and N of the right-hand side R that are used to update the position and banned subgraphs, respectively.

If M (resp. N) is not specified, R (resp. the empty graph /0) is used as default. Below, we use the operators

∪,∩,\ to denote union, intersection and complement of port graphs. These operators are defined in the

natural way on port graphs considered as sets of nodes, ports and edges.

Located rewrite rule. A located rewrite rule is given by a port graph rewrite rule L ⇒ R, and optionally

a subgraph W of L and two disjoint subgraphs M and N of R. It is denoted LW ⇒ RN
M. We write

G
Q
P →g

LW⇒RN
M

G′Q
′

P′ and say that the located graph G
Q
P rewrites to G′Q

′

P′ using LW ⇒ RN
M at position P

avoiding Q, if G →L⇒R G′ with a morphism g such that g(L)∩P = g(W ) or simply g(L)∩P 6= /0 if W is

not provided, and g(L)∩Q = /0. The new position subgraph P′ and banned subgraph Q′ in G′ are defined

as P′ = (P\g(L))∪g(M), Q′ = Q∪g(N); if M (resp. N) are not provided then we assume M = R (resp.

N = /0).

In general, for a given located rule LW ⇒ RN
M and located graph G

Q
P , more than one morphism g, such

that g(L)∩P = g(W ) and g(L)∩Q = /0, may exist (i.e., several rewriting steps at P avoiding Q may be

possible). Thus, the application of the rule at P avoiding Q produces a set of located graphs.

To control the application of rewriting rules, we introduce a strategy language whose syntax is shown

in Table 1. Strategy expressions are generated by the grammar rules from the non-terminal S. A strategy

expression combines applications of located rewrite rules, generated by the non-terminal A, and position

updates, using the non-terminal U with focusing expressions generated by F . The application constructs

and some of the strategy constructs are strongly inspired by term rewriting languages such as ELAN [7],

Stratego [31] and Tom [4]. Focusing operators are not present in term rewriting languages where the

implicit assumption is that the rewrite position is defined by traversing the term from the root downwards.

The syntax presented here extends the one in [13] by including a language to define subgraphs of a

given graph by selecting nodes that satisfy some simple properties (see Table 2).

The focusing constructs are a distinctive feature of our language. They are used to define positions

for rewriting in a graph, or to define positions where rewriting is not allowed. They denote functions

used in strategy expressions to change the positions P and Q in the current located graph (e.g., to specify

graph traversals). We describe them briefly below.

• CrtGraph, CrtPos and CrtBan, applied to a located graph G
Q
P , return respectively the whole

graph G, P and Q.

• AllNgb, OneNgb and NextNgb denote functions that apply to pairs consisting of a located graph

G
Q
P and a subgraph G′ of G. If Pos is an expression denoting a subgraph G′ of the current graph
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Let L,R be port graphs; M,N positions; n ∈ N; pi=1...n ∈ [0,1];
n

∑
i=1

pi = 1

(Strategies) S ::= A |U | S;S | repeat(S) | while(S)do(S)

| (S)orelse(S) | if(S)then(S)else(S)

| ppick(S1, p1, . . . ,Sn, pn)

(Applications) A ::= Id | Fail | all(T ) | one(T )

(Transformations) T ::= LW ⇒ RN
M

(Position Update) U ::= setPos(F) | setBan(F) | isEmpty(F)

(Focusing) F ::= CrtGraph | CrtPos | CrtBan | AllNgb(F)

| OneNgb(F) | NextNgb(F) | Property(ρ,F)

| F ∪F | F ∩F | F \F | /0

Table 1: Syntax of the strategy language.

Let attribute be an attribute label; a a valid value for the given attribute label;

function-name the name of a built-in or user-defined function.

(Properties) ρ := (Elem,Expr)|(Function, function-name)

Elem := Node | Edge | Port

Expr := Label== a | Label != a | attribute Relop attribute

| attribute Relop a

Relop := == | != | > | < | >= | <=

Table 2: Syntax of the Property Language.

G, then AllNgb(Pos) is the subgraph of G consisting of all immediate successors of the nodes

in G′, where an immediate successor of a node v is a node that has a port connected to a port

of v. OneNgb(Pos) returns a subgraph of G consisting of one randomly chosen node which is an

immediate successor of a node in G′. NextNgb(Pos) computes all successors of nodes in G′ using

for each node only the subset of its ports labelled “next” (so NextNgb(Pos) returns a subset of the

nodes returned by AllNgb(Pos)).

• Property(ρ,F) is used to select a subgraph of a given graph, satisfying a certain property,

specified by ρ . It can be seen as a filtering construct: if the focusing expression F gener-

ates a subgraph G′ then Property(ρ,F) returns a subgraph containing only the nodes and

edges from G′ that satisfy the decidable property ρ . It typically tests a property on nodes,

ports, or edges, allowing us for instance to select the subgraph of nodes with active ports:

Property((Port,Active == true),F). It is also possible to specify a function to be used to

compute the subgraph: Property((Function,Root),CrtGraph) uses the built-in (or user-defined)



6 Strategic portgraph rewriting

function Root to compute a specific subgraph from the current graph.

• ∪, ∩ and \ are union, intersection and complement of port graphs which may be used to combine

multiple Property operators; /0 denotes the empty graph.

Other operators can be derived from the language constructs. A useful example is the not construct:

• not(S), if(S)then(Fail)else(Id). It fails if S succeeds and succeeds if S fails.

Strategic graph program A strategic graph program consists of a finite set of located rewrite rules R,

a strategy expression S (built with R using the grammar in Table 1) and a located graph G
Q
P . We denote

it
[

SR ,GQ
P

]

, or simply
[

S,GQ
P

]

when R is clear from the context.

4 Semantics of strategic graph programs

Intuitively, a strategic program consists of an initial port graph, together with a set of rules that will be

used to reduce it, following the given strategy. Formally, the semantics of a strategic graph program
[

S,GQ
P

]

is specified using a transition system (that is, a set of configurations with a binary relation on

configurations), defining a small step operational semantics in the style of [25].

Definition A configuration is a multiset {O1, . . . ,On} where each Oi is a strategic graph program.

Given a strategic graph program
[

SR ,GQ
P

]

, we will define sequences of transitions according to the

strategy S, starting from the initial configuration {
[

S,GQ
P

]

}. A configuration is terminal if no transitions

can be performed.

We will prove that all terminal configurations in our transition system consist of program values (or

simply values, if there is no ambiguity), denoted by V , of the form [Id,GQ
P ] or [Fail,GQ

P ]. In other words,

there are no blocked programs: the transition system ensures that, for any configuration, either there are

transitions to perform, or we have reached values.

Below we provide the transition rules for the core sublanguage, that is, the sublanguage that does not

include the non-deterministic operators one(), () orelse (), ppick(), repeat() and OneNgb(). The

non-deterministic sublanguage is presented in Sect. A of the Appendix.

Transitions The transition relation −→ is a binary relation on configurations, defined as follows:

{O1, . . . ,Ok,V1, . . . ,Vj} −→ {O′
11, . . . ,O

′
1m1

, . . . ,O′
kmk

,V1, . . . ,Vj}

if Oi →{O′
i1, . . . ,O

′
imi
}, for 1 ≤ i ≤ k, where k ≥ 1 and some of the O′

i j might be values.

The auxiliary relation → is defined below using axioms and rules.

A configuration {O1, . . . ,Ok,V1, . . . ,Vj} is a multiset of graph programs: each element represents

a node in the derivation tree generated by the initial graph program. The transition relation performs

reductions in parallel at all the positions in the derivation tree where there is a reducible graph program.

Definition The transition relation → on individual strategic graph programs is defined by induction.

There are no axioms/rules defining transitions for a program where the strategy is Id or Fail (these

are terminal).

Axioms for the operator all:

LSLW⇒RN
M
(GQ

P ) = {G1
Q1

P1
, . . . ,Gk

Qk

Pk
}

[all(LW ⇒ RN
M),GQ

P ]→{[Id,G1
Q1

P1
], . . . , [Id,Gk

Qk

Pk
]}
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LSLW⇒RN
M
(GQ

P ) = /0
[all(LW ⇒ RN

M),GQ
P ]→{[Fail,GQ

P ]}

where LSLW⇒RN
M
(GQ

P ), the set of legal reducts of G
Q
P for LW ⇒ RN

M, or legal set for short, contains all the

located graphs Gi
Qi

Pi
(1 ≤ i ≤ k) such that G

Q
P →gi

LW⇒RN
M

Gi
Qi

Pi
and g1, . . . ,gk are pairwise different.

As the name of the operator indicates, all possible applications of the rule are considered in one step.

The strategy fails if the rule is not applicable.

Position Update and Focusing. Next we give the semantics of the commands that are used to specify

and update positions via focusing constructs. The focusing expressions generated by the grammar for

the non terminal F in Tab. 1 have a functional semantics (see below). In other words, an expression F

denotes a function that applies to the current located graph, and computes a subgraph of G. Since there

is no ambiguity, the function denoted by the expression F is also called F .

F(GQ
P ) = P′

[setPos(F),GQ
P ]→{[Id,GQ

P′ ]}
F(GQ

P ) = Q′

[setBan(F),GQ
P ]→{[Id,GQ′

P ]}

F(GQ
P ) = /0

[isEmpty(F),GQ
P ]→{[Id,GQ

P ]}

F(GQ
P ) 6= /0

[isEmpty(F),GQ
P ]→{[Fail,GQ

P ]}

CrtGraph(GQ
P ) = G CrtPos(GQ

P ) = P CrtBan(GQ
P ) = Q

AllNgb(F)(GQ
P ) = G′ where G′ consists of all immediate successors of

nodes in F(GQ
P )

NextNgb(F)(GQ
P ) = G′ where G′ consists of the immediate successors,

via ports labelled “next”, of nodes in F(GQ
P )

Property(ρ,F)(GQ
P ) = G′ where G′ consists of all nodes in F(GQ

P ) satisfying ρ

(F1 op F2)(G
Q
P ) = F1(G

Q
P ) op F2(G

Q
P ) where op is ∪,∩,\

Note that with the semantics given above for setPos() and setBan(), it is possible for P and Q to

have a non-empty intersection. A rewrite rule can still apply if the redex overlaps P but not Q.

Sequence. The semantics of sequential application, written S1;S2, is defined by two axioms and a rule:

[Id;S,GQ
P ]→{[S,GQ

P ]} [Fail;S,GQ
P ]→{[Fail,GQ

P ]}

[S1,G
Q
P ]→{[S1

1,G1
Q1

P1
], . . . , [Sk

1,Gk
Qk

Pk
]}

[S1;S2,G
Q
P ]→{[S1

1;S2,G1
Q1

P1
], . . . , [Sk

1;S2,Gk
Qk

Pk
]}

The rule for sequences ensures that S1 is applied first.
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Conditional. The behaviour of the strategy if(S1)then(S2)else(S3) depends on the result of the strat-

egy S1. If S1 succeeds on (a copy of) the current located graph, then S2 is applied to the current graph,

otherwise S3 is applied.

∃G′,M s.t. {[S1,G
Q
P ]} −→

∗ {[Id,G′],M}

[if(S1)then(S2)else(S3),G
Q
P ]→{[S2,G

Q
P ]}

6 ∃G′,M s.t. {[S1,G
Q
P ]} −→

∗ {[Id,G′],M}

[if(S1)then(S2)else(S3),G
Q
P ]→{[S3,G

Q
P ]}

While loop. Iteration is defined using a conditional as follows:

[while(S1)do(S2),G
Q
P ]→{[if(S1)then(S2;while(S1)do(S2))else(Id),G

Q
P ]}

Note that S1 used as a condition in the two constructs above may produce some successes but also

some failure results. To ensure a unique result, the strategy S1 should terminate and be deterministic; the

class Cond of strategies generated by the following grammar satisfies these conditions:

Cond ::=Cond;Cond | Id | Fail | all(T ) | isEmpty(F) | not(Cond)

where F should also be deterministic:

F ::= AllNgb(F) | NextNgb(F) | Property(ρ,F) | ∪ | ∩ | \ | /0

However, using non-deterministic constructs in the condition is not necessarily unsafe: if R is a located

rule, we could, for instance, write if(one(R))then(S2)else(S3) to perform either S2 or S3, depending

on whether R is applicable at the current position or not.

5 Examples

Using focusing (specifically the Property construct), we can create concise strategies that perform

traversals1. In this way, we can for instance switch between outermost and innermost term rewriting (on

trees). This is standard in term-based languages such as ELAN [7] or Stratego [31, 9]; here we can also

define traversals in graphs that are not trees. More examples can be found in [1, 23, 13].

The following strategy allows us to check if a graph is connected using a standard connectivity test.

Assuming that all nodes of the initial graph have the Boolean attribute state set to false, we just need

one rewriting rule, which simply sets state to true on a node. We start with the strategy pick-one-node to

randomly select a node n as a starting point. Then, the rule is applied to all neighbours of n. When the

rule cannot be applied any longer, the position subgraph is set to all neighbours of the previously used

nodes which still have state set to f alse (visit-neighbours-at-any-distance). The strategy continues until

the position subgraph is empty. If the rule can still be applied somewhere in the graph, there is a failure

(check-all-nodes-visited). Note the use of attributes and focusing constructs to traverse the graph. Below

1Working examples can be downloaded from http://tulip.labri.fr/TulipDrupal/?q=porgy.

http://tulip.labri.fr/TulipDrupal/?q=porgy
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the strategy R is an abbreviation for one(R).

pick-one-node: setPos(CrtGraph);

one(R);

setPos(Property((Node,state == true),CrtGraph));

visit-neighbours-at-any-distance: setPos(AllNgb(CrtPos));

while(not(isEmpty(CrtPos)))do(

if(R)then(R)else(

setPos(AllNgb(CrtPos)\

Property((Node,state == true),CrtGraph))));

check-all-nodes-visited: setPos(CrtGraph);

not(R)

6 Properties

A strategic graph program
[

S,GQ
P

]

is terminating if there is no infinite transition sequence from the initial

configuration {
[

S,GQ
P

]

}. It is weakly terminating if a configuration having at least one program value

can be reached.

For the core part of the language (that is, excluding the constructs ppick(), ()orelse(), repeat(),
one(), and OneNgb()), strategic graph programs have at most one terminal configuration (none if the

program is non-terminating).

Result set. Given a strategic graph program
[

S,GQ
P

]

, we can associate a set of results to each sequence of

transitions out of the initial configuration {
[

S,GQ
P

]

}: the result set associated to a sequence of transitions

is the set of values in the configurations in the sequence. If the sequence of transitions out of the initial

configuration {
[

S,GQ
P

]

} ends in a terminal configuration then the result set of the sequence is a program

result. If a strategic graph program does not reach a terminal configuration (in case of non-termination)

then the program result is undefined (⊥).

Note that there may be more than one derivation out of the initial configuration {
[

S,GQ
P

]

} ending in a

terminal configuration. However, if we exclude the non-deterministic constructs, we can prove that each

strategic graph program has at most one program result, which is a set of program values (Prop. 6.4).

Graph programs are not terminating in general, however we can identify a terminating sublanguage

(i.e. a sublanguage for which the transition relation is terminating). We can also characterise the terminal

configurations. The next lemma is useful for the terminal proof:

Lemma 6.1 If [S1,G
Q
P ] is terminating and S2 is such that [S2,G

′Q
P ] is terminating for any G′Q

P , then

[S1;S2,G
Q
P ] is terminating.

Property 6.2 (Termination) The sublanguage that excludes the while() and repeat() constructs is

terminating.

Property 6.3 (Progress: Characterisation of Terminal Configurations) For every strategic graph

program [S,GQ
P ] that is not a value (i.e., S 6= Id and S 6= Fail), there exists a configuration C such that

{[S,GQ
P ]}→C.
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Proof By induction on S. According to definition of transitions in Sect. 4 and its probabilistic extension,

for every strategic graph program [S,GQ
P ] different from [Id,GQ

P ] or [Fail,GQ
P ], there is an axiom or rule

that applies (it suffices to check all the cases in the grammar for S).

The language contains non-deterministic operators in each of its syntactic categories: OneNgb() for

Position Update, one() for Applications and ppick(), ()orelse() and repeat() for Strategies. For the

sublanguage that excludes them, we have the property:

Property 6.4 (Result Set) Each strategic graph program in the sublanguage that excludes OneNgb(),
one(), ppick(), ()orelse() and repeat() has at most one program result.

Proof If we exclude those constructs, the transition system is deterministic, so there is at most one

derivation out of any given graph program. Hence there is at most one program result.

With respect to the computation power of the language, it is easy to state the Turing completeness

property. The proof is similar to that in [16].

Property 6.5 (Completeness) The set of all strategic graph programs
[

SR ,GQ
P

]

is Turing complete, i.e.

can simulate any Turing machine.

7 Implementation

PORGY is implemented on top of the visualisation framework Tulip [3] as a set of Tulip plugins. The

strategy language is one of these plugins. A version of Tulip bundled with PORGY can be downloaded

from http://tulip.labri.fr/TulipDrupal/?q=porgy.

Our first challenge was to implement port graphs, because Tulip only supports nodes and edges from

a graph theory point of view.We had to develop an abstract layer on top of the Tulip graph library to be

able to easily work with portgraph.

When applying a rule L ⇒ R on a graph G, the first operation is to compute the morphism between

the left-hand side L and G. This problem, known as the graph-subgraph isomorphism, still receives

great attention from the community. We have implemented Ullman’s original algorithm [30] because its

implementation is straightforward and it is used as a reference in many papers.

The derivation tree is implemented with the help of metanodes (a node which represents a graph)

and quotient graph functionalities of Tulip (a graph of metanodes). Each node of the derivation tree

represents a graph G, except red nodes which represents failure (Fail). Inside each node, the user sees an

interactive drawing of the graph (see panel 4 of Fig. 1). See [23] for more details about the interactive

features of PORGY and how we implemented them.

The strategy plugin is developed with the Spirit C++ library from Boost2. This plugin works as a

compiler: its inputs are a strategy defined as a text string and the Tulip graph datastructure, the output

are low-level Tulip graph operations. Boost (precisely its Random library) is also used to generate the

random numbers needed for the probabilistic operators. For instance, we use a non-uniform generator

for ppick() to be able to choose a strategy following the given probabilities.

2see http://www.boost.org/libs/spirit for more details

http://tulip.labri.fr/TulipDrupal/?q=porgy
http://www.boost.org/libs/spirit
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8 Conclusion

The strategy language defined in this paper is part of PORGY, an environment for visual modelling and

analysis of complex systems through port graphs and port graph rewrite rules. It also offers a visual

representation of rewriting traces as a derivation tree. The strategy language is used in particular to guide

the construction of this derivation tree. The implementation uses the small-step operational semantics of

the language. Some of these steps require a copy of the strategic graph program; this is done efficiently

in PORGY thanks to the cloning functionalities of the underlying TULIP system [3]. Verification and

debugging tools for avoiding conflicting rules or non-termination are planned for future work.
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A Appendix – Probabilistic extension

To define the semantics of the non-deterministic and probabilistic constructs in the language we will

generalise the transition relation. We denote by →p a transition step with probability p. The relation →
defined in Sect. 4 can be seen as a particular case where p = 1, that is, → corresponds to →1.

The relation −→ also becomes probabilistic:

{O1, . . . ,Ok,V1, . . . ,Vj} −→p {O′
11, . . . ,O

′
1m1

, . . . ,O′
kmk

,V1, . . . ,Vj}

if Oi →pi
{O′

i1, . . . ,O
′
imi
}, for 1 ≤ i ≤ k (where k ≥ 1 and some of the O′

i j might be values) and p =
p1 ×·· ·× pk.

We write M −→∗
p M′ if there is a sequence of transitions −→pi

from configuration M to M′, such that

the product of probabilities is p. We are now ready to define the semantics of the remaining constructs

in the strategy language.

Probabilistic Choice of Strategy:

[ppick(S1, p1, . . . ,Sn, pn),G
Q
P ]→p j

{[S j,G
Q
P ]}

Non-deterministic Choice of Reduct: The non-deterministic one() operator takes as argument a rule.

It randomly selects only one amongst the set of legal reducts LSLW⇒RN
M
(GQ

P ). Since all of them have the

same probability of being selected, in the axiom below p = 1/|LSLW⇒RN
M
(GQ

P )|.

G′Q
′

P′ ∈ LSLW⇒RN
M
(GQ

P )
[one(LW ⇒ RN

M),GQ
P ]→p {[Id,G

′Q
′

P′ ]}

LSLW⇒RN
M
(GQ

P ) = /0
[one(LW ⇒ RN

M),GQ
P ]→1 {[Fail,G

Q
P ]}

Priority choice:

[S1,G
Q
P ]−→

∗
p {[Id,G

′],M}

[(S1)orelse(S2),G
Q
P ]→p/n {[Id,G

′]}

[S1,G
Q
P ]−→

∗
p {[Fail,G

′
1],M}

[(S1)orelse(S2),G
Q
P ]→p {[S2,G

Q
P ]}

Here, S1 is applied to G
Q
P and if with probability p we reach a configuration with n ≥ 1 successful leaves

[Id,Gi], then with probability p/n there is a transition to one of the successful configurations [Id,G′].
However, if with probability p we reach a fail, then S2 is applied to the initial graph with probability

p (we do not divide the probabilities in this case, since the transition does not depend on the choice of

failure node). We assume that the implementation will take the shortest path [S1,G
Q
P ]−→

∗
p {[Id,G

′],M}
that generates a success.

We chose to define (S1)orelse(S2) as a primitive operator instead of encoding it as

if(S1)then(S1)else(S2) since the language has non-deterministic operators: evaluating S1 in the con-

dition and afterwards in the “then” branch of the if-then-else could yield different values. The semantics

given above ensures that if S1 can succeed then it can be successfully applied.

Iteration of a given strategy:

The construction repeat(S) iterates the strategy S.

[S,GQ
P ]−→

∗
p {[Id,G

′],M}

[repeat(S),GQ
P ]→p/n {[repeat(S),G

′]}

[S,GQ
P ]−→

∗
p {[Fail,G

′
1],M}

[repeat(S),GQ
P ]→p {[Id,G

Q
P ]}
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where again we assume that n ≥ 1 is the number of successful leaves in the configuration {[Id,G′],M}
Non-deterministic position update and focusing:

The commands setPos(F), setBan(F) and isEmpty(F) are non-deterministic if the expression F

is non-deterministic. The operator OneNgb(F) introduces non-determinism. The axioms are similar to

the ones given in Section 4, but now the transitions are indexed by a probability.
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