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Abstract

An Optical Flow technique based on the use of Dynamic
Programming has been applied to Particle Image Ve�
locimetry yielding a signi�cant increase in the accuracy
and spatial resolution of the velocity �eld� Results are
presented for calibrated synthetic sequences of images
and for sequences of real images taken for a thermally
driven �ow of water with a freezing front� The accu�
racy remains better than ��� pixel�frame for tested two�
image sequences and ��	 pixel�frame for four�image se�
quences
 even with a ��� added noise level and allow�
ing ��� of particles to appear or disappear� A velocity
vector is obtained for every pixel of the image�

� Introduction

The aim of this investigation is to explore the possi�
bility of using an optical �ow technique in measuring
�uid �ow velocity� Classical �ow visualization is based
on direct observation of tracer particles� Analysis of
subsequent images searching for local displacements al�
lows quantitative measurement of two�dimensional �ow
�elds� The optical �ow method o�ers a new approach
for analysing �ow images� It largely improves spatial
accuracy and minimizes the number of spurious vec�
tors� Application of this method may help in quanti�
tative analyses of several challenging problems of �uid
mechanics� as well as in full plane validation of their
numerical counterparts�

��� Particle Image Velocimetry

Recently the experimental �uid mechanics technique of
Particle Image Velocimetry �PIV	 has proven to be a
valuable method for quantitative� two�dimensional �ow

structure evaluation� It enables the measurement of
the instantaneous in�plane velocity vector �eld within
a planar section of the �ow �eld� Due to the large ac�
cessible amount of quantitative vectorial velocity data�
the PIV method is of great interest to engineers and re�
searchers� allowing them the calculation of spatial gra�
dients� dissipation of turbulent energy� spatial correla�
tions� and the like� The classical PIV technique uses
multiple�exposure images and optical autospectrum or
autocorrelation analysis �Hesselink� 
���	� Conven�
tionally� PIV images are recorded on photographic �lm�
and the �ow �eld is obtained via the computation of the
spatial correlation into small search regions� The point�
by�point search analysis is repeated until the entire neg�
ative is analyzed� Processing large numbers of such
images becomes a very laborious task� Therefore� an
alternative approach � referred as Digital Particle Im�
age Velocimetry �DPIV	 � was introduced �Willert and
Gharib 
��
� Westerweel 
��
	� Images are recorded
directly with a CCD camera and frame�grabber� and
can be studied without the unnecessary delay and over�
head associated with the scanning of photographs� The
application of DPIV allows for a simple realization of
the cross�correlation technique for pairs of two sepa�
rate images� It removes the ambiguity of the sign of
the displacement and improves signal dynamics�

The typical DPIV evaluation procedure is based
on the analysis of two successive images of the �ow�
The digital images are decomposed into search win�
dows �small square regions	� Inside pairs of corre�
sponding search windows� may be searched for as a
global translation corresponding to the average spatial
shift of particles� provided a �ow is present in the il�
luminated plane� Usually a two�dimensional discrete
Fourier transform ��D DFT	 is used to facilitate the
evaluation of the cross�correlation function� The lo�



cation of the cross�correlation peak provides the mean
displacement value� and its relative amplitude indicates
the accuracy of the evaluation� The ratio of the dis�
placement vs� the time scale between images gives the
average velocity in the search window� The spatial res�
olution of the DPIV is presently limited by the quality
of the available CCD� recording hardware and size of
the search window� Decreasing the size of the search
window improves the spatial resolution but at the cost
of a loss on dynamic range and signal to noise ratio�
Hence� an optimum window size must be found� Im�
plementation of special techniques such as the time�
series of single or multiexposure images� application of
a Gaussian peak��t estimator� dynamic search windows
and �nal postprocessing may highly increase both the
spatial resolution and dynamic range of the DPIV� re�
sulting with approximately the same level of accuracy
as a conventional PIV� Despite recent progress in the
DPIV development� further improvement of the accu�
racy and minimization of the computational time still
remains a current research goal �Lourenco and Krotha�
palii 
���� Sun et al� 
���	�

One of the main drawbacks of classical DPIV is its in�
ability to accurately resolve �ow regions characterized
by large velocity gradients� This is due to the strong de�
formation of the particle image pattern within a DPIV
search window� Hence� several alternative evaluation
methods have been proposed to remove the above lim�
itation �Huang et al� 
��
� Tokumaru and Dimotakis

���� Gui and Merzkirch 
���	� With this in mind�
it appeared to us that an optical �ow method may be
an interesting alternative� o�ering high evaluation ac�
curacy without most of the typical DPIV limitations�
Conventionally� this technique was developed for de�
tecting motion of large objects in a real world scene�
The idea of this evaluation technique is in some sense
similar to the Image Correlation Velocimetry proposed
by Tokumaru and Dimotakis �
���	�

In this article we describe our e�orts to apply the
optical �ow technique in �uid mechanics� by evaluat�
ing displacements of small tracer particles conveyed by
the �ow� In the �rst part of the article the accuracy
of the velocity measurements using the new implemen�
tation is investigated using synthetic image sequences
generated with the help of a �D numerical solution�
Next the optical �ow method is tested with experimen�
tal data collected for natural convection in water with
phase change �freezing	� Complex �ow structures ap�
pearing due to the water density anomaly seem spe�
cially suited for testing the performance of these meth�
ods in regions with strong velocity gradients and collid�
ing �ow streams� Finally� results of the evaluation are
discussed and compared with their DPIV counterparts�

��� Experimental details

The experimental set�up used to acquire �ow �elds con�
sists of a 
�mm cube�shaped convection box �lled with
water� a halogen tube lamp� a ���bit frame grabber
and a CCD colour camera� The �ow is observed at
central vertical cross section of the cavity using the
light sheet technique� The halogen tube generates a �
mm thick sheet of white light� which illuminates the
selected cross�section of the �ow�

The experiments are performed in two con�gurations
�Figure 
	� The �rst one is a di�erentially heated cav�
ity� The motion is driven by a sudden temperature
di�erence �Th � 
�oC� Tc � ��oC	 applied to two op�
posite metal side walls of the cavity� The other four
walls through which the �ow is observed are made of
plexiglas� The second con�guration is a lid�cooled cav�
ity� The top wall of the cube is isothermal at the tem�
perature Tc � �
�oC� whereas the other �ve walls are
non�adiabatic� allowing a heat �ux from the external
�uid surrounding the box� The temperature of the ex�
ternal bath is Th � ��oC�

Due to the temperature di�erences natural convec�
tion occurs in the box� At the cold wall� phase change
�freezing of water	 takes place� dynamically changing
both thermal and kinematic boundary conditions of the
�ow� This is an additional non�linear coupling which
futher complicates the prediction of the �ow patterns�
Despite the fact that freezing starts at a planar surface�
the surface of the ice does not remain planar� Its distor�
tion in turn a�ects the convection in the whole cavity�
A complex interaction between the �ow� the moving
boundary and the latent heat released on the surface
determines the �ow pattern which is established�

Figure 
� The cubical box� The y�axis is parallel to
the gravity vector� Di�erentially heated cavity �left	�
Lid�cooled cavity �right	�

The velocity �elds are measured using two or more
separately captured digital images taken at a constant
time interval �typically 
 � �s	� Each of the images
taken shows a relatively dense cloud of single illumi�
nated particles� By applying thermochromic liquid
crystals as seeding particles it is possible to collect at



the same instant both velocity and temperature �elds
�Hiller et al�� 
��
	�

DPIV is performed by cross�correlating the image
pairs� The magnitude and direction of the velocity
vectors are obtained by applying a series of �D DFT
for small sections �square search windows	 of the whole
image� Typically� the image of ������� pixels is di�
vided into ����� �or 
��
�	 pixel matrices� which
are spaced in half window intervals �partly overlapping
each other	� To improve the accuracy of the DPIV eval�
uation� special �ltering techniques implementing local
contrast enhancements were developed� Additionally�
an oversampling technique is used� which doubles the
dimension of the images through interpolated pixel val�
ues� The evaluation of the images is performed mainly
on a Pentium PC �


MHz	 running Linux OS� A typ�
ical DPIV analysis of one pair of images with over�
sampling takes about 
� minutes �for the ����� search
window	�

To obtain a general view of the �ow pattern� sev�
eral images are recorded periodically within a given
time interval and are then superimposed in the com�
puter memory� These images are similar to multiple
exposure photographs� showing the �ow structure �see
Figure 
�	�

��� Optical Flow for DPIV

Optical �ow computation consists in extracting a dense
velocity �eld from an image sequence assuming that
the intensity �or colour	 is conserved during the dis�
placement� Several techniques have been developed for
the computation of optical �ow� In a survey and a
comparative performance study� Barron et al� �
���	
classify them in four categories� di�erential� correla�
tion based� energy based� and phase based� Not all of
these are well suited for the DPIV problem� Many of
these require long image sequences that are not easily
obtainable experimentally and�or do not perform very
well on the particle image texture �especially multi�
resolution methods	� The technique that we choose for
the DPIV application was introduced by Qu�enot �
���	
as the Orthogonal Dynamic Programming �ODP	 algo�
rithm for optical �ow detection from a pair of images�
It has been extended to be able to operate on longer
sequences of images and to search for subpixel displace�
ments �Qu�enot� 
���	� The ODP based DPIV will be
referred to as ODP�PIV� Compared with other optical
�ow approaches or to the classical correlation based
DPIV� the ODP�PIV has the following advantages�

� It can be applied simultaneously to sequences of
more than two images�

� It performs a global image match by enforcing con�
tinuity and regularity constraints on the �ow �eld�
This helps in ambiguous or low particle density
regions�

� It provides dense velocity �elds �neither holes nor
border o�sets	�

� Local correlation is iteratively searched for in re�
gions whose shape is modi�ed by the �ow� instead
of being searched ni �xed windows� This greatly
improves the accuracy in regions with strong ve�
locity gradients�

� It is able to operate on multiband images�

� Optical Flow using Dynamic

Programming

Dynamic Programming is a very robust technique for
searching optimal alignments between various types of
patterns because it is able to include order and conti�
nuity constraints during the search� However� it is ap�
plicable only for the alignment of one�dimensional data
sets �or arrays	� This is because Dynamic Program�
ming requires a natural topological order between data
elements which does not exist in multi�dimensional
data sets� Therefore its straightforward application to
image matching is not trivial �Otha and Kanade� 
����
Adam et al�� 
���� Burg et al�� 
���	�

��� The Orthogonal Algorithm

The algorithm is based on the search of a transforma�
tion that relates the second image to the �rst one and
minimizes the L� or L� distance between them� Ln is
the Minkowski distance� �

P
i

P
j j I��i� j	 � I��i� j	 jn

	��n� Minimizing the Ln distance and minimizingP
i

P
j j I��i� j	�I��i� j	 jn is equivalent� Therefore we

will no longer consider the 
�n exponent in the Ln dis�
tance expression� The matching is global and does not
require any previous segmentation or feature extrac�
tion� The main idea is to transform the search problem
for two�dimensional displacements into a carefully se�
lected sequence of search problems for one�dimensional
displacements� thereby decreasing greatly the complex�
ity�

Strip to strip matching

First� the two images are identically sliced into several
parallel overlapping strips �Figure �	� Then� for every
pair of strips� an optimal match is searched for with



displacements allowed only in the slicing direction and
identical for all the pixels in the same column in the
orthogonal �here horizontal	 direction �Figure 
	�

strip 1
strip 2

strip 3

Figure �� Image slicing�

k

k

strip     of image 0

strip     of image 1

Figure 
� Strip alignment�

A dense �eld of displacements �between column vec�
tors	 is found for every pair of strips minimizing the
distance L� or L� between them with the help of a
dynamic programming algorithm� This gives us a dis�
placement value at every point of the central �bre of all
strips� Then� displacement values for all other pixels of
the image are interpolated �or extrapolated	 from the
pixel values of the central �bre of the nearest strips� A
dense displacement �eld is obtained for the whole im�
age� This displacement �eld is then smoothed before
the following steps of the algorithm are applied�

The main problem with such strip alignment is that
it is possible that there is a shift between the strips in
the direction orthogonal to the slicing one �the aligment
is searched only in the slicing direction	� An initial or�
thogonal shift between the strips may cause confusion
between the patterns to be aligned� Our solution is to
select the initial width to be large compared with the
maximal expected orthogonal shift �typically a ratio
of � to � is used	� The dominating e�ect of an over�
lapping section within strips and the robustness of the
dynamic programming to local perturbations allows us
to obtain a good global alignment of the strip column
vectors� The drawback of this approach is that the spa�
tial resolution of the displacement �eld decreases with
the increase of the strip width� This is why an iterative
multi�resolution process is introduced�

Orthogonal iterations

The displacement �eld found in the �rst step is used
to deform the second image relative to the �rst one�
An image I���i� j	 is built from the �vx�i� j	� vy�i� j		

displacement �eld and the image I��i� j	 as I���i� j	 �
I��i�vx�i� j	� j�vy�i� j		� The image I ���i� j	 instead of
I��i� j	 is compared and now aligned to I��i� j	� Gen�
erally� the i � vx�i� j	 and j � vy�i� j	 have non integer
values� In this case� the I��i�vx�i� j	� j�vy�i� j		 value
is obtained by bilinear interpolation from the four near�
est neighbors� Then� the previously described steps are
repeated with the slicing performed in the orthogonal
�vertical	 direction and the alignment results are used
to update and re�ne the �vx�i� j	� vy�i� j		 displacement
�eld� The combination of a horizontal and a vertical
pass results in an alignment in both directions� Even
though the horizontal pass provides only a low spatial
resolution �eld� it signi�cantly reduces the initial or�
thogonal shift between strips for the vertical pass� Af�
ter both passes are executed� the initial orthogonal shift
is reduced in both directions� To re�ne the accuracy of
the matching result� the whole process is reiterated sev�
eral times in a pyramidal fashion by reducing spacing
and width of the strips �Figure �	�

strip 1

strip 3

strip 2

step 1 step 2 step 3 step 4

step 5 step 6 step 7

Figure �� Strip spacing and width reduction�

At each horizontal�vertical iteration this alignment
signi�cantly reduces the orthogonal shift between cor�
responding strips� even if the spatial resolution of the
alignment �eld is limited to the width of the strips used�
It allows to reduce iteratively the strip width and spac�
ing� while the orthogonal shift remains small relative to
the strip width� Best results have been obtained with
strips whose spacing is reduced from one fourth of the
image size to 
 pixel and by applying a reduction factor
of
p

� at every horizontal�vertical iteration� The strip
width is simultaneously reduced from one half of the
image size down to � pixels�

��� Dynamic Programming

Dynamic Programming �DP	 is used in the orthogonal
algorithm because it appeared to be the most e�cient
way for performing an optimal strip to strip match�
ing� However� any other e�cient strip matching algo�



rithm could be applied instead� The DP algorithm for
performing strip matching is actually derived from a
speech recognition algorithm� In speechr ecognition�
segments of a speech signal are transformed into a �D
�time� frequency	 strip representation� Then an op�
timal time alignment between them is searched using
the DP algorithm �Sakoe and Chiba� 
���	� Our image
strips are matched exactly in the same way� The slic�
ing direction corresponds to the time axis �where the
alignment is performed	 and the orthogonal direction
corresponds to the frequency axis �where columns are
�xed and moved globally	�

Local matching residue

Strips of images � and 
 are represented by sequences
of pixel intensity vectors� s��i� p	 and s��j� p	� with � �
i � I and � � j � I� I�
 being the number of pixels of
the image in the slicing direction� Pixel intensity values
are the components of the vectors� indexed by p with
�W�� � p � W��� W being the width of the strip and
the length of the vectors� A �local matching residue�
between two p�indexed column vectors �s��i� p		 and
�s��j� p		 is de�ned as�

d�i� j	 �

p�W��X
p��W��

��p	� j s��i� p	 � s��j� p	 jn

�Ln norm	� Usually n � 
 or n � � is chosen� Here
we use n � 
� The factor ��p	 is introduced to limit
the window e�ect �step function	 in the direction or�
thogonal to the slicing� It reduces the e�ects of the
initial orthogonal shift� It also reduces the �e�ective�
width of the strip� however this e�ect can be dimin�
ished by starting with a larger initial width� We use
the ��p	 � 
 � cos���p�W 	 smoothing function�

Global matching residue

A �matching path� between two strips is searched
within a neighbourhood of the i � j diagonal corre�
sponding to a maximum absolute displacement m� In
order to allow outermost portions of the strips to �oat
one relatively to another� the path should start at the
i� j � m line and end at the i� j � �I�m line� Also�
it must specify a continuous and monotonic increasing
function �Figure �	� A global matching residue is de�
�ned for each matching path as the sum of the local
residua along it� An optimal matching path is de�ned
as the one minimizing the global residue� It may be not
unique� In that case� one optimal path is selected using
additional heuristics like alternative for the shortest or
least distorted path�
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Figure �� Dynamic Programming� Image strips and
the matching path in the disparity matrix�

An �i� j	�optimal path between the begin line and the
�i� j	 point is de�ned as a path minimizing the sum of
the local residua given for all the paths between these
extremities� An �accumulated residue function� D�i� j	
is de�ned as the sum over an �i� j	�optimal path of the
local matching function d� Due to the discrete form and
the increasing and continuous character of the searched
optimal paths� any �i� j	�optimal path must be an ex�
tension of one of the �i�
� j	�� �i�
� j�
	� or �i� j�
	�
optimal paths� Moreover� the D function follows a re�
cursive equation�

D�i� j	 �

min

��
�

D�i� j � 
	 � d�i� j � 
	 � d�i� j	
D�i � 
� j � 
	 � �� �d�i� 
� j � 
	 � d�i� j		
D�i � 
� j	 � d�i� 
� j	 � d�i� j	

We chose a sum computed on the matching path�
seen as a parametric curve� with a ds � dx�dy weight�
Therefore� all paths have the same length� The D func�
tion may then be computed by recursion within the
search area according to the following initial conditions�

D�i� j	 � � if i � j � m
D�i� j	 � � for j i � j j� m or i � j � m

The minimum of D on the i � j � �I �m line gives
the end of the optimal path� Backtracking from this
minimum along the �minimal� path with respect to
the recursive equation provides the optimal path �or
one of them in the case of non uniqueness	� This path



is extrapolated continuously outside of the begin and
end lines� The alignment found� corresponding to the
minimum of the sum� does not depend on the direction
chosen for the computations� It is the same for left to
right or right to left recursion� With each horizontal�
vertical iteration the m parameter as well as the width
of strips and spacing are decreased� Several enhance�
ments made to the original ODP algorithm are detailed
in the following sections�

��� Extension to multi�band images

Multi�band images are images where pixel values have
several components �for instance� red� green and blue
components for colour pixels	� They can be seen as
several independent monochrome images �bands	� The
ODP algorithm can be easily extended to the alignment
of multi�band images simply by extending the pixel to
pixel di�erence in the local matching residue de�nition�
This extension is done by summing the di�erences per
component� The local matching residue de�nition be�
comes�

d�i� j	 �

p�W��X
p��W��

��p	�

�
b�BX
b��

j s��i� p� b	� s��j� p� b	 jn
�

with b being the band index and B the number of
bands� Everything else in the algorithm remains un�
changed� The use of the colour information usually
improves the quality of the obtained displacement �eld
as compared to the use of intensity information alone�

��� Computation of the velocity �eld at
intermediate times

The ODP method results with a displacement vector
for each individual pixel of the image� Hence� the ve�
locity �eld may be computed as v� at time t� of im�
age � by relating image 
 to image �� or as the veloc�
ity v� at time t� of image 
 for the reverse case �re�
versing the vector sign� of course	� The velocity �eld
can also be computed as v� at any intermediate time
t� � �
 � 		 � t� � 	 � t� by relating both images to
a �ctitious image 	 that would have been taken at the
time t�� In fact there is a single �physical� velocity �eld
but the actual set of numerical values v�i� j	 depends
on the corresponding de�nition of the inter�image dis�
placement� It is possible to de�ne the velocity �eld
relative to the �from� extremity� relative to the �to�
extremity or relative to an intermediate point de�ned
by the parameter 	� In practice� due to the small in�
terpixel distance� any representation may be chosen for

the computation� In our application we chose the in�
termediate representation corresponding to 	 � ����

The optimal path inside the disparity matrix �Fig�
ure �	 may be written as� i� � i� � 	 � v��i�	 and�
i� � i� � �
 � 		 � v��i�	� If 	 � � or 	 � 
 we fall
in one of the original cases �computation at time t� ot
t�	� For other values of 	� i� has a non�integer value�
A simple linear interpolation gives v� at any i� inte�
ger position� During the ODP iterations� images to be
sliced and aligned are the source images � and 
 trans�
formed to the 	 image index using the �	 � v� and
�
� 		 � v� velocity �elds respectively�

The high spatial resolution of the resulting displace�
ment �eld permits us to compute virtual images at in�
termediate time steps� It allows us to construct a con�
tinuous sequence of frames �movie	 for the analyzed
time period� Replaying such a sequence of images on
the computer screen is very helpful for a visual analysis
of complex �ow structures�

��	 Extension to image sequences

The original ODP algorithm operates by using only a
pair of images� When a longer image sequence is avail�
able� a pair of images has to be manually selected to get
optimal displacements� A natural extension is to auto�
matically select a pair of images within the sequence�
The optimal way to do this is to change the selected
pair during the execution of the algorithm� Simultane�
ously to the reduction of the spacing and width of the
strips� the spacing of the images may be increased up
to an optimal value that is adaptively determined by
the allowed maximum displacement or by the available
number of images� In this way� the dynamic range of
the method can be increased enormously� limited only
by the �ow relaxation time�

��
 Search for subpixel displacements

The original ODP algorithm is able to search only
for integer �in pixels	 displacements at each iteration�
Due to the applied interpolation and smoothing pro�
cedure� our algorithm is already able to �nd subpixel
displacements� An additional accuracy improvement is
still possible through the direct search of subpixel dis�
placement components during strip alignment� This is
achieved by shrinking around the diagonal line the set
of points used for the dynamic programming compu�
tations �Figure �	� This corresponds to searching for
a matching column vector in the strip having a non�
integer displacement �still a discrete set but with less
than 
 pixel spacing	� The main e�ect of this is that the
points at which local residua are computed are moved



out of the pixel grid� Hence� the corresponding seg�
ments obtain new non�integer coordinates� These seg�
ments have to be interpolated from the nearest seg�
ments of integer coordinates�
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Figure �� Subpixel resolution search� The point set no
longer forms a square grid� it is also no longer aligned
with pixel positions in the image strips�

Within the original algorithm� the spacing and width
of the strips and the width of the search window around
the diagonal are reduced by a factor of

p
� at each

horizontal�vertical iteration� The subpixel iterations
are added after the iterations of the original algorithm�
At this point the spacing� width of the strips and the
width of the search window around the diagonal are
kept constant at their minimal value� Here� ten addi�
tional subpixel iterations are performed� reducing each
time the distance of the points to the diagonal line of
the disparity matrix by a factor of

p
�� The subpixel it�

erations signi�cantly improve the accuracy of the com�
puted velocity �eld�

��� Use of multi�image distances

When more than two images are available� it is possible
to select adaptively a pair of images during the ODP
iterations optimizing an accuracy � distortion compro�
mise �section ���	� When the selected images are sepa�
rated by one or more intermediate images� it is suitable
to add the constraint that all the strips of the interme�
diate images or at least a few of them are aligned with
the strips of the outermost images �Figure �	� This

was achieved by the following generalization of pixel to
pixel distance� j p� � p� j to a �multi�pixel distance�
de�ned either by� �maxi�N��

i�� pi	 � �mini�N��

i�� pi	 or�
�i�N��

i�� j pi�� � pi j� Like for the subpixel iterations�
the segments of the intermediate images generally have
non integer coordinates and have to be interpolated
from the nearest integer coordinates�

k

k

kstrip     of image 0

strip     of image 1

strip     of image 2

Figure �� Multi�image strip alignment�

��� Added smoothed bands

An additional enhancement speci�c for the DPIV prob�
lem has been implemented to the ODP algorithm� It
is based on adding additional smoothed bands to the
original �mono�band 	 image� Each new band is de�
rived from the previous one by smoothing it with a

 � 
 Gaussian�like �lter� We intuitively guessed that
this would help by reducing the local texture ambiguity
and by enlarging the spectral structure of the images
�rather concentrated around high frequencies	� Com�
pared with a simple smoothing� adding bands does not
imply any loss of information� This is possible since the
ODP algorithm is able to operate on multiband images�
As expected� this option yields a signi�cant improve�
ment in the quality of the results� We found that the
optimal number of added bands was between 
 and ��

� Calibration on synthetic im�

ages

The ODP algorithm for optical �ow computation
has been benchmarked already for standard image
sequences available at the public computer domain
�ftp���csd�uwo�ca�pub�vision	� Its performance
appeared to be at least as good as or better than
the one obtained using classical optical �ow methods
�Qu�enot� 
���	� The images used for �ow velocime�
try are di�erent in several aspects� They are char�
acterized by speci�c non�continuous textures of par�
ticles� and recorded displacement �elds are rather dif�
ferent from those obtained from typical image scenes�
Hence� to perform the accuracy tests an appropriate set



of benchmark images is required for DPIV and ODP�
PIV algorithms� With this in mind� a complete set
of the test sequences �synthetic and real	 was devel�
oped for the evaluation of the ODP�PIV technique� It
is now available for comparative evaluations from the
public LIMSI ftp server at� ftp���ftp�limsi�fr��

pub�quenot�opflow�testdata�piv�

Several test sequences of four images were generated
using a synthetic image representative of the random
particle texture and a velocity �eld taken from a numer�
ical solution obtained for two�dimensional �ow around
pair of cylinders �Lu 
���	� These images� numbered
from � to 
� represent particle textures calculated at
four time steps� �
��� �
��� 
�� and 
��� The ve�
locity �eld v is de�ned �and searched for	 in the �cen�
tral� image of the sequence �which has the image index

��	� Images �� 
� � and 
 are generated by applying
the velocity �elds �
v��� �v��� �v��� and �
v�� re�
spectively to the central image� The central image is
not a part of the sequence�

The sequence labelled �Perfect� is generated ide�
ally from the velocity �eld and the texture im�
age� The sequences labelled �Noise N�� are iden�
tical to the �Perfect� sequence except that the in�
tensity of all four images is modulated by adding to
each pixel randomly generated noise from the inter�
val ������N�
��� ����N�
�� �with saturation in case
of over�ow or under�ow	� The sequences labelled
�Add�rm N�� are identical to the �Perfect� sequence
except that N� of the particles are randomly removed
and N� of other particles are randomly added be�
tween the �rst and the last image� For the interme�
diate images� these particles fade gradually between
on and o�� This simulates the e�ect of the third
velocity component of the physical �ow that conveys
particles across the light sheet� Though particle ap�
pearance�disappearance and noise are obviously not
related� sequences mixed with the �Noise N�� and
�Add�rmN�� e�ects added are generated and labelled
�Mixed N�� simply to set reference points with both
perturbations�

For all sequences the interior of the circles that rep�
resent the cylinders around which the particles �ow
are �lled with a �xed texture distinct from the par�
ticle texture� The motion at these boundaries and in�
side the cylinders must be zero� The original veloc�
ity �eld leads to a mean displacement module of ����
pixels�frame and a maximum displacement of 

�� pix�
els�frame for the default sampling period� The �Per�
fect� and �Mixed N�� test sequences have also been
generated with higher displacements� scaled by a fac�
tor of 
�� and �� This is equivalent to scaling the ve�

locity �eld values or the sampling period by the same
factor� The mean displacement module becomes� re�
spectively� 

�� pixels�frame �maximum displacement
���� pixels�frame	 and 
��� pixels�frame �maximum
displacement ���� pixels�frame	�

Figure � shows one image of a synthetic sequence and
the original velocity �eld used to generate the synthetic
sequences� For clarity� in the �gure� the number of
vectors is reduced � times in both directions and their
magnitude is doubled�

The sequences of synthetic images were evaluated
using the classical �D DFT based DPIV method and
the new ODP�PIV algorithm� For the cross�correlation
DPIV two search window sizes were applied� 
��
�
�DPIV
�	 and ����� �DPIV��	� For the ODP�PIV
evaluation three variants were investigated� The �rst
one �ODP�	 uses only � images �indices 
 and �	 like
in the classical DPIV� The second �ODP�S	 and third
�ODP�M	 variant use � images �indices �� 
� � and

	� They di�er in the pixel to pixel distance de�ni�
tion� The ODP�S variant uses the d�p�� p�� p�� p�	 �
�i��
i�� j pi�� � pi j� whereas the ODP�M variant uses

the d�p�� p�� p�� p�	 � �maxi��i�� pi	 � �mini��i�� pi	 de�ni�
tion of the multi�pixel distance� For all ODP�PIV vari�
ants subpixel iterations and the added smoothed bands
option �� added bands for the ODP� and 
 added bands
for the ODP�S and ODP�M	 were used�

For each evaluated case the velocity error is com�
puted for the whole image �no border o�set	� except at
the inner surface of the circles the particles are mov�
ing around� The mean velocity error and its standard
deviation ��	 are collected in Tables �� 
 and �� Table

 displays the angle error as de�ned by Barron et al�
�
���	� This is the angle �in degrees	 between the cor�
rect and computed ��component �vx� vy	 vectors rep�
resenting the �ow �eld� Table � displays the absolute
displacement error which is given as the L� norm of the
di�erence between the correct and computed displace�
ment in pixels�frame� Tables 
 and � display the error
for the original velocity �eld which leads to a mean
displacement module of ���� pixels�frame and a maxi�
mum of 

�� pixels�frame� Table 
 and � display error
results for the scaled velocity �elds �mean displacement
modules of 

�� pixels�frame and 
��� pixels�frame re�
spectively	� Hence� the absolute displacement error is
also scaled by the factor of 
�� and by the factor of �
respectively�

Figure � shows the velocity �eld obtained using
ODP�PIV �for the mixed ��� test� ODP�M	 and the
error as the module of the di�erence between the cor�
rect and evaluated velocity �eld displayed in form of
the grayscale image �non linear scale	� Table � gives
the error histogram for the three ODP variants�



Figure �� Synthetic particle image �top	 and the �Correct� velocity �eld� magni�ed twice� �bottom	� Average
velocity module is ���� pixel�frame�



Figure �� Velocity �eld� magni�ed twice� obtained with the OPD �M variant from the ��image �mixed ����
syhthetic sequence �top	 and distribution of the corresponding velocity error �bottom	� bright spots indicate regions
of larger error �non�linear scale	�
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� Angle error with a mean displacement module of ���� pixels�frame
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Table �� Absolute displacement error with a mean displacement module of ���� pixels�frame
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Table 
� Absolute displacement error with a mean dis�
placement module of 

�� pixels�frame
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Table �� Absolute displacement error with a mean dis�
placement module of 
��� pixels�frame
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Table �� Absolute displacement error histogram with
a mean displacement of ���� pixels�frame� mixed ���
test sequence

There are some interesting di�erences between the
collected DPIV and ODP�PIV results� For the classi�
cal DPIV the vector set is sparse �about ��
� density	�
whereas it is dense �
��� density	 for the ODP�PIV�
The DPIV method appears to be rather insensitive to
particle appearance�disappearance� but on the other
hand� it is very sensitive to the introduced noise� As
one would expect for the classical DPIV method� ex�
panding the search window size increases its robustness
to noise but� simultaneously� decreases the accuracy�
The ODP�PIV appears equally sensitive to both intro�
duced disturbances� but its performance is far better

than that of the DPIV in all investigated cases�

We may notice that there is not a strict monotonic
increase of the error relative to perturbations for the
ODP�PIV� For instance� in Table �� �Perfect�ODP�S�
test is worse than expected and �add�rm ����ODP��
is better than expected� If some erroneous or correct
matches randomly occur� they are ampli�ed by the
global constraints� This implies that� for any ambigu�
ous region� the matching is correct or wrong globally�
Spurious vectors are concentrated in spurious regions
�comp� Figure �	� They can be easily detected by
inspecting the appearance of the velocity �eld and an�
imations constructed using the extracted velocity �eld
and the original images�

� Results on real sequences

Numerical velocity �elds obtained using a �nite di�er�
ences code �Yeoh� 
��
	� and their DPIV counterparts
are displayed for a di�erentially heated cavity in Fig�
ure 
�� A freezing front advances from the cold left
wall� Two main recirculating �ow regions can be ob�
served� clockwise in the lower � right part of the cavity
and counter�clockwise in the upper region� A sudden
change of the �ow direction in the right lower corner� as
well as a colliding region of both recirculations on the
left side are di�cult to accurate evaluate by the tradi�
tional DPIV� This is mainly due to the relatively large
search windows used ��� pixel	� The direction and mag�
nitude of �ow velocity change immensely within the
window� hence locally the error of the evaluation be�
comes unacceptably high� On the other hand� further
decrease of the window size deteriorates signal statistics
necessary for e�ectiveness of the DFT method�

The two pairs of images from the experiment �Fig�
ure 
�	 are analyzed using the ODP�PIV method� Fig�
ure 

 shows the velocity �elds obtained from the
ODP� variant �� images are used for these sequences	�
The original velocity �elds are dense �
 vector for
each individual pixel	� For clarity� in the �gure� the
number of vectors is reduced 
� times in both direc�
tions� and their magnitude is doubled� At time step
���s� the evaluated velocity module averaged over the
whole image equals about ��� pixels�frame �it turns
into about ��� pixels�frame for the area where the �ow
is present	� The maximum velocity module equals 
���
pixels�frame� At time step 
��min the �ow apparently
slows down� The average velocity equals about ��� pix�
els�frame �i�e� about ��� pixels�frame for the �ow area	
and the maximum evaluated velocity equals 
��� pix�
els�frame� According to our calibration� we estimate
that the average accuracy of the evaluated vectors is



better than ��� pixel�frame� The vector �eld looks
quite reasonable except for some small spots at the

��min time step �it appears that the particle density is
very low in the corresponding area of the images	� The
improvement in comparison with the DPIV evaluation
is obvious�

The ODP�PIV method is used for a four image se�
quence taken from the second experiment with the lid
cooled cavity� A conical ice crystal develops at the cav�
ity top wall� The four images are taken every ���ms�
at 
��s after the temperature di�erence Th � Tc is set
�Figure 
�	�

1 mm/s 1 mm/s

Figure 
�� Freezing in the di�erentially heated cavity�
Velocity �elds at two time steps� ���s �left	 and 
��min
�right	 after initiating the �ow� ��� � ��� pixel parti�
cle images �top row	� numerical calculations �middle
row	� DPIV evaluated vectors �bottom row	� for pairs
of images taken at 
��s intervals

Figure 
� shows one of the image of the sequence�
�fteen similar images superimposed and the velocity
�elds obtained from the ODP�PIV using the ODP��

and the ODP�S variants� The average module of the
extracted velocity �eld is about ��� pixels�frame with
a maximum of ���� pixels�frame� According to our
calibration� we estimate that the average accuracy is
below ��� pixel�frame for the ODP� variant and be�
low ��� pixel�frame for the ODP�S and the ODP�M
variants�

Figure 

� ODP�PIV results for the ��image real se�
quences� Velocity �eld at ���s �left	 and 
��min
�right	�



Figure 
�� Freezing in the lid cooled cavity� Results for a ��image real sequence� Particle image �top left	� 
�
superimposed images �top right	� Velocity �eld obtained with the ODP� variant using � images �bottom left	 and
with the ODP�S variant using � images �bottom right	� non linear scale�



The vector �eld appears more accurate with the
ODP�S variant than with the ODP�M variant �not
shown	� This has been observed with several other ��
image sequences and it is not consistent with the cal�
ibration on synthetic sequences which indicates better
results for the ODP�M variant� This may come from
the fact that in the real experiments there is a weak
constant background that does not follow the parti�
cle �ow against which the ODP�S variant is more ro�
bust� The calibration experiments also showed that the
ODP�S variant is more robust for large displacements�

For N�N images� the asymptotic computation time
is O�N� logN 	 for all the ODP variants but there is a
portion of the algorithm with a O�N� logN 	 computa�
tion time that still has a signi�cant impact for N values
within a few hundreds� Practically� doubling the image
size N increases the computation time by roughly six
times� It is possible to turn o� some quality options and
signi�cantly reduce �by up to three times	 the compu�
tation time at the price of loss in accuracy� Using a
��� Mhz R���� Indigo� workstation for ��� � ��� im�
ages the ODP�� ODP�S and ODP�M variants take ���
�
� and ��� minutes CPU time� respectively� Similar
computation times were obtained for Pentium ���MHz
under Linux OS�

� Summary and Conclusions

An Optical Flow technique based on the use of Dy�
namic Programming has been successfully applied to
Particle Image Velocimetry yielding a signi�cant in�
crease in the accuracy and spatial resolution of the ve�
locity �eld� Results have been presented for calibrated
synthetic sequences and for real sequences from the ex�
periment on natural convection in freezing water� Us�
ing the ODP�PIV a dense velocity vector �eld for every
pixel of the image is obtained� The accuracy is better
than ��� pixel�frame for two�image sequences and be�
low ��� pixel�frame for four�image sequences even with
a 
�� noise level and a 
�� rate of appearance and
disappearance of particles� Though computation time
of the ODP�PIV method is rather long �compared to
classical DPIV	� its high accuracy and high spatial res�
olution allows us to use it for code validations � which
nowadays has become a very important task in �uid
mechanics�

Future work will be conducted in three directions�


� Better characterization of the result quality� sta�
tistical estimation of the accuracy of the velocity
�eld from the particle density �or texture	� the

smoothness of the extracted �eld and the recon�
struction error�

�� Improvement of the measuring process� optimal
choice of the average velocity value �through time
interval between images	 and the particle density
to minimize the relative error�


� Direct search of the three�dimensional velocity
�eld for which Dynamic Programming based Op�
tical Flow search is very well suited�
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