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____________________________________________________________________________ 

Abstract 

Effective presentation of data for decision support is a major issue when large volumes of data 
are generated as happens in the Intensive Care Unit (ICU). Although the most common 
approach is to present the data graphically, it has been shown that textual summarisation can 
lead to improved decision making. As part of the BabyTalk project, we present a prototype, 
called BT-45, which generates textual summaries of about 45 minutes of continuous 
physiological signals and discrete events (e.g.: equipment settings and drug administration). Its 
architecture brings together techniques from the different areas of signal processing, medical 
reasoning, knowledge engineering, and natural language generation. A clinical off-ward 
experiment in a Neonatal ICU (NICU) showed that human expert textual descriptions of NICU 
data lead to better decision making than classical graphical visualisation, whereas texts 
generated by BT-45 lead to similar quality decision-making as visualisations. Textual analysis 
showed that BT-45 texts were inferior to human expert texts in a number of ways, including 
not reporting temporal information as well and not producing good narratives. Despite these 
deficiencies, our work shows that it is possible for computer systems to generate effective 
textual summaries of complex continuous and discrete temporal clinical data.  

Keywords: Natural language generation; Intelligent data analysis; Intensive care unit; 
Decision support systems 

____________________________________________________________________________ 

                                                 
∗ Corresponding author. 
Email address: francois.portet@imag.fr 
François Portet is now a lecturer at Laboratoire d’Informatique de Grenoble, 220 rue de la Chimie, 38400 Saint 
Martin d’Hères, France and at Grenoble Institute of Technology, 46 avenue Félix Viallet, 38031 Grenoble, France 



 2 

1 Introduction 

Doctors and nurses caring for sick babies in a Neonatal Intensive Care Unit (NICU) must make 
important decisions about how to best treat their patients, sometimes under time pressure.  A 
large amount of data about a baby is available to the clinical staff, including signals from 
sensors measuring physiological variables (e.g., heart rate, blood pressure) and patient notes 
which record previous interventions, results of laboratory tests, and so forth.  In principle, 
efficient access to such information should allow more effective decisions to be taken. 
However, the mode of presentation of that information is crucial: data is only effective to the 
extent that it is presented in a way that allows key items to be extracted quickly, with reduced 
chance of error. 

Currently, the predominant mode of presentation is visualisation, but this has not been as 
effective as was hoped [54,76].  While visualisation systems work extremely well in helping 
experienced users to explore data sets for several patients over a period of hours or days [80], 
they are not always effective in helping users with a range of expertise (in our case, ranging 
from junior nurses to experienced consultants) make decisions in a few minutes. Another way 
of using the data for decision-support is to create a knowledge-based (expert) system which 
recommends specific interventions to the medical staff. With a few exceptions [22], such 
systems have not been successfully integrated into medical practice. One possible reason for 
this is related to the user’s perception of such a system. For example, expert system advice is 
often ignored, particularly when it is not accompanied by an explanation [20,29,49] even when 
users acknowledge its global good performance [67]. 

We believe that an alternative way of using such data for decision-support is to harness 
knowledge-based methods to identify key items of information in the data, and then present 
these to the user via a textual summary, produced automatically using Natural Language 
Generation (NLG) techniques.  In short, we are trying to steer a middle ground between 
presenting the raw data (as classical visualisation systems do) and recommending specific 
actions to the medical staff (as most expert systems do). Our aim is to provide doctors and 
nurses with a clear summary which presents the key information to facilitate decision-making, 
leaving the latter process entirely up to their judgement. 

We are realising our vision in the BabyTalk project, which is developing several systems to 
present NICU data to different audiences and for different purposes.  In this paper, we present 
the first BabyTalk system, BT-45, which generates summaries of around 45 minutes of clinical 
data (hence the name BT-45), to help doctors and nurses make immediate decisions.  We 
describe how BT-45 works, and then present an evaluation of the system, which suggests that 
BT-45 texts are at least as effective as existing visualisation methods in supporting intervention 
decisions, although they are not as effective as human-authored summaries of the data.  We 
expect that subsequent BabyTalk systems will generate texts which are closer in quality to the 
human-authored texts, and which can serve as a complementary presentation modality to the 
currently employed visualisations. 

1.1 NICU and BabyTalk 

A typical patient in a NICU is a premature baby whose bodily systems require artificial support 
until s/he is ready for independent life. The kind of support a baby receives in a NICU includes 
the use of ventilators to assist respiration, incubators to provide warmth and humidity, etc. 
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Typically, babies stay in a NICU for a period of weeks, though a stay may range from a few 
days to a few months. In addition to the treatment of patients, an integral part of the activity in 
a NICU includes the support of parents or guardians who have to cope with a stressful 
situation. Along with medical advice, medical staff also help parents to care for and feed their 
baby, and give recommendations for using medical devices at home when needed. 

The BabyTalk project is a collaboration between the NICU at the Edinburgh Royal 
Infirmary, the universities of Aberdeen and Edinburgh, and Clevermed Ltd. [13] (a company 
which makes software for NICUs).  The main goal of the project as a whole is to understand 
how textual summaries can be generated for different time scales (minutes to hours to days), 
different use contexts (e.g., decision support vs. nursing shift summary) and different user 
groups (e.g., doctors vs. parents). Prior to achieving this, a number of challenges need to be 
met, not the least of which is the development of techniques to process large volumes of 
heterogeneous data.  

The BT-45 system was a first step towards achieving these goals. It was intended as a 
demonstration of the feasibility of building a large-scale system that combines techniques from 
intelligent signal processing and natural language generation. One of the motivations was 
provided by a study by Law et al [48], who found that NICU staff performed better at a clinical 
decision-making task when exposed to data that was written by human experts, compared to 
graphical presentations of the kind they are usually exposed to. Our evaluation attempted to 
replicate their findings, by comparing both human and computer-generated texts, in addition to 
graphics. Since the Law et al. study presented subjects with scenarios consisting of 45 minutes 
of patient data, BT-45 was designed to generate summaries of periods of this length. 

1.2 Example 

An example of the input data to BT-45 is shown in Figure 1. The graphs show the 
physiological time series acquired from the bed-side monitor. Beneath the graphs, coloured 
markers indicate events entered by a research nurse.  For clarity, a subset of these observations 
is listed next to the graph, with the times at which they were recorded. The reader can refer to 
the appendix for definitions of the different medical terms and abbreviations. Figure 2 shows a 
human-authored summary of the data, and Figure 3 shows the summary text produced by BT-
45. Human and computer-generated texts are clearly different but for clarity their differences 
will not be considered in this introduction but in the discussion section of the paper.  

The human-authored summary is one of a set of such summaries generated by clinical 
experts for experimental purposes; the authors restricted themselves as far as possible to a 
description of salient events, avoiding giving any explicit direction or diagnosis. This 
constraint ensured that the corresponding BT-45 summary, generated from the raw data in 
Figure 1, could be directly compared to the human summary in our evaluation experiment. 
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14:15:40	HEEL PRICK
14:21:36	HEEL PRICK
14:23:48	FIO2 SETTING
14:29:10	FIO2 SETTING
14:31:18	FIO2 SETTING
14:35:02	EXAMINE BABY
...

Discrete Observations:

 

Figure 1: Example of NICU data. Channels, from top to bottom, are HR, TcPO2, 
TcPCO2, SaO2, T1 & T2, and Mean BP (not recorded during the  period shown).    

 

 
To start with, the HR=152;   TcPO2= 6;   TcPCO2= 8.6 and SaO2= 92%.  T1= 37.7º and T2= 34.3ºC. 

Initially there is an increase in oxygenation: TcPO2 rises from 6 to 10.6 SaO2 rises from 89 to 98%.  HR 
and TcPCO2 are static.  

At 14:15 hours a heel prick is done.  The HR increases at this point and for 7 minutes from the start of this 
procedure there is a lot of artifact in the oxygen saturation trace.  Also there are upward spikes in the 
TcPO2 (to 17), each corresponding with downward spikes in the TcPCO2 (to 2.6).  At 14:23 the FiO2 is 
changed to 45% and the TcPO2 rises from 6 to 12. 

At 14:28 the saturation probe is reapplied, the oxygen saturation is 100%, and the HR settles back to 
baseline of 155.  The FiO2 is reduced twice and at 14:31 is 25%.  

At 14:34 hours the baby is examined.  For the following 5 minutes there is another series of spikes in the 
transcutaneous parameters, with TcPO2 spikes up to 19 and corresponding TcPCO2 spikes down to 1.4, 
while the saturations fall to 74%.  The FiO2 is increased to 32%.  HR remains stable at 145-160. 

By 14:38 the toe-core gap has widened to >4º with a T1 of 37.7ºC.  Both temperature probes are re-
applied at 14:41.  Shortly after this the oxygen saturation settles to 94-95% and at 14:46 the FiO2 is 
reduced to 28%.   

At 14.48 hours the oxygen saturation falls to 83%, TcPO2 is 6.6 and TcPCO2 is 7.6.  HR remains steady 
around 160.  While the oxygen saturation remains at 83% the TcPO2 falls to 5 and the TcPCO2 to 6.6.  
The FiO2 is increased to 30%.   

By 14:50 T1 is 37.5º and T2 is 34.2ºC. 

Figure 2: Human-authored text corresponding to the data presented Figure 1. 
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“You saw the baby between 14:10 and 14:50. Heart Rate (HR) = 159. Core Temperature (T1) = 37.7. 
Peripheral Temperature (T2) = 34.3. Transcutaneous Oxygen (TcPO2) = 5.8. Transcutaneous CO2 
(TcPCO2) = 8.5. Oxygen Saturation (SaO2) = 89. 

Over the next 30 minutes T1 gradually increased to 37.3. 

By 14:27 there had been 2 successive desaturations down to 56. As a result, Fraction of Inspired Oxygen 
(FIO2) was set to 45%. Over the next 20 minutes T2 decreased to 32.9. A heel prick was taken. Previously 
the spo2 sensor had been re-sited. 

At 14:31 FIO2 was lowered to 25%. Previously TcPO2 had decreased to 8.4. Over the next 20 minutes HR 
decreased to 153. 

By 14:40 there had been 2 successive desaturations down to 68. Previously FIO2 had been raised to 32%. 
TcPO2 decreased to 5.0. T2 had suddenly increased to 33.9. Previously the spo2 sensor had been re-sited. 
The temperature sensor was re-sited.” 

Figure 3: BT-45 computer-generated text corresponding to the data presented in Figure 1 

 
These summaries illustrate the main purpose of BT-45, which is to present information in 
narrative form, highlighting features which an expert would consider as highly salient and 
warranting clinical attention. Such events are of course implicit in the graphical presentation as 
well; however, their identification would require a significant amount of analysis and 
interpretation on the part of a user. For example, the text in Figure 3 mentions successive 
desaturations at different points in the 45 minute period. These correspond to troughs in the 
Oxygen Saturation signal (labelled SaO2 in Figure 1), which need to be classified (using 
knowledge about certain features such as the duration of a trend and the lowest value that 
needs to be reached in order to qualify as a desaturation). Moreover, there is significant noise 
in the signals, such as prolonged drops to zero in SaO2, which a user would need to filter out.  

In order to generate a text such as that in Figure 3, BT-45 goes through a number of stages. 
Before turning to a full description of the architecture (Section 4), we first discuss some related 
work (Section 2) and describe the input data in greater detail, as well as the corpus that 
informed some of the design decisions (Section 3). We describe a clinical trial in which BT-45 
was evaluated (Section 5) and the paper concludes with an extended discussion (Section 6), our 
intentions for future work (Section 7) and a summary of our conclusions (Section 8). 

2 Background 

Large data sets are currently available in many domains from sensors, simulations, databases, 
and so forth. As shown by the examples of geographical information systems (GIS) and 
meteorological data, this state of affairs is not restricted to the medical domain. Much effort 
has been invested in the design of effective support systems, permitting a user to sift through 
the data and focus on relevant bits of information. This work spans many different areas, and in 
this section we focus on two which are of particular relevance to our domain of inquiry, 
namely, visualisation and data-to-text (Natural Language Generation) systems. 

2.1 Visualisation  

Information visualisation has been the focus of intensive research; the aim is to facilitate 
the process of making abstractions and inferring relations between variables by presenting the 
user with graphical representations of complex data. One of the main selling-points of 
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visualisation techniques is their utility in knowledge discovery, for example, the detection of 
complex (especially non-linear) relationships between variables [79]. However, as noted for 
example by Plaisant [65], success in knowledge discovery tends to increase with the amount of 
time allocated to the task. Other applications can be more time-critical; for example, clinical 
applications in the ICU involve decision-making under time pressure. Currently, such 
decisions are often based on patterns and trends detected in large volumes of patient data. 

Closer to the concerns of the present paper, visualisation techniques have been extensively 
deployed in the presentation of time-series data [2,57]. These efforts tend to focus on the 
challenge of adequately presenting high-volume data given such constraints as limited screen 
resolution, and on finding ways of dealing with the kinds of discontinuities that arise when 
values are sampled unevenly [5]. Another area of interest in visualising time series is 
interactivity. For example Buono et al [8] describe the use of timeboxes, mechanisms which 
permit a user to focus on a particular temporal interval in a time-series plot, with the additional 
possibility of searching for specific patterns in the remaining data. 

A number of psychological explanations have been offered for the effectiveness of 
visualisations in some domains. These include visual chunking (roughly, grouping elements of 
a graphical presentation together on the basis of spatial proximity and/or similarity) and 
parallel processing [90]. In addition, Schneiderman [78] has suggested that information-rich 
visualization is an effective strategy to reduce a user’s working memory load. However, the 
effectiveness of visualisation tools in real-world settings has proven harder to assess. A recent 
survey by Plaisant [65] concludes that most evaluations are laboratory-based and tend to focus 
on speed and usability issues, which do not necessarily have a direct relationship to the impact 
of information presentation on task performance. 

Recent research has questioned the utility of visualisation for clinical decision-making, 
when this is the sole method of information presentation. A recent study by Law et al [48] 
presented NICU doctors and nurses with large volumes of patient data, presented either in the 
form of graphs as in Figure 1, or in the form of expert-authored textual summaries as in Figure 
2. A comparison of the clinical decisions taken by experimental participants when presented 
with data in these two modalities showed a superiority of textual presentation over graphics. 
This corroborates previous findings that the graphical display of clinical data does not 
necessarily lead to improved clinical decision-making [16,53] and thus that other ways of 
presenting information are needed. 

2.2 Data-to-Text Systems 

Within the field of NLG, there has been growing interest in data-to-text systems [72], which 
summarise numeric data. Such systems are motivated by the belief that textual summaries can 
make data more accessible to human users than traditional forms of presentation, such as time-
series plots. Together with the results obtained by Law et al [48] discussed above, 
developments in data-to-text technology have provided much of the impetus for the research 
underlying the BT-45 system. 

The most successful applications of data-to-text to date have been in the weather 
forecasting domain, where systems summarise numerical weather prediction data. One of the 
earliest such systems, FoG [28], produced bilingual (English/French) texts, aiming to reduce 
some of the most routine tasks that human forecasters had to carry out by automatically 
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generating forecasts from data that had previously been manipulated by human users through a 
graphical user interface. A different kind of interactive approach was taken in MULTIMETEO 
[14], another multilingual generator, which generated forecasts based on structured input data, 
and also provided the user with an interface which enabled editing of the automatically 
produced output. The potential of this technology has recently been demonstrated in the 
SumTime system, which produced marine weather forecasts [83]. An evaluation of this system 
showed that human readers preferred some of the SumTime texts to those authored by 
professional forecasters [73]. This was probably the first demonstration of this kind for a data-
to-text NLG system. A number of other data-to-text systems have been developed to 
summarise small data sets, including summaries of statistical data [24,41], air quality reports 
[6], and financial data [18,46]. 

One common factor among these systems is that they all tend to generate brief summaries 
in domains of relatively low-density data. Moreover, the data is of one kind only (for example, 
the weather forecast systems only need to deal with numeric weather prediction data). The 
brevity of their summaries reduces the importance of some NLG tasks. A typical NLG system 
includes a document planning component, which selects and structures content, as well as a 
microplanning and realisation component, which fleshes out the semantic content in a 
document plan, and realises it as text [75]. Many of these systems have fairly simple document 
planners, while the nature of the data affords quite simple solutions for microplanning. From a 
technological perspective, these systems were designed for a task which is considerably easier 
than BT-45's task, which is to generate multi-paragraph summaries of large data sets 
containing tens of thousands of numbers. There are two recent systems which handle datasets 
of comparable size. SumTime-Turbine [91] summarises large quantities of data from gas 
turbines, while RoadSafe [86] summarises large meteorological datasets to help road 
maintenance staff decide where and when to put salt and grit on roads. Like the weather 
reporting systems, however, these handle only numeric data, whereas BT-45’s input is more 
heterogeneous. 

Natural Language Generation technology has also been deployed in the medical domain, 
with a number of systems which summarise clinical data. There is a substantial literature on 
text-to-text summarisation of medical data, whose aim is to produce concise summaries of 
existing documents, using generation techniques of varying degrees of sophistication (see 
Afantenosa et al [1] for a review).  The generation of medical summaries from raw data seems 
to be less common (see [35] for a review). An early decision-support system which combined 
data interpretation with text generation was TOPAZ, described by Kahn and colleagues [42]. 
TOPAZ summarised data related to blood cell counts and drug dosages of lymphoma patients 
over a period of time. It used a numerical model which compared patient-specific values to 
population parameters to detect deviations. This was followed by a temporal abstraction stage 
which grouped together significant events into intervals, and identified possible explanations. 
The output of this stage formed the input to a schema-based text generation system that 
converted the abstractions into a summary that could be read by clinicians. This system is a 
precursor to the one described in this paper, both in its rationale of exploiting textual 
presentations for clinical decision support, and in its reliance on expert knowledge to analyse 
and interpret significant events in the data. However, it focused on discrete (albeit numeric) 
information, and its scope was limited to a relatively small medical domain. In addition, the 
NLG technology employed, based on ATN networks to flesh out the content of schemas, was 
relatively inflexible in terms of the structure and content of the documents produced. 
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Like TOPAZ, most data-to-text systems in the medical domain to date have focused on 
summarising discrete (as opposed to high-density sensor) data.  For example, Suregen [34] 
helps hospital doctors write routine reports; and the Narrative Engine [31] helps doctors in 
small practices and clinics create summaries (which are needed in part for legal reasons) of the 
symptoms reported by a patient, lab tests, prescriptions, and so forth. A number of NLG 
systems have also been developed to produce informational texts for patients (rather than 
medical staff), such as STOP [74], which generated personalised smoking-cessation letters, and 
PIGLIT [11].  Again these systems only summarised discrete data.  To the best of our 
knowledge, BT-45 is the first medical NLG system which summarises sensor as well as 
discrete data, and also one of the first medical NLG systems whose primary purpose is decision 
support. 

Another important question for data-to-text technology is related to evaluation.  Most data-
to-text systems have been evaluated by asking human subjects to rate or compare texts (or 
indeed by simply seeing if end-users wish to use a system).  Few such systems have been 
evaluated by directly testing whether they achieve their goal.  One exception is the STOP 
system [74], which was evaluated in a randomised controlled clinical trial which measured 
how effective STOP letters were at actually helping people stop smoking; unfortunately this 
evaluation showed that STOP letters were no more effective than control material. 

3 Input Data and Corpus 

Three kinds of clinical data are available to BT-45: time series data extracted from 
physiological sensors called physiological signals (or signals for short), structured information 
about events (usually actions taken and observations made by the medical staff) called discrete 
events (so-called in order to distinguish them from time series data sampled at a high-
frequency constant rate), and free-text notes from the medical staff.  In BT-45 we used the 
time-series and event data; we did not use the free-text notes. An example of the time-series, 
displayed using the Time Series Workbench [37], is shown in Figure 1.  

The data used by BT-45 came from the Neonate project [39]. Physiological variables were 
collected automatically by the Badger 2 system [13] at a rate of one sample per second. A 
maximum of seven physiological variables were recorded: Heart Rate (HR), pressures of 
oxygen and carbon dioxide in the blood (TcPO2 and TcPCO2), oxygen saturation (SaO2), 
peripheral and central temperatures of the baby (T2 and T1) and mean blood pressure (Mean 
BP).  The Neonate database contains over 400 hours of data from 42 babies. As with all real 
ICU signals, the data contain artifacts and are sometimes incomplete. Incompleteness may 
arise, for example, when a sensor is temporarily turned off. 

Discrete events were recorded by a research nurse who was employed on the ward 
specifically for this purpose; they consist of the following types of information: 

• the actions taken by the medical staff (e.g., intubate, change nappy); 
• the settings on the various items of equipment (including the ventilator); 
• the results of blood gas analysis and other laboratory results; 
• the drugs administered;  
• occasional descriptions of the physical state of the baby (observations); 
• occasional free-text comments (not used in BT-45). 
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BT-45 relies exclusively on the data entered by the research nurse, not on the information 
entered routinely by the medical staff as, at the time of the Neonate project, both paper and 
electronic records were being maintained. We realise that future BabyTalk systems that will be 
used in the real world will only be able to access routinely recorded information (i.e., sensor 
data acquired automatically and discrete events entered routinely by the medical staff); a 
specially-employed research nurse will not be available to enter clinical events. However, 
much of the information used in BT-45 which was recorded by the research nurse is now 
automatically gathered on the ward (e.g., the Edinburgh NICU makes use of Clevermed’s latest 
system, Badger-3), though at a lower time accuracy.  Part of our research agenda is to explore 
the extent to which we can reconstruct from the available data the information which was 
recorded by the research nurse but is either not collected by Badger-3 or recorded with 
imprecise time-stamps. 

In addition to the clinical input data, we needed a corpus of human-authored summaries to 
provide examples of what our computer-generated summaries should look like. As we aimed at 
comparing the efficiency of the BT-45 outputs with human expert summaries, colleagues at the 
Edinburgh NICU wrote 23 summaries of NICU data which supplemented the 18 summaries 
written for the Neonate Project [48]. The summaries, which describe time periods of between 
30 and 50 minutes, were used as the development data for BT-45. A further 26 human-
authored summaries were used in the evaluation experiment to compare the benefits to clinical 
decision-making of human-authored and BT-45 summaries. Figure 2 is an example of one of 
these. These 26 texts were not available to the BT-45 developers until they had submitted the 
final texts generated automatically by the system for its final evaluation.  

4 A detailed description of the system 
The architecture of BT-45 is shown in Figure 4; this follows the data-to-text architecture 
suggested by Reiter [72].  Textual summaries are generated in four stages, all of which access a 
domain ontology which includes information about NICU concepts. The first stage of the 
processing is Signal Analysis (1) which extracts the main features of the physiological time 
series (artifacts, patterns, and trends).  Data Interpretation (2) performs some temporal and 
logical reasoning to infer more abstract medical observations and relations (re-intubation, “A” 
causes “B”, etc.) from the signal features and the event data. Document Planning (3) selects the 
most important events from earlier stages and groups them into a tree of linked events. Finally, 
Microplanning and Realisation (4) translates this tree into coherent text. In this section, we 
first describe the Ontology (Section 4.1) and then discuss each stage in turn. 
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Figure 4: Architecture of BT-45. 
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4.1 NICU Ontology 

Ensuring a proper communication between all of the processing stages is mandatory in this 
kind of application. For example, when an event is extracted from a signal at the signal 
analysis stage, the concept it is labelled with needs to be recognisable by the microplanning 
stage further downstream. In BT-45, domain knowledge is centralised in an ontology of NICU 
concepts.  In addition to helping us integrate the various modules by providing a common 
conceptual vocabulary; this vocabulary, together with some other types of knowledge such as 
the clinical importance of certain events and their relationship to different physiological 
systems, also serves to support reasoning. 

A number of large medical thesauri, taxonomies and ontologies have been created in 
medicine, including SNOMED CT [82], MeSH (Medical Subject Headings), and UMLS [36]. 
However, the size of these general knowledge sources (UMLS covers more than 1.5 million 
concept names) makes them difficult to embed in special purpose reasoning systems. 
Moreover, these ontologies do not include sufficient information about temporal reasoning and 
the linguistic expression of concepts for our purposes.  The BT-45 ontology of NICU concepts 
was purpose-built to accommodate all of these requirements, from reasoning to linguistic 
knowledge. It was based on a NICU lexicon created in one of our previous projects; this 
specified the words used by nurses and doctors to talk about the NICU domain [38].  We 
expanded the initial version to include additional concepts needed by BT-45, and refined it 
through consultation with doctors and nurses, also including the temporal and linguistic 
information that we needed. The final version of the BT-45 ontology represents about 550 
different concepts.  

The ontology was implemented in Protégé-Frames 2000 [58], which provides a Java API 
and can be integrated with the JESS production rule system [26]. Part of the ontology is shown 
in Figure 5. The principal top-level nodes are EVENT and ENTITY. ENTITY subsumes 
domain objects, such as NURSE, VENTILATOR, MEDICATION, etc, which do not undergo 
significant change (from the point of view of the system) for the duration of a 45-minute 
scenario. EVENT subsumes activities that involve the entities.  All events are labelled with a 
patient id, a start time, an end time, and an importance value; the latter communicates the 
medical significance of an event - it can be either fixed or calculated by BT-45 (see Section 
4.2.3).  The subclasses of EVENT include INTERVENTION (e.g., drug administration), 
OBSERVATION (e.g., the observation that a baby has poor capillary refill), DATA 
COLLECTION (e.g., adjusting sensors), COMMUNICATION (e.g., discussions with a senior 
consultant), and CARE ACTION (e.g., linen change).  

Since the ontology is used both to represent domain knowledge, and to support linguistic 
processing, events have slots (features) which specify their participants. During lexicalisation 
(a part of microplanning), these participants map to thematic roles, fleshing out the argument 
structure of the predicates that express an event. For example, the INSERT_CHEST_DRAIN 
event can have slots that specify the agent (the person who inserted the chest drain; usually a 
doctor or nurse); the beneficiary (the person for whom the chest drain was inserted; usually a 
baby); and the theme (the chest-drain which was inserted). An instance of the 
INSERT_CHEST_DRAIN event class would have slot values that referred to specific doctor, 
baby, and chest-drain instances, whose classes are sub-types of ENTITY.  
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We are currently investigating techniques to expand our ontology and to synchronise it with 
UMLS, in order to meet the greater knowledge requirements of future systems, and to ensure 
sharability of resources. 

 

 

Figure 5: Snapshot of the ontology used within BT-45 in Protégé-2000. 

4.2 Signal analysis 
Physiological signals contain a lot of information about the patient’s state that need to be 
extracted from this temporally accurate but raw and sometimes noisy data. For example, 
transient period of low heart rate is important information but it is not reported as discrete 
event notes in the data. Thus, the aim of the signal analysis module is to detect important 
patterns and events from the seven channels described in section 3 (HR, TcPO2, TcPCO2, 
SaO2, T1, T2, Mean BP).  This is done in two steps (described below): first we identify 
artifacts: periods that do not represent actual values (i.e., noise); we then identify patterns and 
events in the remaining signal. 

Signal processing uses information about which data values are: (i) in normal range, (ii)  
unusual but physiologically plausible, (iii) unusual and of definite medical concern, and (iv) 
impossible. This information is computed from a linear model we acquired from values 
averaged over a hundred babies [17] according to the baby’s gestation age, further 
supplemented with domain expert rules. 
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4.2.1 Artifact analysis  
NICU sensor data can be affected by a variety of artifacts (sensor problems).  For example, a 
nurse may disconnect a sensor when she picks up a baby; a sensor attached to the baby's foot 
may only intermittently read correct data if the baby is kicking; a sensor may not have been 
attached properly in the first place.  BT-45 needs to identify which data values reflect the 
baby's real physiological state, and which are due to sensor problems. It also needs to 
distinguish short-term transient artifacts, from longer-term artifacts. Transient artifacts do not 
convey any information and must be removed from the analysis or corrected if possible. Long-
term artifacts need further analysis as they can contain important information about what is 
happening to the baby (e.g., a blood sample acquisition from an arterial line results in a 
specific pattern on the blood pressure signal). Also, long-term artifacts can motivate certain 
kinds of intervention by medical staff, such as re-applying or adjusting sensors so that they 
read more accurate data values (Section 6.2.1). 
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Figure 6: Examples of artifacts. a) Artifacts on the blood pressure channel; b) artifacts on 
the signals measured from the transcutaneous sensor.  

Figure 6 shows excerpts of signals in which artifact periods are present. Figure 6(a) shows 
short-term artifacts (indicated by the thin arrows); in this case the short downward spikes are 
reparable (by interpolating from non-artifact values), whereas the longer-term artifact (thick 
arrow) on the right is not.  Actually this long-term artifact suggests that a blood sample is being 
taken from an arterial line; this can be used to infer or confirm a 
BLOOD_FROM_CATHETER discrete event that may have been logged in the database. 
Figure 6(b) shows a longer-term sequence of simultaneous spikes on both TcPO2 and TcPCO2 
which suggest that the sensor needs to be re-attached.  

Artifact detection and removal in ICU signals has been studied for many years and several 
techniques has been tested including Kalman filters, autoregressive (AR) modelling, median 
filters and decision trees [32,40,63,69]. However, empirical comparative studies [32,63] have 
not shown a definite superiority of one technique over the others. Moreover, successful 
systems in the NICU domain, such as VIE-VENT [33] showed that effective data analysis 
requires a combination of numerical and knowledge-based stages. Thus, our artifact analysis 
incorporates three stages of three classical techniques:  
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1. Range checking: this flags all values that are not physiologically possible; 

2. Autoregressive (AR) modelling: this flags all values outside a dynamically updated 
acceptance interval, and repairs some transient artifacts. AR coefficients were learnt using the 
biosig toolbox1, using a separate NICU data set where artifacts had been marked up (courtesy 
of J. Quinn [69]); 

3. Correlation checking: a knowledge-based system relates the artifacts in different variables. 
For example, as the TcPO2 and TcPCO2 signals are derived from the same probe (the 
transcutaneous probe), if an artifact appears on one signal, it should also appear on the other.  

4.2.2 Identifying pattern and events. 

This module works in three stages: identification of specific events known to be medically 
significant, identification of other short-term patterns, and identification of long-term trends. 
We define pattern as a group of consecutive time points that is the manifestation (observation) 
of an event. For example, in Figure 6 b), the area around each arrow corresponds to a pattern 
which is instantiated as a spike event.   

The module first looks specifically for patterns that correspond to a known set of medically 
important events such as bradycardia (rapid decrease in heart rate) and desaturation (fall in 
oxygen saturation).  Many methods can be applied to detect such patterns: thresholding [21], 
statistical and model based detection methods [15,69], decision trees [66], etc. After a 
comparison of different techniques [66], we implemented a thresholding method to detect the 
events, together with an estimate of the baseline using a median filter to find the start and end 
time of the events.  

The module then looks for other short-term patterns (in addition to the ones mentioned 
above) using a technique based on the rapid-change detector of the SumTime-Turbine project 
[91]. The algorithm searches for perturbations in a channel; these are cases when the difference 
between the maximum and minimum values within a short time period (currently 30 seconds) 
exceeds a threshold (currently 10% of the physiologically possible range of values in the 
channel).  Adjacent perturbations are merged, and then the perturbation interval is classified 
either as a SPIKE, STEP, or OTHER-PATTERN depending on its starting and ending values. 

We need to detect general short-term patterns because it is not possible to explicitly specify 
all medically important patterns. For example, in the case of a probe lifting as in Figure 6(b), 
the general pattern is a number of successive spikes of unknown number and magnitude. 
Creating a specific detector for probe lifting would be difficult, whereas detecting only spikes 
and reporting them (as in By 10:29 there had been 2 successive spikes in TcPO2 up to 18.1) 
lets the reader decide whether or not these spikes are related to a probe problem.  

Finally, the module looks for long-term trends in the data - in the BT-45 context, "long-
term" means on the time-scale of minutes instead of seconds.  Currently we only look for 
value-increasing, value-decreasing, value-stable and value-varying trends; this is done using 
bottom-up segmentation [43] preceded by an accurate sliding window segmentation to speed 
up the process. This creates a piecewise linear approximation to the signal.  The algorithm 

                                                 
1 http://biosig.sourceforge.net/ 
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works by first constructing a very detailed linear approximation to the data, and then 
repeatedly merging similar adjacent linear segments until there are no adjacent segments which 
are similar enough to be merged.  To adapt the segmentation to the dynamic of the signals, our 
tolerance error thresholds are based on the variance of (median-filtered) data; we multiply this 
variance by empirically-determined constants. 

One of the difficulties faced by signal analysis is detecting patterns with different levels of 
resolution. An example is determining long-term trends when the data also contains short-term 
artifacts and patterns.  Currently this is done by ignoring or interpolating through artifacts and 
patterns.  This is not always successful, and indeed a better technique to detect simultaneous 
events at different timescales is one of the main signal analysis challenges in BabyTalk. 
 

4.2.3 Computing Importance of events. 

BT-45 also needs to determine how important events are; this information is used in later 
stages of the system to determine whether an event should be mentioned in the generated text. 
Event importance is determined in two ways. For discrete events (which are directly read from 
the database), importance is determined by expert knowledge encoded in the ontology. For 
example, medical interventions such as intubation have high importance, and are 
communicated whatever the context in which they happen. For events which are extracted 
from the signals, the importance is computed from a combination of expert rules and linear 
modelling of range values. For example, if a bradycardia is detected, its importance is related 
to its duration and depth. The importance of a bradycardia is also weighted differently 
according to the values it reaches (i.e., if a value is within a range that warrants serious 
concern, the bradycardia has a higher weight than one whose value is within a physiological 
range). Although this method is a crude translation of expert reasoning, its classificatory power 
has proven satisfactory.  However, future systems will need to compute importance values 
based on the context in which an event occurs. For example, if two important events, such as 
an intubation and a fall in blood pressure, happen successively, and the intubation has been 
successfully managed, much more focus must be given to the fall in blood pressure. We return 
to this context awareness problem in the discussion section.  

4.2.4 Example 

The output of Signal Analysis consists of events with a stated duration. An example is given in 
Figure 7 for part of the data shown in Figure 1. Each line consists of: event type (variable), 
start time, end time (importance), where importance is scored from 0 to 100. The example 
shows that samples of SaO2 have been classified as artifact. Two rapid changes have been 
detected by the pattern recognizer in TcPCO2 and TcPO2 and have been classified as spike 
and step.  Three medical events (desaturations) have been detected in SaO2.  Trends have been 
established and an example of signal decomposition as trend (dashed lines) is shown for SaO2. 
Note that the computation of the upward trends in SaO2 did not take into account any period 
during which a pattern was detected (desaturations).  
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Artifacts:
ARTIFACT (SaO2): 14:22:23  14:27:49  (0)

Patterns:
SPIKE (TcPO2): 14:34:35  14:35:36    (9)
SPIKE (TcPO2): 14:36:44  14:38:05  (21)
STEP  (TcPCO2): 14:34:36  14:35:03    (5)
SPIKE (TcPCO2): 14:36:46  14:37:36    (7)

Medical Events:
DESATURATION (SaO2): 14:37:06  14:37:57  (27)
DESATURATION (SaO2): 14:38:32  14:38:45  (17)
DESATURATION (SaO2): 14:39:25  14:40:36  (45)

Trends:
TREND;FLAT      (SaO2): 14:28:32  14:34:48 (0)
TREND;WANDER (SaO2): 14:35:12  14:36:39 (0)
TREND;UP          (SaO2): 14:38:10  14:44:53 (9)
TREND;DOWN     (SaO2): 14:45:04  14:49:21 (3)

 
Figure 7: Example of the inputs to and output from Signal Analysis. 

4.3 Data Interpretation 

Abstraction and linking are necessary prerequisites to summarisation of the data coming 
from signal analysis and the database. Indeed, reporting every single event (e.g., each spike) 
would not reduce information overload whereas abstracting them into higher level descriptions 
(e.g., a sequence of spikes) will. Moreover, associations between two events (e.g., because one 
causes the other) need to be highlighted to facilitate understanding. In BT-45, this is achieved 
using  expert system rules, with more than a hundred expert rules and metarules implemented 
for the purpose. We distinguish abstraction, which groups a set of events into a single, higher 
level event, from interpretation, which infers associations between events and relies on much 
more domain knowledge than abstraction. Broadly speaking, the former produces information 
that is nominal in nature (e.g., sequence of A) whereas the latter yields information that is 
somewhat more akin to a proposition (e.g., A is linked to B).  It should be emphasised that the 
nominal/propositional distinction at this stage of processing is being made for clarification, and 
does not necessarily predetermine the way in which the output of the data interpretation stage 
will be realised in the final text. 

Data interpretation in BT-45 is largely based on temporal abstraction [81,84], an important 
part of all on-line decision support systems [12,77,81]. Existing techniques vary greatly 
according to the data available (absolute dates, intervals, ordering, etc) and the aims of the 
system (action recommendation, prognosis, diagnosis, etc). The goal of BT-45 is not diagnosis 
or prognosis but abstraction and information. Partly for this reason, temporal reasoning in BT-
45 is higher-level and less detailed than temporal reasoning in classic decision-support 
systems. We therefore restricted ourselves to simple temporal reasoning based on a subset of 
Allen’s intervals [3]. Another feature of data interpretation is the use of vague terms to 
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describe temporal durations and relationships (“a long bradycardia”, “the baby has been hand-
bagged during the intubation”, etc), because this is what we observed in corpus texts.  The 
main challenge in BT-45 in using terms such as "long" is not to represent the extent to which 
such terms are applicable (i.e., determining what actually counts as a “long” period), but rather 
understanding the impact of contextual factors (such as the baby's general status, recent events, 
personal preferences of individual doctors and nurses [73]) on the use of these terms. 

4.3.1 Detecting higher level events: Temporal abstraction  

Temporal abstraction primarily involves the application of a single sequencing mechanism, 
determined through an analysis of human texts and interviews with clinicians. Sequences can 
then be interpreted using a merging or translation mechanism; all of these are specified by 
rules.   

Sequencing is used for chronic or repetitive events. For example, when several spikes 
appear in a signal, corpus texts evince a preference for grouping these, rather than describing 
them individually. For instance “The TcPO2 is […] with sharp spikes up to 11-14 lasting 1-2 
minutes” and “there are a couple of spikes in the Mean BP trace to 65 and 56”.  Sequence 
detection is based on a set of rules whereby any two events which belong to a particular type 
(ontological class), have certain required features, and occur within a specific time period 
(which specifies the maximum time between neighbouring events in the sequence), are 
grouped together. Additional events which meet the type and feature constraints are added to 
the sequence if they occur within the specified period of any event in the sequence.  For 
example, the sequence rule (SPIKE, 600, [variable is-a TcPO2, direction = upward]) specifies 
that SPIKE events in TcPO2 with an upward direction should be grouped into a sequence if 
they occur within 600 seconds of each other.  

Merging rules combine events in a sequence into a single event.  For example, a sequence 
of ventilator setting adjustments within a short time (FiO2 (oxygen level) = 26, 27, 32, and 
then 28% in less than 2 minutes) indicates fine-tuning of the setting, and is therefore merged 
into a single ventilator setting event, keeping only the most significant value (here, 28%). 

Translation rules convert a sequence of events (not necessarily all of the same type) into a 
single higher-level event of a different type.  These rules in particular can be used to interpret 
atomic actions by medical staff in terms of higher-level procedures.  For example, one 
common medical procedure in NICU is intubation, which involves an attempt to insert a 
breathing tube down a baby's throat and into her lungs. Intubation is a difficult procedure, and 
there are often several attempts before succeeding.  BT-45's translation rules interpret a series 
of atomic INTUBATE and EXTUBATE events into higher-level INTUBATION (first 
intubation), RE-INTUBATION (replacing the tube), or EXTUBATION (complete removal of 
the tube) events.  

4.3.2 Detecting causal and other relationships 

BT-45 also attempts to determine when two events (atomic or high-level) are causally or 
otherwise related.  We refer to this as event linking. Once again, inference of causality is done 
using expert rules that specify the constraints that two events must satisfy in order to be 
causally related. For example, we can represent the fact that a fall in the baby's oxygen 
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saturation is likely to lead nurses to increase oxygen levels in the ventilator using the 
declaration:  

CAUSES(TREND, [channel is-a SaO2, direction = decreasing], 

INSPIRED_OXYGEN_SETTING, [direction = increasing], 100).  

This is translated by the system as: if a decreasing trend in oxygen saturation (SaO2) is 
followed within 100 seconds by an increase in inspired oxygen setting, then the inspired 
oxygen has been set because of the trend. 

In addition to causal links, rules of this form infer INCLUDES (part-of) and ASSOCIATES 
(other correlation) relations. The former only play a role in associating events that have not 
already been linked by temporal abstraction. An example of an ASSOCIATES link is that 
overlapping spikes in TcPO2 and TcPCO2 are regarded as associated since they come from the 
same probe and are physiologically inversely correlated (decrease in TcPO2 is usually 
associated with an increase in TcPCO2, and vice-versa); however we cannot say that one of 
these spikes causes another (more likely some underlying physiological event has caused 
both). 

BT-45's rules for detecting causal relationships are based on the pairs/follows rules used in 
the TIGER system for monitoring gas-turbines [91].  The TIGER developers experimented 
with much more complex causal reasoning mechanisms but eventually decided that simple 
rules based on the temporal proximity of events worked reasonably well, and could be 
understood by (and hence discussed with) domain experts.  BT-45 differs from TIGER in that 
it interprets both data generated via sensors from humans, and data recorded by humans 
(discrete events). While behavioural models of systems being supervised can be constructed in 
the industrial domain, it is much harder to model patients in the far less controlled environment 
of the NICU. This means that fixed time limits (such as 100 seconds in the above rule) do not 
work as well as they did in TIGER.  To reason with the uncertainty in the data and with the 
inaccuracy in their time recording, we are investigating temporal reasoning using Possibility 
Theory which is well suited to represent uncertainty in expert systems [23]. 
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Figure 8: Result of data interpretation in one scenario in BT-45. 

4.3.3 Example 

Figure 8 shows a graphical time representation of events with their inferred 
abstractions/interpretations and relationships, with time on the X-axis and abstraction levels on 
the Y-axis. The first level below the bold dashed line represents non-abstracted events (direct 
instances from signal analysis and the input data), while the upper level above the dashed line 
represents events inferred by abstraction and interpretation. Two close bradycardias have been 
abstracted as a sequence of bradycardias and three hand-bagging events abstracted as a 
sequence. A RE-INTUBATION event has been interpreted from the sequence of EXTUBATE 
and INTUBATE events. As hand-bagging and intubation are likely to cause bradycardias, 
CAUSE links have been detected, and as intubation procedures often include hand-bagging, an 
INCLUDE link has been instantiated. These links are then used in the further modules to 
produce: “By 11:00 the baby had been hand-bagged a number of times causing 2 successive 
bradycardias. After 2 attempts she was re-intubated successfully.” In these sentences, the 
causal links (causing), the sequence of hand-bagging (hand-bagged a number of times) and the 
re-intubation interpretation (2 attempts, re-intubated successfully) have been fully exploited.  

Figure 9 shows the result of the data interpretation for the example presented in Figure 7. A 
sequence of DESATURATIONs has been detected and linked to its elements. An adjustment 
in the oxygen supply (FiO2) is linked to the events in oxygen pressure (TcPO2) and saturation 
(SaO2). Trends in oxygen pressure (TcPO2) and saturation (SaO2) are associated with the 
changes in SaO2.   

 
Event1 Link type Event2 
SEQ (DESAT): 14:37:06   14:40:36  (55) 
SEQ (DESAT):  14:37:06   14:40:36   (55) 
SEQ (DESAT):  14:37:06   14:40:36   (55) 
FIO2 (32.0):  14:37:01   14:37:01   (21) 
FIO2 (32.0):   14:37:01   14:37:01   (21) 
FIO2 (32.0):   14:37:01   14:37:01   (21) 
FIO2 (32.0):   14:37:01   14:37:01   (21) 
TREND (SaO2):14:45:04   14:49:21   ( 3) 
TREND (SaO2):14:38:10   14:44:53   ( 9) 
STEP (SaO2):   14:34:50   14:35:08   ( 2) 

INCLUDE 
INCLUDE 
INCLUDE 
CAUSE 
CAUSE 
CAUSE 
CAUSE 
CAUSE 

ASSOCIATE 
ASSOCIATE 

DESATURATION: 14:38:32  14:38:45  (17) 
DESATURATION: 14:39:25  14:40:36  (45) 
DESATURATION: 14:37:06  14:37:57  (27) 
TREND (TcPO2):   14:38:21  14:39:36  ( 3) 
TREND (SaO2):   14:38:10  14:44:53  ( 9) 
DESATURATION: 14:37:06  14:37:57  (27) 
DESATURATION: 14:38:32  14:38:45  (17) 
FIO2 (28.0):   14:46:03  14:46:03  (12) 
TREND (TcPO2):   14:38:21  14:39:36  ( 3)  
TREND (TcPCO2): 14:35:04  14:38:22  ( 6) 

Figure 9: Result of linking for the events in Figure 7. 

4.4 Document planning 

The document planner takes as input the set of events and links produced by data 
interpretation, exemplified in Figure 9. Each such event constitutes a unit of information and 
the document planner decides which among these events should be communicated in the text. 
We will sometimes refer to the selected events as messages since, once selected, they form part 
of the communicative content of the text that is eventually realised. The document planner is 
also responsible for structuring the messages into paragraphs and determining the order within 
each paragraph. The resulting document plan is a tree whose nodes contain events (messages), 
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document structure information (such as paragraphs), and whose edges are labelled with 
rhetorical relations.  

(root)
sequence

(key event)

re-site

re-site

step (T2)

Trend
(TcPO2)

FIO2

desat.

desat.

reason

SEQUENCE:
DESATURATION:
EXAMINE_BABY:
TREND (HR): 
TREND (SaO2):
TREND (TcPO2):
TREND (T2):
DESATURATION:
RE-SITE_PROBES:
RE-SITE_PROBES:
TREND (TcPCO2):
STEP (T2): 
DESATURATION:
TREND (TcPO2):
TREND (SaO2):
FIO2:
FIO2:

14:37:01	14:37:01	(21)
14:37:06	14:40:36	(55)
14:37:06	14:37:57	(27)
14:37:08	14:37:22	(20)
14:38:03	14:49:16	(  1)
14:38:10	14:44:53	(  9)
14:38:21	14:39:36	(  3)
14:38:29	14:38:56	(  1)
14:38:32	14:38:45	(17)
14:38:54	14:39:51 (20)
14:38:54	14:39:51 (20)
14:38:54	14:42:00 (  5)
14:38:58	14:39:23 (16)
14:39:25	14:40:36 (45)
14:40:17	14:49:21 (12)
14:45:04	14:49:21 (  3)
14:46:03	14:46:03 (12)
14:49:34	14:49:34 (  6)

FIO2: 	

(vent.)

(temp.)

(other)

include

include

 

Figure 10: Example of document planning for the events in Figure 7 (which corresponds to 
the last paragraph in Figure 3).  Nodes with names in (brackets) are grouping nodes which 
do not include an event; other nodes include the named event. 

Figure 10 gives an example of the way document planning works for the events in Figure 7. 
The left panel shows the list of events available as input for the period 14:37 till 14:50; 
highlighted rows are selected events.  The right side of the figure shows the resulting portion of 
the document plan tree, corresponding to a paragraph. This has a root node, with four children: 
a node for the SEQUENCE event (the key event of the paragraph) and events related to it, and 
grouping nodes for other (not directly related to the key event) events mentioned in the 
paragraph; these are grouped together into ventilation-related events, temperature-related 
events, and other events.  Some of the links between nodes are annotated with rhetorical 
relations; in particular the SEQUENCE includes the two specific DESATURATION events, 
and is the reason for the FIO2 event. 

The most important decision made by the document planner is which events should be 
mentioned in the text. This decision is made in a roughly similar fashion to that used by Hallett 
et al [30]. The algorithm identifies a small number of key events and creates a paragraph for 
each of these. To a first approximation, the key events are those events that have the highest 
importance, and the messages mentioned in each key event paragraph are those which are 
either explicitly linked to the key event, or which occur at the same time as the key event.  Key 
events are always mentioned first, followed by events which are explicitly linked to the key 
event, followed by other co-temporal event. This process is repeated for each of the key events, 
and the key event paragraphs are ordered by the start time of their respective key event. 

 The document planner is controlled by a number of parameters, which specify a high 
importance threshold (high importance events must be mentioned somewhere), a low 
importance threshold (low importance events cannot be mentioned), the maximum number of 
key event paragraphs, the maximum number of messages in each paragraph, and so forth. It 
also incorporates a number of special-case rules; for example paragraphs based on lab result 
key-events do not include cotemporal events which are not explicitly linked to the key event.  



 20

These parameters and special-case rules were determined through a qualitative analysis of a 
corpus of expert-written texts described in Section 3. 

In the example shown in Figure 10, the document planner picks the SEQUENCE event 
(which represents a sequence of desaturations) as the key event, since it has the highest 
importance (55).  The document planner then adds to the SEQUENCE node the two most 
important components (DESATURATION) of the sequence, using an include relation; and 
other linked events, which in this case is just the FIO2 event (this in fact is linked to one of the 
components of the sequence, but from the document planner’s perspective, SEQUENCE 
events inherit their constituent’s links).  The document planner then looks for other events at 
least moderate importance which overlap the key event temporally, and finds four such events: 
a TREND in TCPO2, a STEP in T2, and two RE-SITE_PROBE events.  The document planner 
groups these into three physiological categories (Section 6.2.2): ventilation, temperature, and 
other.   Within each system, events are ordered by their start time. 

One of the hardest problems in document planning is dealing with events of very different 
durations. For example, in an earlier version of the algorithm, if a baby was undergoing 
phototherapy for an entire 45-minute period, this was mentioned in the first key event 
paragraph, but some readers thought this meant phototherapy ended when the other events in 
this paragraph ended, which was not true.  We resolved this problem in a fairly straightforward 
fashion, by modifying the document planner so that long events (longer than a threshold which 
was in the 10-20 minute range) were expressed together in separate paragraphs.  It is 
interesting that dealing with events of different temporal granularity, which was a major 
problem in signal analysis, also turned out to be a major problem in document planning. 

From an NLG perspective, perhaps the main innovation in the BT-45 document planner is 
the key-event algorithm, and more generally the fact that the notion of a paragraph was treated 
as a primitive.  In previous NLG systems, paragraphs have tended to either follow very strict 
patterns (e.g., one paragraph about medication, one paragraph about respiration, etc); or to be 
treated as an aggregation phenomenon.  By contrast, paragraph formation is at the heart of BT-
45's key-event algorithm, which dynamically produced paragraphs of varied length and 
content. 

The evaluation of BT-45 pointed out a number of deficiencies in document planning, 
mostly related to the structure of the narratives it produces as a result of its processing strategy. 
We defer detailed discussion of these issues to Section 6. 

4.5 Microplanning and realisation 

The final stage in the BT-45 architecture in Figure 4 is microplanning and realisation. These 
are often considered to be separate NLG tasks [75]: microplanning “fleshes out” the linguistic 
content of a document plan (here, events/messages and their rhetorical relations), creating 
semantic representations which are then rendered into linguistic (syntactic) structures by the 
realisation module, to be finally linearised as text.  However, we combine them into one stage, 
as in other data-to-text systems [72]. We will not go into details here about realisation, as this 
is a fairly straightforward mapping from semantic representations to syntax. 
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Figure 11 Microplanning architecture in BT-45 

The internal architecture of the BT-45 microplanner is shown in Figure 11; the individual 
modules are described in the rest of this section.  Note that there is no aggregation  [70] 
module in the microplanner. The role of aggregation is largely taken over by the event linking 
module, which links events together at the conceptual level, based on the output of data 
interpretation (Section 4.3.1) and document planning. 

Unless otherwise stated, all examples in this section correspond to the final paragraph of 
Figure 3, which is output by the microplanning and realisation module given the document 
plan in Figure 10 as input. The text is reproduced below. 

By 14:40 there had been 2 successive desaturations down to 
68. Previously FIO2 had been raised to 32%. TcPO2 d ecreased 
to 5.0. T2 had suddenly increased to 33.9. Previous ly the 
spo2 sensor had been re-sited. The temperature sens or was 
re-sited.  

4.5.1 Lexicalisation: building semantic representations 

The first microplanning stage, lexicalisation, maps messages in the document plan to event 
frames, case-frame like representations consisting of a verbal predicate, and a specification of 
its semantic (thematic role) arguments, such as AGENT, PATIENT and THEME. An argument 
specification pairs a thematic role with an instance of an ENTITY in the ontology or with a 
numeric value. Lexicalisation is rule-based, mapping EVENTs to predicates based on their 
ontological class using rules that match events against templates. This procedure is also backed 
by a lexicon which extends Verbnet [44]. Verbnet groups verbs into semantic classes according 
to their allowable thematic role configurations. Our extension introduces a small set of new 
classes which are specific to the NICU domain.  

To take an example, the clause Fraction of Inspired Oxygen (FIO2) had been raised to 
32% starts out as an instance of an FIO2 event in the document plan. In the ontology, this is 
subsumed by the VENTILATOR_SETTING class, instances of which are specified for a 
direction slot taking one of the values increase, decrease or change. In this case, the relevant 
value is increase so that the instance matches the template shown below.  
 
 (event-verb-mapping 
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  (event-class "VENTILATOR_SETTING") 
  (verb-class "intentional_value_setting") 
  (direction “increase”) 
  (verb "raise")) 
 

This specifies that a VENTILATOR_SETTING event should map to the verb raise in the 
case where its direction is increase. Other such events with a different direction feature would 
be covered by other rules (e.g. if the direction is decrease then the verb is lower). The verb 
belongs to the class intentional_value_setting in the extended Verbnet lexicon, from which it 
inherits three thematic roles, an AGENT (the person who set the value), a THEME (the thing 
which is set, here FIO2), and a VALUE (here, 32%). Values for these roles (which are 
instances of the ENTITY superclass) are specified as slots of the event instance itself (see 
Section 4.1), as is  the numeric value. Event frames also hold information about the start and 
end times of the event.  

Lexicalisation is generalised to deal with sequences of events that have been formed as part 
of data abstraction, by grouping these into a single event frame. Thus, the two desaturations are 
specified in the document plan as belonging to a single sequence (see also the example in 
Figure 10) are realised as there had been 2 successive desaturations down to 68, the result of 
mapping a sequence to a single frame, specifying the thematic roles, the predicate, and a 
cardinality of 2.  

4.5.2 Event linking 

The microplanner seeks to make explicit a number of the relations (links) between events in 
the document plan. Temporal relations are expressed using adverbials and tenses, a topic to 
which we turn in Section 4.5.4 below. Other kinds of links, especially causal and part-whole 
relations, are dealt with by the event linking module. There are a number of ways in which a 
causal link can be expressed, and the microplanner uses heuristics to choose between these.  
For example, if the target of a causal link is an event-frame realised as a non-existential, 
declarative clause, then this will be rendered as a separate clause, with the cue phrase as a 
result. An example can be seen in paragraph 2 of Figure 3, which contains the sentence As a 
result, Fraction of Inspired Oxygen (FIO2) was set to 45%. Conversely, existential clauses 
(e.g., there was a bradycardia) are realised as subordinate clauses (e.g., The baby was given 
morphine, causing a bradycardia). This is achieved by setting the subordinate event frame as a 
direct child of its parent, creating a complex event representation which is realised as a single 
clause (consisting of matrix and subordinate) by the realisation component. Part-whole 
relations expressed by the microplanner arise when a complex medical procedure is mentioned 
which involves multiple events. An example is an intubation, which may involve giving a dose 
of morphine to an infant. Such relations are expressed using adverbial phrases, for example, 
The baby was intubated. As part of this procedure, she was given 50mg of morphine. 

4.5.3 Generation of referring expressions (GRE) 

Following lexicalisation and linking, an event frame will contain a number of thematic roles 
which include pointers to domain entities, for which referring expressions need to be 
constructed.  The GRE module handles four kinds of referring expressions. 
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Named entities: Named entities in the NICU domain include signals such as Heart Rate and 
Blood Pressure, as well as equipment parameters such as Fraction of Inspired Oxygen. BT-45 
adopts the convention of always introducing these entities by their full name together with their 
acronym, if applicable (see for example paragraph 1 in Figure 3). When an acronym is 
available, all subsequent references to a named entity use the acronym. 

Mass terms: Mass terms refer to substances such as morphine. References to these involve 
the name of the class (i.e., MORPHINE).  If a quantity of the substance is specified (e.g., 50 
mg), this is realised as a quantified noun phrase (e.g., 50mg of morphine).  

Definite and indefinite noun phrases: These references are constructed by first selecting 
properties of entities from the ontology. The resulting semantic form is then mapped to a noun 
phrase (NP) at the realisation stage. The decision of whether or not to refer to an entity using a 
definite or indefinite NP depends on whether that entity is inherently identifiable or not. 
Entities such as the baby and the SPO2 sensor are assumed to always be unique in the domain 
of discourse, hence identifiable by a reader. Other types of entities (e.g., an IV line) in the 
ontology do not satisfy this criterion, as there are potentially many instances of these classes in 
the domain. These entities are therefore always introduced via an indefinite NP. For both 
definite and indefinite NPs, content determination is carried out using a version of Dale and 
Reiter’s Incremental Algorithm [19], generalised to deal with plurals [27]. 

Anaphoric reference: A salience-based algorithm [45] is used to determine whether entities 
should be referred to by pronouns.  In practice, pronouns are extremely rare in BT-45 texts.  
However, salience is also useful in deciding on the use of determiners in indefinite NPs. For 
example, if a bradycardia is mentioned at a point in the text where a previously-mentioned 
bradycardia has high salience, then the determiner another is used when introducing the second 
bradycardia.   

4.5.4 Discourse management and temporal coherence 

One of the biggest challenges in BT-45 microplanning is the expression of time and temporal 
relations, which is handled by the discourse manager.  Every event described by BT-45 has a 
start time and an end time, and the reader should be able to reconstruct from the text the order 
in which events occurred. The complication arises from the fact that narrative order is not 
isomorphic to temporal order, due to the importance-based (rather than time-based) heuristics 
which the document planner uses, and which the microplanner tries to respect. For instance, 
the penultimate clause in our running example (Previously the spo2 sensor had been re-sited) 
describes an event which was temporally prior to the event mentioned immediately before it. 
The text needs to convey this temporal information, otherwise it risks conveying false 
implicatures [59]. For example, should a reader falsely assume that one event occurred before 
another, their additional domain knowledge might also support the false conclusion that a 
causal relationship holds between them. It is somewhat surprising that, despite the substantial 
amount of work on temporal representation and reasoning in natural language understanding 
[7,51,62], this problem has received very little attention from the generation point of view.  

The key event that forms the root of each paragraph is always expressed with an explicit 
mention of its start time, so that the each paragraph starts with a clear temporal grounding.  
Tenses and temporal adverbials are then used to indicate the relative temporal order of the 
events mentioned after the key event. 
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Tenses are computed using an implementation of the model proposed by Reichenbach [71]. 
Under this model, tense is viewed as anaphoric [61], insofar as the time at which an event is 
interpreted to have occurred depends not only on the actual event time (E), but also on its 
relation to the time of utterance, and a third temporal parameter, called the reference time (R). 
In the BT-45 model, the utterance time is used to determine simple tense distinctions 
(past/present/future). Since all events happen before the utterance time (the system clock time 
at the stage when a text is generated), they are always narrated in the past. Stylistically, this 
distinguishes the BT-45 texts from their human-authored counterparts (Figure 2), which tend to 
use the narrative present.  

The relative ordering of R and E for an event frame determines the use of a perfect vs. non-
perfect tense. For instance, the clause T2 had suddenly increased to 33.9 indicates that its event 
time precedes its reference time (E < R). In this case, this is due to its reference time being the 
event time of the previously mentioned event, which actually started after it.  The sentence The 
temperature sensor was re-sited also has the event time of the previously mentioned event as 
its reference time. However, since the two events occurred at the same time, this sentence is in 
the simple past (since R = E). 

 

1 .  D e s a t u r a t i o n
    R 1  =  E 1

2 .  F I O 2
    R 2  =  E 1R 2  <  E 2

( s i m p l e  p a s t )

3 .  T r e n d  ( T C P O 2 )
    R 3  =  E 1

R 3  <  E 3
( s i m p l e  p a s t )

R 4  <  E 4
( s i m p l e  p a s t )

5 .  R e - s i t e  ( S P O 2 )
    R 5  =  E 4

6 .  r e - s i t e  ( T e m p .  s e n s o r )
    R 6  =  E 5R 5  >  E 5

( p a s t  p e r f e c t )

4 .  S t e p  ( T 2 )
    R 4  =  E 3 R 6  =  E 6

( s i m p l e  p a s t )  
 

Figure 12 Temporal relations corresponding to paragraph 4 in Figure 3 

The temporal relations in our example paragraph are displayed in Figure 12, where events 
are indexed by the order in which they are mentioned. Here, En is the event time of event frame 
n, and Rn its reference time. By default, Ei for an event frame i is equal to the start time of the 
event, whereas Ri is either equal to Ei, or to some Ej, j < i. In the latter case, an event frame is 
temporally anchored with respect to a previously mentioned event [89]. The model used to 
compute temporal anchoring is relatively simple and distinguishes the following cases. 

(a) If event frame i is the key event in a paragraph, then Ri = Ei. This is the case for the 
Desaturation event in the Figure.  
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(b) Otherwise, Ri = Ej, where j < i and one of the following conditions is satisfied: 

i. j is an event which immediately dominates i in the document plan. For 
example, the sequence of desaturations dominates the FIO2 event in Figure 
10, so that the event frame for FIO2 has the event time of the desaturation as 
its reference time. 

ii.  i has been linked to j by the event linking module, so that i is again 
subordinate to j. 

iii.  j is the most salient event frame previously mentioned; this is the case for all 
other events in Figure 12. Typically, the most salient event frame in the 
discourse is the last one mentioned (i.e., j = i-1). 

The computation of reference time did not always result in an optimally coherent text, 
mainly because the above rules cause the reference time to shift considerably in the course of a 
paragraph. For example, the final three sentences are temporally ambiguous: the past perfect 
signals the fact that the step in T2 occurs prior to the TcPO2 trend, but the same tense is also 
used in the subsequent sentence (The SPO2 sensor had been re-sited). This does not 
successfully indicate whether the event occurred prior to the step in T2 or prior to the TcPO2 
trend. Part of the reason for the continual shift in reference time is the recency-based model of 
event salience (where the most salient event is usually the previously mentioned one). One of 
our aims in future work is to refine this model. One plausible alternative is to fix the reference 
time in a paragraph, restricting it to the key event, to which all other events are related. 
Whether this will allow the reconstruction of the order of events in the discourse is an 
empirical question. 

The choice of temporal adverbials, which are added to an event frame prior to realisation, is  
motivated by three considerations, namely, (a) whether the event frame corresponds to a key 
event (the first mentioned); (b) what type of event the frame represents; (c) whether its 
temporal anchoring is potentially ambiguous. Key events always have an absolute time-stamp 
in order to situate the time of the other events mentioned in the same paragraph. In the current 
example, the time of the key event is expressed as By 14:40 and this reflects the fact that the 
event is a sequence, so that it makes more sense to signal the time of its completion rather than 
its start time. Another example of how event type determines choice of adverbial is that of long 
trends, where the duration of the event is signalled, rather than its exact time (e.g., Over the 
next 20 minutes T2 decreased to 32.9). Temporal ambiguity can occur when two events 
mentioned in sequence are expressed using the same tense, but have different temporal 
anchors. As noted above, this is the case in our example paragraph with the sentences T2 had 
suddenly increased to 33.9. Previously the spo2 sensor had been re-sited. Here, the adverb 
previously is inserted to indicate that the re-siting of the SPO2 sensor had occurred prior to the 
step in T2. Though we do not claim that this is a successful disambiguation strategy, the use of 
the past perfect alone would arguably lead to even more ambiguity, as the re-siting event 
would be likely to be interpreted as having occurred after the step in T2. 

One issue which is currently under investigation is related to the range of temporal relations 
handled by the microplanner. The BT-45 microplanner handles before and after temporal 
relations, but has difficulty in handling other primitive relations of the sort discussed by Allen 
[3], such as during. Dealing with these issues would require more linguistic knowledge and a 
finer-grained semantic representation, perhaps along the lines discussed by Vendler [88]. For 
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example, it is necessary to distinguish between different event types, such as occurrences, 
states and transitions, in order to block the expression of semantically odd temporal relations, 
such as a during relation holding between a process and a state (e.g., heart rate decreased 
while the baby was being blue). Moreover, events are frequently non-atomic, and can be 
decomposed into sub-events. This is especially true of medical interventions, which are usually 
composed of multiple procedures. Determining the time of such events depends on knowledge 
about which sub-part corresponds to the core of the event itself [55,68]. 

5 Experimental evaluation 

BT-45 was evaluated during an experiment held between 6th November 2007 and 10th January 
2008. For each 45 minute period (scenario), data were presented either graphically or as text.  
Doctors and nurses were asked to analyse the baby’s situation and to make decisions about the 
action(s) that should be taken at the end of the period. The experiment was carried out "off-
ward" using historical data from babies who had been in the unit several years before; we did 
not ask clinicians to make decisions about the babies they were currently looking after.  This in 
particular meant that the only information subjects had about the baby was what we told them, 
they could not visually observe the baby. 

This section describes the chosen scenarios, the possible actions, the participants, the 
experimental set up and the software used for presenting the data.  For additional details about 
the evaluation, see [87]. 

5.1 Materials 
We created 24 scenarios in which we tested clinician's decision making (plus two other 
scenarios which were only used for participant training).  Each scenario consisted of 
approximately 45 minutes of data (both sensor data and event data), which preceded one of the 
following main target actions:  
 

• adjust ventilation/ FiO2  
• check/ adjust CPAP  
• extubate  
• manage temperature  
• (check) monitoring equipment  
• no action 
• suction  
• support blood pressure 

These actions were selected to ensure a spread of different types of scenario that appear 
routinely on the ward. For each scenario, we also identified other appropriate actions (i.e., 
beneficial to the baby), neutral actions (i.e., useless but harmless), and inappropriate actions 
(i.e., potentially harmful). In total, 18 possible actions (including ‘no action’) were identified.  

Three presentations of each scenario were prepared: graphs (G), human authored text (H) 
or computer generated text (C). We also asked our human experts to write a short 'background' 
text giving the age and gestation of the baby and any significant events preceding the start of 
the scenario. 
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In the graphical presentation (G), physiological data were displayed as line graphs, such as 
that in Figure 1. In order to avoid presentational overload, only the discrete events mentioned 
in the human-authored texts were presented.  These texts (H) were written by a consultant 
neonatologist and two experienced neonatal nurses, who initially produced a descriptive 
summary of each scenario independently, and then produced a single consensus summary. The 
summaries were written to be descriptive and to avoid explicit direction or medical diagnosis 
and/or use of any judgmental language (e.g., the heart rate was ‘normal’ or the blood pressure 
was ‘worrying’). Another project member checked the texts to ensure they did not contain 
interpretative information. The computerized texts (C) were generated using BT-45 on a 
database containing all of the data (continuous and discrete) that was available to the human 
experts in writing their texts. The texts were checked to avoid bugs that could be fixed before 
the experiment and to verify that all the terms used were consistent with the one used by the 
experts. No alterations were made to the texts apart from (i) one term that needed to be 
changed because of changes in medical practice in the NICU (HAND-BAG_BABY had been 
replaced by GIVE_NEOPUFF_VENTILATION) and (ii) two terms which were not available 
in the agreed ontology (WIPE_INCUBATOR and ADJUST_VENTILATOR_TUBING). 

The mean length of the 26 (24 scenarios+ 2 training scenarios) human authored texts was 
135 words (sd = 79); for the computer generated texts it was 119 words (sd = 36). According to 
the Wilcoxon signed rank test they are not significantly differently distributed, (z = -.588, p = 
.493). Linear regression shows a positive gradient (1.575), with computer text length 
explaining 51.1% (R²=0.511) of the variation in human text length. The human texts were 
therefore overall more wordy than the computer texts but with more variability. The positive 
gradient shows that they shared the same trend (i.e., when human text is longer, so is the 
computer text). 

5.2 Participants  

The participants consisted of 35 staff members working in the NICU at the Royal Infirmary of 
Edinburgh. They were allocated to one of four groups, depending on role and experience in 
neonatal care: Senior Doctors SD (n=9), Junior Doctors JD (n=9), Senior Nurses SN (n=9), or 
Junior Nurses JN (n=8). Those with one year or less of experience in their specialty were 
classified as junior; those with 8 years or more were classified as senior. Participants were 
chosen in this way to have a clear separation between juniors and seniors (as designated by 
years of experience and role within the unit). It is worth emphasising that all participants were 
qualified in neonatal intensive care and therefore had demonstrated both knowledge and skill 
in performing the procedures that were listed as possible target actions in the scenarios. For 
example, while nurses typically do not take the primary decision to extubate an infant 
(extubation being one of the possible actions among the 18 listed in the experimental 
scenarios), they are the ones who typically perform the extubation. 

5.3 Methodology 

The 24 scenarios were divided into three sets; each set contained exactly one scenario for each 
main target action.  Each participant saw one set presented graphically (G), one other set 
presented using human texts (H), and one other set presented using computer texts (C). The 
materials were counterbalanced using a Latin square design, so that each scenario was seen by 
an equal number of participants in each condition. The order of presentation of the individual 
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scenarios within each set was randomized and different for each participant. The participants 
were not informed of the origin of the texts (i.e., human or computer); nor were they explicitly 
told that some of the texts might be computer generated. Participants were informed that 
experimental data would be stored and analysed anonymously and would not be used for staff 
assessment. The experiment was conducted in a quiet room away from the ward in three 
sessions. The participants received training at the beginning of each session to ensure that they 
were familiar with the software, the possible actions and the use of the mouse. For each 
scenario they were asked to imagine that the period covered led to the present time and that 
they had to select appropriate action(s) that should be taken. Each scenario had to be analyzed 
in not more than 3 minutes in order to impose some realistic time pressure and to guarantee the 
maximum length of the experimental session. Participants were not formally asked to provide 
feedback but any spontaneous feedback was recorded anonymously. 

The data were presented using a modified version of the Time Series Workbench 
(TSW)[37]. This program was run on a laptop computer under Windows XP Professional, and 
presented on an external (17 inch) monitor at a resolution of 1280 x 1024 pixels. Figure 13 
shows an example screenshot in the G condition (in the C and H conditions, a text would 
replace the graphic in the right-hand panel). This example corresponds to the data shown in 
Figure 1. The background texts described in section 5.1 were presented in the left hand panel in 
the same way for all conditions. In the graphical condition, the user could click with the mouse 
on the continuous data to generate a ‘pop up’ box displaying the actual value and time. 
Beneath the time series were coloured icons indicating events that occurred on the ward when 
the babies were originally observed; the user could click on these icons to see which event it 
was. 
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Figure 13: Screenshot of the experiment under the graphical (G) condition 

The bottom of the screen always contained the same 18 check boxes for the actions that 
could be selected; the participant could select more than one action (except when 'no action' 
was selected). At the bottom left was an ACCEPT button which the participant clicked to show 
that they had finished with this scenario. A progress bar showed the time remaining to the 
participant for the current scenario.  

5.4 Results 

Detailed results are presented in [87]; here we summarise the main findings. 

5.4.1 Time to complete and reaction time 

If a participant did not press the ‘accept’ button within three minutes, the scenario was ‘timed 
out’ and excluded from the study. This happened only 10 times in 840 trials and was roughly 
equally distributed between the four groups of participants.   

In order to avoid speed-accuracy trade off, the reaction time (time to the selection of the 
first action) was analysed only for those trials in which first action was an appropriate one. The 
mean reaction time for G was 73.16 sec, for H it was 77.23 sec, and for C it was 78.81 sec. 
There was no tendency for either the presentation format or the staff group to influence the 
reaction time. This replicates previous findings by Law et al. [48].  
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5.4.2 Appropriateness of actions 

The score for a participant for a particular scenario was computed as follows. Let A be the set 

of appropriate actions in a scenario, and AAp ⊆ be the appropriate actions selected by a 

participant. Similarly, let I be the set of inappropriate actions, with II p ⊆ . The score is 

computed by subtracting the proportion of selected inappropriate actions from the proportion 
of selected appropriate actions, as follows: 

I

I

A

A
score

pp
−=  

with ]1,1[−∈score . 

The overall mean for the graphical condition (G) was 0.33 (sd = 0.14), for the human-
authored text (H) 0.39 (sd = 0.11) and for the computer-generated text (C) 0.34 (sd = 0.14).  A 
3 (condition) x 4 (Group) mixed ANOVA by subjects showed a main effect of condition 
approaching significance (F (2, 31) = 2.939, p = 0.06) but no main effect of group, and no 
interaction. Condition was found to exert a significant main effect in separate by-subjects 
ANOVAs comparing the G and H conditions (F (1, 31) = 4.975, p < 0.05) and the C and H 
conditions (F(1,31) = 5.266, p < 0.05). There was no significant difference between the G and 
C conditions.  Analysis per type of participant suggested that the superior performance on H 
texts was mostly due to the junior nurse group. The analysis was also carried out by items 
(taking scenarios as the source of variation and averaging over all participants per scenario). A 
one-way ANOVA revealed a significant main effect of presentation condition (F(2,188) = 6.2; 
p < 0.005). 

One potential shortcoming of the above score is that it depends not only on the proportion 
of correct actions selected, but also on the number of actions (out of the predetermined 18) that 
were inappropriate for a given scenario. To correct for a possible bias, a separate Mixed 
ANOVA was conducted using only the proportion of appropriate actions (the left hand side of 
the above equation) as the dependent variable. The results showed a similar pattern, though the 
main effect of condition did not reach significance (F(2,31) = 2.28; p > 0.1). Separate 
ANOVAs again found a significant difference between the G and H conditions (F(1,31) = 
4.017, p = 0.05) with no difference between G and C. However, the difference between the C 
and H conditions, though it goes in the same direction as the previous analysis, failed to reach 
significance (F(1,31) = 3.13, p = 0.08). Though this may suggest that computer texts appear to 
approach the human texts in an analysis using a less biased score, we emphasise that this was a 
post-hoc analysis, and its results should be treated with caution.  
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0.90

 
Figure 14 Results of the BT-45 experiment by target action using the main performance 
score. Error bars represent standard error. 

In short, there is an overall better score for the H presentation, mainly led by the junior 
nurse group and no difference between the G and C presentations.  The superiority of H texts 
was not surprising given the findings of [48]. 

However, if scenarios are grouped by main target action, as in Figure 14, a striking pattern 
appears.  Computer texts were generally as effective as human texts for five of the eight target 
actions, but they did considerably worse for three target actions: Manage Temperature, 
Monitoring Equipment, and No Action. This was confirmed in a by-items ANOVA testing the 
effect of main target action on the difference in performance between H and C texts 
(F(1,7)=8.002, p<.001). The reasons for poor performance in these scenarios is further 
discussed in Section 6.2. 
 

6 Discussion 

Perhaps the most important outcome of this work is simply that it is possible to generate 
effective textual summaries of complex clinical data.  We know from previous work [48] that 
human-written text summaries can be a very effective decision-support aid.  Although our 
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computer-generated textual summaries are not as good as human-written summaries, they are 
as effective as computer-generated graphical visualisations, which is an encouraging result 
after only one year of development.  Since the technology for generating textual summaries of 
data sets is still very new, we expect data-to-text systems to approach the effectiveness of 
human-written text summaries over the next few years. 

In order to help us understand which aspects of the computer texts caused them to be less 
effective than the human texts, we analysed the differences in some depth.  Of course we were 
aware of a large number of ways in which BT-45 could be improved; the goal of this analysis 
was to identify which of these improvements would be most likely to make the system more 
effective. 

6.1 Comments by Subjects 

Subjects were not explicitly asked for free-text comments, but a number of them volunteered 
comments, which we recorded.  Apart from minor issues relating to text layout, the main 
aspect of the BT-45 texts that was criticised by two or more subjects  was related to what we 
call continuity. BT-45 in some cases described changes in signals in ways which didn't make 
sense.  For example, the BT-45 text in Figure 3 initially states that T1 is 37.7, and that TcPO2 
is 5.8, and then states that T1 increased to 37.3, and TcPO2 decreased to 8.4 

This problem is mainly caused by BT-45's bottom-up content-determination strategy.  If we 
look at the actual TcPO2 trace in Figure 1, we can see that TcPO2 rose between 14.15 and 
14.17, to a peak value of around 20, before it decreased to 8.4.  BT-45's importance rules 
assigned more importance to the fall in TcPO2 than to the preceding rise, which meant that the 
fall was mentioned in the text but not the rise. 

We call this problem continuity, alluding to the phrase used by filmmakers for the problem 
of ensuring that neighbouring scenes in a film are consistent with each other.  Some of the 
human texts also seemed to have continuity problems, but none of the subjects complained 
about this; which suggests that some kinds of continuity violations are more problematical than 
others (perhaps this depends on the proximity of the events in both time and the document 
structure). 

One way of dealing with continuity problems is to explicitly identify and fix them; another 
is to use a more top-down approach document planning. 

6.2 Scenarios where computer texts did badly 

We have pointed out that the computer-generated texts did considerably worse than the human 
texts for three target actions: Manage Temperature, Monitoring Equipment, and No Action.  
Analysing the reasons for this failure highlights additional problem areas for BT-45. 

6.2.1 Too much focus on medical importance 

Content-selection in BT-45 is based on rules that assess the medical importance of events and 
signal changes.  BT-45's importance rules de-emphasise signal changes which are probably due 
to sensor problems, and not physiologically real. While this is appropriate in most cases, one of 
the target actions (Monitor Equipment) is to check, reapply and adjust sensors in order to 
reduce sensor problems; in fact this is the target action for the scenario presented in Figure 1, 
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Figure 2, and Figure 3.  Note that the human text (Figure 2) explicitly refers to artifacts and 
mentions spikes to implausible values: 

At 14:15 hours a heel prick is done.  The HR increases at this point and for 
7 minutes from the start of this procedure there is a lot of artifact in the 
oxygen saturation trace.   

The BT-45 text (Figure 3), in contrast, does not mention these because BT-45 has 
(correctly) identified these as sensor artefacts, and hence decided to ignore them; this means 
that readers of the BT-45 texts are less likely to realise that equipment must be adjusted. 

This is a difficult problem to solve, because in a context where medical intervention was 
needed, BT-45 would be correct to ignore the sensor problems.  One solution would be for BT-
45 to perform a top-level diagnosis itself, and adjust its texts based on whether it believed staff 
should focus on medical intervention or adjusting sensors.  Whether this is desirable or even 
feasible is unclear; it relates to the more general issue of how a data-summarisation system 
such as BT-45 should be integrated with a medical diagnosis system. 

6.2.2 Poor Description of Related Variables 

BT-45 describes each physiological variable more or less independently.  For temperature, 
however, it is probably better to describe the two temperature channels together and even 
contrast them, which is what the human texts do; this probably contributes to BT-45's poor 
performance in Manage Temperature scenarios. This can be clearly seen in the example texts.  
The human text shown in Figure 2  either describes T1 and T2 together (e.g., "By 14:50 T1 is 
37.5º and T2 is 34.2ºC"), or describes the gap between the two ("By 14:38 the toe-core gap has 
widened to >4º"); in either case the reader gets an integrated picture of the temperature system.  
The BT-45 text shown in Figure 3, in contrast, frequently refers to either T1 or T2 without 
making any reference to the other temperature channel. 

BT-45's document planner is mostly driven by medical importance and causal relationships. 
Although it does try to group together information about related channels, this is done as a 
secondary optimisation, not as a primary organising principle.  The human texts place a much 
higher priority on grouping 'physiological systems' (to use NICU terminology) of related 
channels and events together, including the respiratory and cardiac systems as well as the 
temperature system.  We suspect that BT-45 should place more emphasis on systems in its 
document planning. 

6.2.3 Poor Long-Term Overview 

BT-45 is better at describing short-term changes and patterns than longer-term ones; it is 
probably least satisfactory when it tries to summarise what happens to a channel over an entire 
scenario.  This isn't a major problem in eventful scenarios when the key is to describe the 
events, but it does mean that BT-45 does not do well in uneventful scenarios when the target 
action is No Action (i.e., do nothing). 

This problem is due to deficiencies in both signal analysis and linguistic processing.  From 
a signal analysis perspective, humans do a better job of detecting long-duration patterns.  For 
example, the human text describes the blood pressure data in Figure 15 by saying 
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The mean BP is 35–43 with the baseline decreasing over the 45 minutes to 27–30.  
Within the BP trace are 2 periods where it is temporarily elevated, one at 10:21 (to a 
mean of 51) and one at 10:41 (to a mean of 57). 
 

The BT-45 text. in contrast, just mentions some of the individual changes (e.g., the 
decrease in BP between 10.25 and 10.30), it does not summarise these changes as 2 periods 
where it is temporarily elevated. 
 

1015 1020 1025 1030 1035 1040 1045 1050 1055

20

40

60 Mean BP (mmHg)

30

50

 
Figure 15: Blood Pressure in scenario 14 

 

From a linguistic perspective, BT-45's summaries of a channel over time would be 
improved by better aggregation.  For example, in one scenario, the human text describes T2 
over the course of the scenario as  

T2 drifts down over the 45 minutes from 34 to 33.3C 

 

The BT-45 text, in contrast, separately gives the initial and end values of T2: 

Peripheral Temperature (T2) = 34.0… 

Over the next 44 minutes T2 decreased to 33.4. 

6.3 Temporal Issues 

It is clear from what we have said that BT-45 texts often did not communicate time well.  
There are a number of reasons for this, of which the most fundamental is the problem of 
describing the time of events with durations of minutes or more.  For example, in one scenario, 
the BT-45 text said:  

 After 6 attempts, at 14:17 a peripheral venous line was inserted successfully. 

In this case, there are a series of attempts to insert the peripheral line, starting at 14.17 and 
ending at 14:35.  In the above text BT-45 gives the time that the series of attempts started 
(14:17), but readers interpret this time as being the time that success was achieved, which was 
in fact 14:35. The problem here is that when BT-45 describes long-duration events, it does not 
take into consideration the type of event. In the current example, the event is an intervention 
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which is successful; hence, the use of the end time would be justified, as it is in fact the time at 
which the insertion was achieved. This would not be justified in case the insertion was 
unsuccessful. It is interesting that the above time phrase would probably have been acceptable 
if the sequence of attempts was described differently: 

 
At 14:17, 6 attempts were made to insert a peripheral venous line, the last 
of which was successful. 

BT-45 needs a much better model of how to communicate time, and how this 
communication depends on the semantics and linguistic expression of the events being 
described.  An obvious first step, which we are currently working on, is to include a 
linguistically-motivated temporal ontology [55], which will be separate from the existing 
domain ontology.  We also need better techniques for communicating the temporal 
relationships between events in cases where they are not listed in chronological order [59]. 

One theme which runs through much of the previous discussion is that of temporal 
granularity. The technology developed for producing textual descriptions of ICU data was 
aimed at processing around 45 minutes in order to reproduce the previous experiment [48]. We 
have also tested BT-45 with scenarios spanning a day or a week and the system was able to 
process this amount of data in a reasonable time (a few minutes). However, the way 
information was extracted and reported still presupposes a time resolution of 45 minutes. For 
example, in a report covering a week, details about an intubation (hand-bagging, morphine, 
etc.) were reported whereas they should be summarised as On May 15th the baby was 
successfully intubated. This is a well known problem in data abstraction. Rather than fixing the 
level of abstraction, this needs to be dynamically determined by the period of data to be 
analysed, reporting low-level abstractions in case a user selects a short period (e.g., FiO2 was 
increased to 24%, at 14:25 it was decreased to 18%.), with higher-level abstractions for longer 
periods (FiO2 varied between 18% and 36% over the period). 

6.4  Narrative structure  

Two discourse analysts from the University of Edinburgh, Dr Andrew McKinlay and Dr Chris 
McVittie, kindly agreed to examine and compare some of the human and BT-45 texts. Their 
top-level comment was that the human texts had much better narrative structures than the BT-
45 texts.  They use the term 'narrative' in the sense of Labov [47]; that is, story-like structures 
which describe real experiences, and which go beyond just describing the events and include 
information that helps listeners make sense of what happened, such as abstracts, evaluatives, 
correlatives, and explicatives.  

The above observation might be taken to imply that the narrative superiority of the human 
texts may be due to their implicitly containing more interpretation than the machine-generated 
texts, because of superior domain-knowledge. This raises an important issue, namely, the 
extent to which the superiority of one presentation modality (such as text) over another (such 
as graphics) may depend in part on the expertise (and hence the interpretive capacity) of an 
author. Evaluating this could involve, for example, a version of our experimental design which 
manipulated the level of expertise of the authors of the human-written texts. Though this was 
beyond the scope of the present study, it remains an interesting avenue for future exploration. 
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Nevertheless, many of the issues raised by Dr McKinlay and Dr McVittie had to do with 
linguistic and presentational features of the machine-generated texts, including many of those 
mentioned above. Indeed, it is striking how many of these (continuity, describing related 
information better, long-term overview, describing time) are aspects of narrative generation. 
They also pointed out a number of other narrative deficiencies in the BT-45 texts, the most 
fundamental being that the human texts did a much better job of linking related events into a 
coherent whole.  In addition, BT-45 texts lacked a conclusion, whereas many of the human 
texts did try to "wrap up" in some fashion, even if only to describe the baby's status at the end 
of the period.  For example, the human text in Figure 2 ends with a description of temperature 
at the end of the scenario (14:50), while the BT-45 text in Figure 3 says nothing about the state 
of the baby at 14.50. 

This concern with narrative is especially significant in light of the fact that many of our 
medical collaborators at Edinburgh have told us that they believe stories are valuable when 
presenting information about the babies, and indeed that a major problem with contemporary 
data visualisation systems, compared to the older system of written notes, is that neither the 
visual chart presentation nor the summary generated from form-filling tells stories. This is 
supported by Strople and Ottani [85] which emphasized that one of the ancillary (but 
nonetheless important) purposes of medical summaries is education: computerised data 
management systems must preserve this as much as possible. Junior nurses and doctors are not 
always aware of causal links between events, and stories make some of the cause-consequence 
links between events explicit.  

We believe that there is a lot of merit in this comment, and indeed that a good top-level 
summary of BT-45's deficiencies is that it needs to produce better narratives.  There has been 
research on generating narratives in the computational creativity community, although this 
focused on generating fictional stories, and hence largely addressed issues such as character 
development [64], which are perhaps not that important in the BT-45 context of generating 
narratives about non-fictional events, for the purpose of decision support.  Regardless, one of 
our objectives for the future is to establish better links with creativity researchers interested in 
narrative generation.  Previous research on narrative in the NLG community has focused on 
detailed microplanning issues [9], although unfortunately not on the temporal expression issues 
which are perhaps the hardest microplanning challenge in BT-45. 

7 Future Work 

7.1 Future BabyTalk systems 

In the remainder of the BabyTalk project, we will try to develop four other systems which will 
generate texts from NICU data for various users and tasks; these systems will be based on a 
core software framework (BT-Core) which is largely based on the BT-45 architecture and 
modules described above.  All of the future BabyTalk systems will restrict their input to data 
that is routinely recorded or automatically acquired in the hospital, in a few cases 
supplemented by a small amount of additional information about parents, acquired via a 
questionnaire. 
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BT-Nurse will generate descriptions of NICU data which will be included in end-of-shift 
nursing summaries.  These summaries will describe 12 hours of data, and are intended to give 
incoming nurses information about what happened on the previous shift. 

BT-Doc will provide summaries of several hours of NICU data, on demand, to help medical 
staff (especially junior doctors) make good decisions about interventions.  It has a similar 
motivation to BT-45, but will generate summaries that describe longer data periods; hence it 
will probably need to use high-level abstractions of the data. 

BT-Parent [50] will generate summaries of NICU data for parents, to help them understand 
what is happening, possibly reducing anxiety.  Parents are quite varied in their information 
needs, medical expertise, and emotional state (e.g., stress level); BT-Parent will put much more 
emphasis on user-modelling and adaptation than the systems intended for doctors and nurses.  
This work builds on the BabyLink system [25] which is currently used at the Edinburgh NICU 
to generate parent reports, but does not use artificial intelligence or NLG techniques. 

BT-Clan [56] will generate texts for friends and family (e.g., grandparents), to encourage 
them to offer appropriate support to parents and babies.  Initial user studies indicate that clan 
members want to know how the parents are doing, as well as the baby's state; for this reason 
BT-Clan in particular will probably need more information about parents than is available in 
the current NICU database. 

In addition to BabyTalk, we plan to investigate many of the data-to-text issues raised above 
in other projects as well.  In particular, we have recently started a project on helping children 
with learning difficulties to write a story for their parents about their day at school, based on 
sensor data which tracks their location and activities; this project will enable us to explore 
narrative generation in another context.  We would also like to explore using BabyTalk 
technology in the context of assisted living.  There is considerable research in using sensors to 
monitor elderly people in the home, for the purpose of triggering alarms.  We would like to 
summarise the monitoring data, both to help carers plan future activities (analogous to BT-
Nurse), and to help elderly people maintain contact with friends and family (analogous to BT-
Clan). 

7.2 Temporal reasoning and expression 

As should be clear from the body of this paper, many of the research challenges in BT-45 
involve temporal information: temporal reasoning, temporal expression, and more generally 
better techniques for handling events at different time-scales.  This problem will become more 
severe in other Babytalk systems, as they have to summarise longer periods of time. 

Temporal reasoning and expression becomes particularly challenging when temporal 
information is uncertain, and this will be a major factor in the future BabyTalk systems. Input 
of BT-45 consisted of sensor data (accurate to the second), and notes about discrete actions 
entered by a research nurse (time-stamped, and generally accurate to within a minute or so).  
For information about discrete actions, future BabyTalk systems will rely on the standard 
NICU database, which is generally less temporally accurate (with some exceptions).  For 
example, records of changes in the oxygen level in the incubator may well be inserted on an 
hourly basis, so that the precise time at which a change was effected is not known.  
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One way to surmount this problem is to use the sensor data to get more accurate timings of 
events. Many discrete events, such as patient handling, result in observable patterns in the 
sensor data. Identifying such patterns may reduce the uncertainty in the time of discrete events. 
Nevertheless, temporal uncertainty will not be fully eliminated, and will need to be expressed.  
There are many linguistic mechanisms for communicating temporal uncertainty (ranging from 
explicit adverbials such as roughly at to changing temporal precision, for example from 3.00 to 
3PM); we will explore these in the future. 

In the long run, these problems can be expected to diminish as a result of more automation 
in data collection in the NICU. For example, the NICU could record incubator humidity levels 
on a second-by-second basis. This would enable a signal analysis module to identify the time at 
which an incubator was opened (for example, to handle a patient), based on fluctuations in 
humidity. While there is no felt need to do this at the present time, if systems such as BabyTalk 
gain acceptance, they could provide added motivation for making the necessary changes. 

7.3 Additional Information 

To date, we have only used structured data in the patient database as input to BT-45.  The 
patient database also contains many free-text records, which in principle contain very valuable 
information; for example the rationale behind medication and other interventions, information 
about how parents are coping, and detailed observations which do not fit the database schema.  
Of course these free texts are often highly unstructured, with lots of abbreviations, grammatical 
errors. We are currently exploring using Information Extraction (IE) techniques to 
automatically extract information from these free-text notes. 

More speculatively, doctors and nurses have repeatedly told us that they get a lot of useful 
information by visually observing babies.  We wonder if in principle some of this information 
could be obtained by a computer vision system which is connected to a camera which observes 
the baby.  We intend to discuss this with colleagues in the computer vision area. 

7.4 Multimodal presentations  

BT-45 is a stand-alone system which generates textual summaries of data.  We suspect that this 
technology would be more effective if it could be integrated into a multimodal system which 
combined graphical data charts with textual summaries. This could benefit a broader class of 
users, given that some people are more visually-oriented than others, while the correct 
interpretation of graphs also tends to depend on level of expertise. For example, junior 
clinicians could benefit from the textual presentation whereas senior clinicians could quickly 
retrieves information from graphs. Also, different types of data may be better suited to 
visualisation or textual summarisation. Offering both types of presentation allows the user to 
choose the one which best fits her way of thinking and the specific data set being examined.  
Ideally the two presentation types could be linked with cross-references and otherwise 
integrated [4].  Multimodal systems could include medical images, videos of the baby as well 
as graphs. 

Ideally, BT-45 should also be interactive, for example, by including hyperlinks [60] which 
users could click on for more detailed summary texts about particular events, and/or graphical 
depictions of the sensor data in specific periods. This kind of document organisation could 
extend the notion of an e-document [10] in which multimedia information is structured 
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according to user annotations.  Another example of interaction is given by the KNAVE-II 
system [52] which enables users to query patient databases to retrieve raw and abstracted low 
frequency data and display this on the screen for more accurate decision making in the 
oncology domain.  One of the greatest strengths of information visualisation systems is their 
interactivity; we would like to investigate whether some of the interactivity techniques used in 
visualisation systems can be adapted to textual or multimodal summaries.  

7.5 Decision-Support 

Traditional decision support systems (including those informed by computerised clinical 
guidelines) are oriented towards making recommendations.  However, automatic advice 
generation is still a sensitive subject in medical practice and, apart from some exceptions [22], 
few systems are actually in use on the ward. 

Systems like BT-45, which summarise data and do not attempt to interpret it, provide an 
interesting starting point for the development of more sophisticated decision support systems. 
In its current form the amount of advice offered by BT-45 is zero; it does not perform the kind 
of data interpretation needed to recommend diagnoses and interventions and leaves decision-
making completely to the clinician. However one could conceivably increase the amount of 
advice in some fraction of the text, in order to make it more likely that a reader proceed in a 
specific direction (or directions); if the fraction reached 100% we would have a classical 
recommender system. We would like to experiment with allowing users to vary the relative 
proportions of summary and advice, and see which point on this scale was most acceptable to 
clinicians and/or most effective in terms of leading to good decision-making. 

8 Conclusion 

Modern society badly needs better ways of presenting large data sets to human decision-
makers, in medicine and also in many other contexts.  Currently data sets are almost always 
presented using information visualisation techniques, but visualisation systems are not always 
as effective as might be hoped.  An alternative (or complement) to visualisation is to use NLG 
and data-to-text techniques to generate textual summaries of data sets. In this paper, we have 
presented a data-to-text prototype, BT-45, which generates texts automatically from continuous 
numerical data and discrete numerical and symbolic data acquired from babies cared for in a 
neonatal ICU.  Although BT-45 has many problems and deficiencies, an off-ward experiment 
with doctors and nurses suggests that BT-45 texts are as effective for decision support as 
conventional visualisations. 

      In short, we have shown that it is possible to generate summary texts of large complex data 
sets, which are effective decision-support aids; we have done this by combining ideas from 
many fields of artificial intelligence, including knowledge representation and reasoning, 
pattern analysis, and natural language processing.  We have also identified numerous ways in 
which the technology could be improved so that generated texts become more effective, some 
of which draw on yet more areas of artificial intelligence, such as computational creativity and 
computer vision.  We believe that with concerted effort, data-to-text technology can improve 
markedly, to the point where it is routinely used to help people understand large data sets, not 
just in medicine but also in engineering, meteorology, finance, and many other areas. 
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Appendix: Glossary of medical terms used in the article 
 
Apnoea Episode of low (or absent) respiration. 
Arterial line/catheter Narrow tube inserted into an artery for measuring blood pressure or 

for obtaining a blood sample. 
Blood from catheter Action of taking a blood sample from the arterial catheter. 
Bradycardia Episode of slow heart rate. 
CPAP The maintenance of a continuous positive pressure in the airways. 
Desaturation Fall in oxygen saturation. 
Extubate Action of removing an endotracheal tube from the baby's trachea. 
FiO2 Fraction of inspired of oxygen setting on the ventilator. 
Gestational age Amount of time the baby spent in the womb. 
Hand bagging Provision of respiratory support via a bag which is squeezed by 

hand; this is nowadays performed by a machine such as Neopuff. 
Heel prick Action of taking a blood sample from the baby's heel. 
HR Heart rate from electrocardiogram leads or arterial catheter. 
ICU Intensive Care Unit. 
IV line See peripheral venous line. 
Incubator Enclosed cot for the baby with controlled temperature and humidity.  
Intubate Action of putting an endotracheal tube in the baby's trachea. 
Intubation Entire procedure at the end of which a baby is being ventilated via a 

tube placed into the trachea (also called endotracheal intubation). 
Mean BP mean blood pressure as measured via the arterial catheter. 
Neopuff See hand-bagging. 
NICU Neonatal ICU. 
Peripheral venous line Narrow tube inserted into a vein on a limb. 
Phototherapy Treatment involving the exposure of the skin to strong UV light. 
Probe lift Transitory event during which a probe detaches itself slightly from 

the skin and generates incorrect readings. 
Re-intubation Procedure of changing an endotracheal tube. 
Re-site probes/sensors Moving a probe or sensor to another location on the baby. 
SaO2 Oxygen saturation in the blood as measured by pulse oximetry. 
SpO2 Pulse oximeter sensor.  
Suction Removal of secretions from the endotracheal tube. 
T1 Central (core) temperature of the baby. 
T2 Peripheral temperature of the baby (at the toe). 
TcPCO2 Pressure of carbon dioxide in the blood as measured by the 

transcutaneous sensor. 
TcPO2 Pressure of oxygen in the blood as measured by the transcutaneous 

sensor. 
Toe-core gap The difference between T1 and T2. 
Transcutaneous sensor Sensor on the baby's skin for measuring TcPO2 and TcPCO2. 
Ventilation Respiratory support for babies who are unable or too immature to 

breathe independently. 

 


