Delay-Adaptive Predictor Feedback for Systems With Unknown Long Actuator Delay
Delphine Bresch-Pietri, Miroslav Krstic

To cite this version:

HAL Id: hal-00951846
https://hal.archives-ouvertes.fr/hal-00951846
Submitted on 26 Feb 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Delay-Adaptive Predictor Feedback for Systems With Unknown Long Actuator Delay

Delphine Bresch-Pietri and Miroslav Krstic

Abstract—Stabilization of an unstable system with an unknown actuator delay of substantial length is an important problem that has never been attempted. We present a Lyapunov-based adaptive control design, prove its stability and regulation properties for the plant and actuator states, and present a simulation example inspired by the problem of control of pitch and flight path rates in the unstable X-29 aircraft.

I. INTRODUCTION

Adaptive control in the presence of actuator delays is challenging. Examples of existing results include [3], [9], [10]. All the existing results deal with unknown parameters but known delay. In this paper we address the more challenging problem where the delay itself is unknown and arbitrarily long.

Consider the system

\[
\dot{X}(t) = AX(t) + Bu(t - D),
\]

where \(X \in \mathbb{R}^n \) and where the delay length \(D \) is unknown (though constant) and arbitrarily large. We use an actuator delay model given by a transport PDE,

\[
\dot{X}(t) = AX(t) + Bu(0,t)
\]

where \(u(t) \) is the state of the actuator. Instead of a full-state measurement of the actuator state, \(u(t) = U(t + D(x - 1)) \), we employ the state estimate

\[
\hat{u}(t) = U(t + \hat{D}(t)(x - 1)),
\]

where \(\hat{D}(t) \) is the estimate of the unknown delay, obtaining the following transport equation representation:

\[
\hat{D}(t) \hat{u}(t) = \hat{u}_0(x,t) + \hat{D}(t)(x - 1) \hat{u}_0(x,t)
\]

We employ an adaptive predictor feedback

\[
\hat{u}(t) = K \left(e^{AD(t)} X(t) + \int_0^t e^{AD(t)(1-y)} B\hat{u}(y,t)dy \right),
\]

where \(K \) is selected to make the matrix \(A + BK \) Hurwitz, which means, in particular, that, for any \(Q = Q^T > 0 \) there exists \(P = P^T > 0 \) such that \(P(A + BK) + (A + BK)^TP = -Q \).

A crucial element of our design and analysis is the backstepping transformation

\[
\hat{w}(t) = \hat{u}(t) - \hat{D}(t) \int_0^t Ke^{A\hat{D}(t)(x-y)} B\hat{u}(y,t)dy - Ke^{A\hat{D}(t)} X(t)
\]

\[
\hat{u}(t) = \hat{w}(t) + \hat{D}(t) \int_0^t Ke^{A+BK}(x-y) B\hat{u}(y,t)dy + Ke^{A+BK}\hat{D}(t)X(t).
\]

II. NONADAPTIVE ROBUSTNESS TO DELAY ERROR

We take \(\hat{D}(t) \) as constant establish the robustness of the predictor feedback to a small error \(|D - \hat{D}| \) in an appropriate norm in which the adaptive problem will also be studied in Section III (this is a higher norm than the one in which we established delay-robustness in [4]). We denote \(\omega(\theta) = U(\theta), \theta \in [-\max \{D, \hat{D}\}, 0] \) and use \(\| \cdot \| \) for a vector 2-norm.

Theorem 1: Consider the system (2)-(4), (6)-(7), (8). There exists \(\delta^* > 0 \) such that for any \(|D - \hat{D}| < \delta^*, \) the zero solution of the system \(X, u, \hat{u} \) is exponentially stable, namely, there exist \(R, \rho > 0 \) such that for all initial conditions satisfying \(X_0, \xi_0, \hat{u}_0 \in \mathbb{R}^n \times L_2(0,1) \times H_1(0,1) \), the following holds:

\[
\Gamma(t) \leq RT(0)e^{-\rho t}
\]

\[
\Gamma(t) = |X(t)|^2 + \int_0^t |u(x,t)|^2 + \hat{u}(x,t)^2 + \hat{u}(x,t)^2 dx.
\]

Corollary 2: Consider system (1) with the controller

\[
U(t) = K \left(e^{AD(t)} X(t) + \int_{t-D}^t e^{A(t-\theta)} B\hat{u}(\theta)d\theta \right).
\]

There exists \(\delta^* > 0 \) such that, for any \(\hat{D}(t) = \hat{D}(t) \leq \delta^* \), there exists \(\rho > 0 \) such that for all \(X_0 \in \mathbb{R}^n, \omega \in L_2[-\max \{D, \hat{D}\}, 0] \cap H_1[-\hat{D}, 0] \) the following holds

\[
\Pi(t) \leq R^2T(0)e^{-\rho t}
\]

\[
\Pi(t) = |X(t)|^2 + \int_{t-\max \{D, \hat{D}\}}^t U(\theta)^2 d\theta + \int_{t-D}^t \hat{U}(\theta)^2 d\theta.
\]

We prove the theorem using the following lemmas.

Lemma 3: The system (2)-(4), (6)-(7), (8) is equivalent to the system in which the X-subsystem is represented as

\[
\dot{X}(t) = (A + BK)X(t) + B\hat{u}(0,t) + B\hat{u}(0,t).
\]
the \(\bar{u} \)-subsystem is represented as
\[
D\bar{u}(x,t) = \bar{u}(x,t) - \bar{D}r(x,t) \quad (17)
\]
\[
\bar{u}(1,t) = 0 \quad (18)
\]
with
\[
r(x,t) = Ke^{(A+BK)\bar{D}}x + \frac{\bar{w}(x,t)}{\bar{D}} + KB\bar{w}(x,t) + \bar{D} \int_0^x K(A+BK)e^{(A+BK)\bar{D}y}B\bar{w}(y,t)dy, \quad (19)
\]
and the \(\bar{w}/\hat{w}/\hat{\bar{w}} \)-subsystem is represented as
\[
\bar{D}\hat{w}(x,t) = \hat{w}(x,t) - \bar{D}Ke^{\bar{D}x}B\hat{u}(0,t) \quad (20)
\]
\[
\hat{w}(0,t) = 0 \quad (21)
\]
\[
\bar{D}\hat{w}(x,t) = \hat{w}(x,t) - \bar{D}Ke^{\bar{D}x}(15)AB\hat{u}(0,t) \quad (22)
\]
\[
\hat{w}(1,t) = \bar{D}Ke^{\bar{D}}\hat{u}(0,t). \quad (23)
\]
The \((X,\hat{u},\hat{w})\)-system is shown in Figure 1. The \(\bar{D} \)-connections are 'weak' and disappear when \(\bar{D} = D \). The exponentially stable cascade connections \(\bar{u} \to X \) and \(\bar{u} \to \hat{w} \to X \) are 'strong' and present even when \(\bar{D} = D \). The potentially destabilizing feedback connections through \(\bar{D} \) can be suppressed by making \(\bar{D} \) small. An additional difficulty is that an 'unbounded' connection from \(\hat{w} \) to \(\bar{u} \) exists. We deal with it by including a \(H_1 \) norm in the stability analysis.

Lemma 4: The following holds for (9) and (10):
\[
\bar{u}(x,t) = \hat{w}(x,t) + \bar{D}KB\hat{w}(x,t) + \bar{D} \int_0^x KAD\hat{w}(x,t)dy + KADe^{\bar{D}x}X(t). \quad (24)
\]

Lemma 5: The following holds for (9), (10), (24), (25):
\[
||\hat{w}(0,t)||^2 \leq p_1||\hat{w}(0,t)||^2 + p_2||X(t)||^2 \quad (26)
\]
\[
||\hat{w}(x,t)||^2 \leq 4||\hat{w}(t)||^2 + 4||\bar{u}(t)||^2 + p_3||X(t)||^2 \quad (27)
\]
\[
||\bar{w}(t)||^2 \leq q_1||\bar{u}(t)||^2 + q_2||X(t)||^2 \quad (28)
\]
\[
||\bar{w}(x,t)||^2 \leq 4||\bar{u}(x,t)||^2 + q_3||\bar{u}(t)||^2 + q_4||X(t)||^2, \quad (29)
\]
where
\[
p_1(\bar{D}) = 3\left(1 + \bar{D}^2K^2e^{2[A+BK]D}|B|^2\right) \quad (30)
\]
\[
p_2(\bar{D}) = 3|K|e^{2[A+BK]D} \quad (31)
\]
\[
p_3(\bar{D}) = 4\bar{D}^2|K|^2|B|^2(1 + \bar{D}^2[A + BK]^2e^{2[D(A+BK)]}) \quad (32)
\]
\[
p_4(\bar{D}) = 4|KE^{2[D(A+BK)]}| \quad (33)
\]
\[
q_1(\bar{D}) = 3\left(1 + \bar{D}^2K^2e^{2[D(A+BK)]}|B|^2\right) \quad (34)
\]
\[
q_2(\bar{D}) = 3|K|e^{2[A+BK]D} \quad (35)
\]
\[
q_3(\bar{D}) = 4\bar{D}^2|K|^2|B|^2(1 + \bar{D}^2[A + BK]^2e^{2[D(A+BK)]}) \quad (36)
\]
\[
q_4(\bar{D}) = 4|K|e^{2[D(A+BK)]}|B|^2. \quad (37)
\]

Lemma 6: Consider the Lyapunov function
\[
V(t) = X^T(t)PX(t) + b_1D \int_0^t (1 + x)\bar{u}(x,t)^2dx + b_2\bar{D} \int_0^t (1 + x)\hat{w}(x,t)^2dx + b_3\bar{D} \int_0^t (1 + x)\hat{w}(x,t)^2dx. \quad (38)
\]
There exist positive constants \(b_1, b_2, b_3 \), and \(\delta^* \) such that for any \(|\bar{D}| < \delta^* \) the following holds
\[
V \leq -\rho V. \quad (39)
\]

Proof: Differentiating (38), along the solutions of (16), (17), (20), (22), and using integration by parts, we obtain
\[
V = -X^T(t)QX(t) + 2X^T(t)PB\hat{w}(0,t) + \bar{u}(0,0)) + 2b_1D \int_0^t (1 + x)\bar{u}(x,t)^2dx + 2b_2D \int_0^t (1 + x)\hat{w}(x,t)^2dx + 2b_3\bar{D} \int_0^t (1 + x)\hat{w}(x,t)^2dx
\]
\[
-2b_1\left(\frac{\bar{u}(0,t)^2}{2} + \frac{\bar{u}(t)^2}{2}\right) + \bar{D} \int_0^t (1 + x)\bar{u}(x,t)r(x,t)dx \quad (40)
\]
\[
-2b_2\left(\frac{\hat{w}(0,t)^2}{2} + \frac{\hat{w}(t)^2}{2}\right) + \bar{D} \int_0^t (1 + x)\hat{w}(x,t)e^{\bar{D}x}dx \quad (40)
\]
\[
-2b_3\left(\frac{\hat{w}(0,t)^2}{2} + \frac{\hat{w}(t)^2}{2}\right) + \frac{\bar{D}^2KA}{2} \int_0^t (1 + x)\hat{w}(x,t)e^{\bar{D}x}B\hat{u}(0,t)dx. \quad (40)
\]

Let us define the following constants, \(c_1 = K||B||, c_2 = \bar{D}K||A + BK||e^{[A+BK]D}||B||, c_3 = c_2/(\bar{D}||B||), c_4 = 2\bar{D}K||B||, c_5 = c_4/2, c_5 = 2\bar{D}K||A||e^{[A+BK]D}||B||, \) and choose \(b_2 \geq 8PB/\lambda_{\min}(Q) \). Using the Cauchy-Schwartz and Young inequalities, we have:
\[
V(t) \leq -\frac{\lambda_{\min}(Q)}{2}||X(t)||^2 + b_2\left(\frac{\hat{w}(0,t)^2}{2} + \frac{\hat{w}(t)^2}{2}\right) + b_1D\left(\frac{\bar{u}(0,t)^2}{2} + \frac{\bar{u}(t)^2}{2}\right) \quad (41)
\]
\[
-\frac{\bar{D}^2|K|^2|B|^2(1 + \bar{D}^2[A + BK]^2e^{2[D(A+BK)]})}{2} \quad (36)
\]
\[
-\frac{\bar{D}^2|K|^2|B|^2(1 + \bar{D}^2[A + BK]^2e^{2[D(A+BK)]})}{2} = \frac{\bar{D}^2|K|^2|B|^2(1 + \bar{D}^2[A + BK]^2e^{2[D(A+BK)]})}{4} \quad (41)
\]
Grouping the like terms, we obtain
\[
V(t) \leq -\left(\frac{\lambda_{\min}(Q)}{2} - 2|D|b_1\right) |X(t)|^2 \\
- b_1\left(1 - 2|D|\left(\frac{1}{2} + c_1^2 + c_2^2 + c_3^2\right)\right) \|\ddot{u}(t)\|^2 \\
- \left(b_1 - 2b_2\left(\frac{1}{2} + c_1^2 + c_2^2 + c_3^2\right)\right) \ddot{u}(0,t)^2 \\
- \left(b_2 - \frac{2|D|}{D}b_1\right) \|\ddot{w}_s(t)\|^2 - \left(\frac{b_2}{2} - 2b_1|D|\right) \|\ddot{w}(t)\|^2 \\
- \frac{b_2}{2} \ddot{w}(0,t)^2 - 2b_2\ddot{w}_s(0,t)^2,
\]
and, with some further majorizations (for $|D| < D$), we get
\[
V(t) \leq -\left(\frac{\lambda_{\min}(Q)}{2} - 2|D|b_1\right) |X(t)|^2 \\
- b_1\left(1 - 2\frac{|D|(1 + D(c_1^2 + c_2^2 + c_3^2))}{D - |D|}\right) \|\ddot{u}(t)\|^2 \\
- \left(b_1 - 2b_2\left(\frac{1}{2} + c_1^2 + c_2^2 + c_3^2\right)\right) \ddot{u}(0,t)^2 \\
- \left(b_2 - \frac{2|D|}{D - |D|}b_1\right) \|\ddot{w}_s(t)\|^2 - \left(\frac{b_2}{2} - 2b_1\frac{|D|}{D}\right) \|\ddot{w}(t)\|^2 \\
- \frac{b_2}{2} \ddot{w}(0,t)^2 - 2b_2\ddot{w}_s(0,t)^2.
\]
Assuming that $|D| < D^*$, where
\[
D^* = \min\left\{\frac{D}{3 + 2(c_1^2 + c_2^2 + c_3^2)}, \frac{D_{b_2}}{4b_1 + b_2}, \frac{b_2}{4b_1\lambda_{\min}(Q)D}\right\}
\]
and $b_1 > \frac{2}{1/c_1^2 + c_2^2 + c_3^2}b_2$, from (42) we obtain
\[
\dot{V} \leq -\eta(|X(t)|^2 + \|\ddot{u}(t)\|^2 + \|\ddot{w}(t)\|^2 + \|\ddot{w}_s(t)\|^2) \\
\leq -\eta\|\ddot{u}(t)\|^2
\]
where $\eta = \min\left\{\lambda_{\min}(Q)/2 - 2|D|b_1, b_1 - 1 - 2D(1 + D(c_1^2 + c_2^2 + c_3^2)), \right.$
and $\eta = \min\left\{\lambda_{\min}(Q)/2 - 2\frac{|D|}{D - |D|}b_1, \right.$
and obtained (46), to complete the proof of (39), we first obtain the following inequalities from (38):
\[
\begin{align*}
V(t) & \geq \lambda_{\min}(P)|X(t)|^2 + b_1D\|\ddot{u}(t)\|^2 \\
& + b_2\|\ddot{w}(t)\|^2 + \|\ddot{w}_s(t)\|^2) \\
& \geq \min\left\{\lambda_{\min}(P), b_1D, b_2D\right\} \Gamma_0(t).
\end{align*}
\]
From (46) and (48), we complete the proof of (39) with $\rho = \min\left\{\lambda_{\min}(P), b_1D, b_2D\right\}$.

Lemma 7: $\exists d_1, d_2 > 0$ such that $d_1\Gamma(t) \leq V(t) \leq d_2\Gamma(t)$.

Proof: From (26)–(29) we get
\[
\Gamma(t) \leq |X(t)|^2 + 2(|\ddot{u}(t)|^2 + \|\ddot{u}_s(t)\|^2 + \|\ddot{w}(t)\|^2 + \|\ddot{w}_s(t)\|^2) \\
\leq |X(t)|^2 - 2\|\ddot{u}(t)|^2 + 3(p_1\|\ddot{w}(t)\|^2 + p_2|X(t)|^2) \\
+ 4\|\ddot{w}_s(t)\|^2 + p_3\|\ddot{w}(t)\|^2 + p_4|X(t)|^2 \\
\leq \max\left\{1 + 5p_2 + 2p_4, 2, 3p_1 + p_3, 4\right\} \Gamma_0(t).
\]
Proof: Mimicking the (omitted) proof of Lemma 3, we obtain the \((X, \tilde{u}, \tilde{w})\)-system as

\[
\dot{X}(t) = (A + BK)X(t) + B\tilde{w}(0,t) + B\tilde{u}(0,t) \\
D\tilde{u}(x,t) = \tilde{u}_x(x,t) - D(t)r(x,t) \\
- \dot{D}(t)(x-1) \dot{r}(x,t) \\
\tilde{u}(1,t) = 0 \\
\dot{D}(t)\tilde{w}(t,t) = \dot{\omega}_x(x,t) - \dot{D}(t)\dot{D}(t) \dot{s}(x,t) \\
- \dot{D}(t)Ke^{AD(t)(x-\xi)}B\tilde{u}(0,t)
\]

where

\[
r(x,t) = \frac{\tilde{w}_x(x,t)}{D(t)} + KB\tilde{w}(x,t) \\
+ \int_0^x K(A + BK)\hat{D}(t)e^{(A+ BK)(x-y)}B\tilde{w}(y,t)dy \\
+ K(A + BK)Ke^{(A+ BK)D(t)x}X(t) \\
s(x,t) = (1-x)\left(\frac{\tilde{w}_{xx}(x,t)}{D(t)} + Ke^{AD(t)x}B(KX(t) + \tilde{w}(0,t))\right) \\
+ \int_0^x \tilde{w}(y,t) \left[K(I + A\hat{D}(t)(x-y))e^{AD(t)x}B + \dot{D}(t)\int_0^x K(I + A\hat{D}(t)(x-y))e^{AD(t)x}B \right. \\
\times BKKe^{(A+ BK)D(t)(x-\xi)}B\tilde{w}(y,t)dy \\
+ \left(KKe^{AD(t)x} + \int_0^x K(I + A\hat{D}(t)(x-y))e^{AD(t)x}B \right) \\
\times e^{AD(t)(x-\xi)}BKKe^{(A+ BK)D(t)\xi}dy)X(t).
\]

Since our Lyapunov analysis will involve an \(H_1\) norm of \(\tilde{w}\), we also need the governing equations of the \(\tilde{w}_{xx}\)-system:

\[
\dot{\tilde{w}}(1,t) = \dot{\omega}(x,t) = \tilde{w}_{xx}(x,t) - \dot{D}(t)s_x(x,t) \\
- KAD\dot{e}^{AD(t)x}B\tilde{u}(0,t)
\]

where

\[
s_x(x,t) = \int_0^x s(x,t)dx \\
+ Ke^{AD(t)x}(\dot{A}\hat{D}(t)(x-1) - I)B(KX(t) + \tilde{w}(0,t)) \\
+ \dot{D}(t)\int_0^x \tilde{w}(y,t)K(BK + A(2I + AD(t)(x-\xi))) \\
+ A\hat{D}(t)(x-y))e^{AD(t)(x-\xi)}B
\]

Using (54), (65), (66), (68), (69), the properties of the projection operator, and Agmon’s inequality \(\tilde{w}(0,t)^2 \leq 4\|\tilde{w}_x(t)\|^2\) (with the fact that \(\tilde{w}(1,t) = 0\)), we find constants \(M_1, M_2, \ldots, M_6\) (independent of initial conditions) such that

\[
M_1\left(\|\tilde{w}(t)\|^2 + \|\tilde{w}_x(t)\|^2 + \|\tilde{w}_x(t)\|^2 + |X(t)|^2\right) \leq \\
\left|\int_0^1 (1+x)\tilde{w}(x,t)r(x,t)dx\right| \\
M_1\left(\|\tilde{w}(t)\|^2 + \|\tilde{w}_x(t)\|^2 + \|\tilde{w}_x(t)\|^2 + |X(t)|^2\right) \leq \\
2\dot{D}(t)\int_0^1 (1+x)\tilde{w}(x,t)s_x(x,t)dx \\
4M_2\left(\|\tilde{w}_x(t)\|^2 + \|\tilde{w}(t)\|^2 + |X(t)|^2\right) \leq \\
\left|\int_0^1 (1+x)Ke^{AD(t)x}B\tilde{u}(0,t)\tilde{w}(x,t)dx\right| \\
M_5\tilde{u}(0,t)^2 + \|\tilde{w}(t)\|^2 \leq \\
2\dot{D}(t)\int_0^1 (1+x)\tilde{w}(x,t)s_x(x,t)dx \leq
\]
which yields

\[
\begin{align*}
\dot{V}(t) & \leq -\eta \left(|X(t)|^2 + ||\tilde{u}(t)||^2 + ||\tilde{\omega}(t)||^2 + ||\tilde{\omega}_x(t)||^2 + \frac{2b_2}{2} |\tilde{w}(0,t)||^2 - b_3 |\tilde{w}(0,t)||^2 + b_3 |\tilde{w}_x(t)||^2 + \frac{2b_2}{2} |\tilde{w}(0,t)||^2 - b_3 |\tilde{w}(0,t)||^2 + b_3 |\tilde{w}_x(t)||^2 \right) \\
& \leq -\frac{\eta}{2} \left(|X(t)|^2 + ||\tilde{u}(t)||^2 + ||\tilde{w}(0,t)||^2 + ||\tilde{w}_x(t)||^2 \right).
\end{align*}
\]

To eliminate the parameter error term we employ the bound

\[
\left| \frac{\dot{D}(t)}{2} \right| \leq \frac{\varepsilon}{2} \left(\frac{\dot{D}(t)^2}{2\varepsilon} \right) \leq \frac{\varepsilon}{2} \left(\frac{\dot{D}(t)^2}{2\varepsilon} \right),
\]

which yields

\[
\dot{V}(t) \leq -\left(\eta - (8b_3M_6 + b_1M_1) \left(\frac{\varepsilon}{2} + \frac{1}{2b_3\varepsilon} V(t) \right) \right) V(t) \leq \left((8b_3M_6 + b_1M_1) \min \{ \lambda_{\min}(P), b_1D, b_2D \} \right) \frac{2b_2}{2b_3} \varepsilon \]
\[V(t) \leq V(0) \] it follows that \(X(t), ||\hat{u}||, ||\hat{v}||, ||\hat{w}_s||, \hat{D}(t) \) are uniformly bounded. Then, from (10), using Cauchy-Schwartz inequality, we obtain the uniform boundedness of \(||\hat{a}(t)|| \) and consequently also of \(U(t) \) for \(t \geq 0 \) from (8). Thus \(u(0,t) = U(t-D) \) is uniformly bounded for \(t \geq D \). Using (2), we get that \(d|X(t)|^2/\ell t \) is uniformly bounded for \(t \geq D \). From (82), it follows that \(|X(t)| \) is square integrable. Finally, by Barbalat’s lemma, we get that \(X(t) \to 0 \). To also prove the regulation \(U(t) \), we start by deducing from (82) the square integrability of \(U(t) \). To establish the boundedness of \(dU(t)^2/\ell t \), we compute it as

\[
\frac{d}{dt}U(t)^2 = 2U(t)K \left(e^{AD(t)}X(t) + \hat{D}(t)G_1(t) + \hat{D}(t)G_2(t) \right)
\]

\[
G_1(t) = A e^{AD(t)}X(t) + (x-1) \int_0^1 e^{AD(t)}(1-y)B\hat{u}_s(y,t)dy
\]

\[
+ \int_0^1 (I+AD(t)(1-y)) e^{AD(t)}(1-y)B\hat{u}(y,t)dy
\]

\[
G_2(t) = \int_0^1 e^{AD(t)}(1-y)B\hat{u}_s(y,t)dy
\]

The signal \(\hat{D}(t) \) is uniformly bounded for \(t \geq D \) according to (54). By using the boundedness of \(\hat{X}(t), \hat{X}(t), ||\hat{a}(t)|| \) and \(||\hat{u}_s(t)|| \) over \(t \geq D \), we get boundedness of \(dU(t)^2/\ell t \) for \(t \geq D \). Then, by Barbalat’s lemma, \(U(t) \to 0 \) as \(t \to \infty \).

IV. SIMULATIONS

Consider the system \(X(s)/U(s) = e^{-Ds}B/(s-A) \), which is a model of the dynamics of an X-29 aircraft in an unstable regime [2], with the input being the control surface deflection, and with the output being a linear combination of the pitch rate (measured with a gyroscope) and the rate of change of the flight path (measured with a gyroscope). We take the plant parameters as \(A = 0.75, B = 1 \), and the nominal control gain as \(K = -A - 1 = -1.75 \) (which means that \(P = 1 \) for \(Q = 2 \)). Figure 2 shows a simulation example with \(D = 1, A = 0.5, B = 1, K = -1.5, P = 1, Q = 2 \), and \(\gamma = 5 \).

V. RELATED RESULTS

In this paper the only parametric uncertainty considered is the unknown delay. In a companion paper [1] we present an extension with unknown plant parameters and where the control objective is not regulation to zero but trajectory tracking. The design technique in this paper is inspired by the techniques for parabolic PDEs in [7] and the non-adaptive techniques for hyperbolic PDEs [8]. Nonlinear extensions of predictor feedback are introduced in [5].

REFERENCES

