C. S. Peskin, Flow patterns around heart valves: A numerical method, Journal of Computational Physics, vol.10, issue.2, pp.252-271, 1972.
DOI : 10.1016/0021-9991(72)90065-4

C. Peskin, Numerical analysis of blood flow in the heart, Journal of Computational Physics, vol.25, issue.3, pp.220-252, 1977.
DOI : 10.1016/0021-9991(77)90100-0

M. Lai and C. Peskin, An Immersed Boundary Method with Formal Second-Order Accuracy and Reduced Numerical Viscosity, Journal of Computational Physics, vol.160, issue.2, pp.705-719, 2000.
DOI : 10.1006/jcph.2000.6483

R. P. Beyer and R. J. Leveque, Analysis of a One-Dimensional Model for the Immersed Boundary Method, SIAM Journal on Numerical Analysis, vol.29, issue.2, pp.332-364, 1992.
DOI : 10.1137/0729022

D. Goldstein, R. Handler, and L. Sirovich, Modeling a No-Slip Flow Boundary with an External Force Field, Journal of Computational Physics, vol.105, issue.2, pp.354-366, 1993.
DOI : 10.1006/jcph.1993.1081

K. Höfler and S. Schwarzer, Navier-Stokes simulation with constraint forces: Finite-difference method for particle-laden flows and complex geometries, Physical Review E, vol.61, issue.6, pp.7146-7160, 2000.
DOI : 10.1103/PhysRevE.61.7146

Z. G. Feng and E. E. Michaelides, The immersed boundary-lattice Boltzmann method for solving fluid???particles interaction problems, Journal of Computational Physics, vol.195, issue.2, pp.602-628, 2004.
DOI : 10.1016/j.jcp.2003.10.013

E. M. Saiki and S. Biringen, Numerical Simulation of a Cylinder in Uniform Flow: Application of a Virtual Boundary Method, Journal of Computational Physics, vol.123, issue.2, pp.450-465, 1996.
DOI : 10.1006/jcph.1996.0036

C. Lee, Stability characteristics of the virtual boundary method in three-dimensional applications, Journal of Computational Physics, vol.184, issue.2, pp.559-591, 2003.
DOI : 10.1016/S0021-9991(02)00038-4

E. A. Fadlun, R. Verzicco, P. Orlandi, and J. , Mohd-Yusof, Combined immersed-boundary finitedifference methods for three-dimensional complex flow simulations, J. Comput. Phys, pp.161-196, 2000.

J. Kim, D. Kim, and H. Choi, An Immersed-Boundary Finite-Volume Method for Simulations of Flow in Complex Geometries, Journal of Computational Physics, vol.171, issue.1, pp.171-132, 2001.
DOI : 10.1006/jcph.2001.6778

J. Yang and E. Balaras, An embedded-boundary formulation for large-eddy simulation of turbulent flows interacting with moving boundaries, Journal of Computational Physics, vol.215, issue.1, 2006.
DOI : 10.1016/j.jcp.2005.10.035

K. Taira and T. Colonius, The immersed boundary method: A projection approach, Journal of Computational Physics, vol.225, issue.2, pp.2118-2137, 2007.
DOI : 10.1016/j.jcp.2007.03.005

M. Uhlmann, An immersed boundary method with direct forcing for the simulation of particulate flows, Journal of Computational Physics, vol.209, issue.2, pp.448-476, 2005.
DOI : 10.1016/j.jcp.2005.03.017

M. Vanella and E. Balaras, A moving-least-squares reconstruction for embedded-boundary formulations, Journal of Computational Physics, vol.228, issue.18, pp.6617-6628, 2009.
DOI : 10.1016/j.jcp.2009.06.003

P. Moin, Advances in large eddy simulation methodology for complex flows, International Journal of Heat and Fluid Flow, vol.23, issue.5, pp.710-720, 2002.
DOI : 10.1016/S0142-727X(02)00167-4

F. Roman, E. Napoli, B. Milici, and V. Armenio, An improved immersed boundary method for curvilinear grids, Computers & Fluids, vol.38, issue.8, pp.1510-1527, 2009.
DOI : 10.1016/j.compfluid.2008.12.004

A. M. Roma, C. S. Peskin, and M. J. Berger, An Adaptive Version of the Immersed Boundary Method, Journal of Computational Physics, vol.153, issue.2, pp.509-534, 1999.
DOI : 10.1006/jcph.1999.6293

W. K. Liu, Y. Chen, R. A. Uras, and C. T. Chang, Generalized multiple scale reproducing kernel particle methods, Computer Methods in Applied Mechanics and Engineering, vol.139, issue.1-4, pp.1-4, 1996.
DOI : 10.1016/S0045-7825(96)01081-X

A. J. Chorin, Numerical solution of the Navier-Stokes equations, Mathematics of Computation, vol.22, issue.104, pp.745-762, 1968.
DOI : 10.1090/S0025-5718-1968-0242392-2

R. Temam, Sur l'approximation de la solution deséquationsdeséquations de Navier-Stokes par la méthode des pas fractionnaires (I), Arch. Rat. Mech. Anal, vol.32, issue.2, pp.135-153, 1969.

J. Van-kan, A Second-Order Accurate Pressure-Correction Scheme for Viscous Incompressible Flow, SIAM Journal on Scientific and Statistical Computing, vol.7, issue.3, pp.870-891, 1986.
DOI : 10.1137/0907059

W. K. Liu, S. Jun, and Y. F. Zhang, Reproducing kernel particle methods, International Journal for Numerical Methods in Fluids, vol.45, issue.8-9, pp.1081-1106, 1995.
DOI : 10.1002/fld.1650200824

X. Wang and W. K. Liu, Extended immersed boundary method using FEM and RKPM, Computer Methods in Applied Mechanics and Engineering, vol.193, issue.12-14, pp.12-14, 2004.
DOI : 10.1016/j.cma.2003.12.024

L. Zhang, A. Gerstenberger, X. Wang, and W. K. Liu, Immersed finite element method, Computer Methods in Applied Mechanics and Engineering, vol.193, issue.21-22, pp.21-22, 2004.
DOI : 10.1016/j.cma.2003.12.044

Y. Liu, W. K. Liu, T. Belytschko, N. Patankar, A. C. To et al., Immersed electrokinetic finite element method, International Journal for Numerical Methods in Engineering, vol.78, issue.4, pp.379-405, 2006.
DOI : 10.1002/nme.1941

W. K. Liu, Y. Liu, D. Farrell, L. Zhang, X. S. Wang et al., Immersed finite element method and its applications to biological systems, Computer Methods in Applied Mechanics and Engineering, vol.195, issue.13-16, pp.13-16, 2006.
DOI : 10.1016/j.cma.2005.05.049

I. Babu?ka and J. Melenk, THE PARTITION OF UNITY METHOD, International Journal for Numerical Methods in Engineering, vol.9, issue.4, pp.727-758, 1997.
DOI : 10.1002/(SICI)1097-0207(19970228)40:4<727::AID-NME86>3.0.CO;2-N

A. Silva-lopes and J. M. Palma, Numerical Simulation of Isotropic Turbulence Using a Collocated Approach and a Nonorthogonal Grid System, Journal of Computational Physics, vol.175, issue.2, pp.713-738, 2002.
DOI : 10.1006/jcph.2001.6964

C. M. Rhie and W. L. Chow, Numerical study of the turbulent flow past an airfoil with trailing edge separation, AIAA Journal, vol.21, issue.11, pp.1525-1532, 1983.
DOI : 10.2514/3.8284

J. Kim and P. Moin, Application of a fractional-step method to incompressible Navier-Stokes equations, Journal of Computational Physics, vol.59, issue.2, pp.308-323, 1985.
DOI : 10.1016/0021-9991(85)90148-2

A. S. Lopes, U. Piomelli, and J. M. Palma, Large-eddy simulation of the flow in an S-duct, Journal of Turbulence, vol.1, issue.11, pp.1-24, 2006.
DOI : 10.1080/14685240500331900

S. Radhakrishnan, U. Piomelli, A. Keating, and A. , Silva Lopes, Reynolds-averaged and large-eddy simulations of turbulent non-equilibrium flows, J. Turbul, vol.7, issue.63, pp.1-30, 2006.

S. Radhakrishnan, U. Piomelli, and A. Keating, Wall-Modeled Large-Eddy Simulations of Flows With Curvature and Mild Separation, Journal of Fluids Engineering, vol.130, issue.10, 101203.
DOI : 10.1115/1.2969458

M. Coutanceau and R. Bouard, Experimental determination of the main features of the viscous flow in the wake of a circular cylinder in uniform translation. Part 1. Steady flow, Journal of Fluid Mechanics, vol.274, issue.02, pp.231-256, 1977.
DOI : 10.1143/JPSJ.19.1024

D. J. Tritton, Experiments on the flow past a circular cylinder at low Reynolds numbers, Journal of Fluid Mechanics, vol.13, issue.04, pp.547-567, 1959.
DOI : 10.1143/JPSJ.13.418

E. Guilmineau and P. Queutey, A NUMERICAL SIMULATION OF VORTEX SHEDDING FROM AN OSCILLATING CIRCULAR CYLINDER, Journal of Fluids and Structures, vol.16, issue.6, pp.773-794, 2002.
DOI : 10.1006/jfls.2002.0449

URL : https://hal.archives-ouvertes.fr/hal-00699422

X. Y. Lu and C. Dalton, CALCULATION OF THE TIMING OF VORTEX FORMATION FROM AN OSCILLATING CYLINDER, Journal of Fluids and Structures, vol.10, issue.5, pp.527-541, 1996.
DOI : 10.1006/jfls.1996.0035

C. H. Williamson, Defining a universal and continuous Strouhal???Reynolds number relationship for the laminar vortex shedding of a circular cylinder, Physics of Fluids, vol.31, issue.10, pp.2742-2744, 1988.
DOI : 10.1063/1.866978

S. Taneda, Experimental Investigation of the Wake behind a Sphere at Low Reynolds Numbers, Journal of the Physical Society of Japan, vol.11, issue.10, pp.1104-1108
DOI : 10.1143/JPSJ.11.1104

G. K. Batchelor, An Introduction to Fluid Mechanics, Journal of Applied Mechanics, vol.35, issue.3, 1967.
DOI : 10.1115/1.3601282

N. Zhang and Z. C. Zheng, An improved direct-forcing immersed-boundary method for finite difference applications, Journal of Computational Physics, vol.221, issue.1, pp.250-268, 2007.
DOI : 10.1016/j.jcp.2006.06.012

T. A. Johnson and V. C. Patel, Flow past a sphere up to a Reynolds number of 300, Journal of Fluid Mechanics, vol.378, pp.19-70, 1999.
DOI : 10.1017/S0022112098003206

R. Mittal, H. Dong, M. Bozkurttas, F. M. Najjar, A. Vargas et al., A versatile sharp interface immersed boundary method for incompressible flows with complex boundaries, Journal of Computational Physics, vol.227, issue.10, pp.4825-4852, 2008.
DOI : 10.1016/j.jcp.2008.01.028

P. Koumoutsakos and D. Shiels, Simulations of the viscous flow normal to an impulsively started and uniformly accelerated flat plate, Journal of Fluid Mechanics, vol.23, issue.-1, pp.177-227
DOI : 10.1137/0118020