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systems  

Marc Budinger1, Jean-Charles Passieux, Christian Gogu, Amine Fraj 

 Université de Toulouse, INSA/UPS, Institut Clément Ader, Toulouse, 31077, France. 
 
 

ABSTRACT 

This paper presents a new metamodel form and associated construction procedure adapted to the sizing tasks 
of mechatronics systems. This method of meta-modeling uses scaling laws to extract compact forms of design 
models from local numerical simulations (FEM). Compared to traditional metamodels (polynomial response 
surfaces, kriging radial basis function) the scaling-law-based metamodels have the advantage of a light, 
compact form and good predictive accuracy over a wide range of the design variables (several orders of 
magnitude). The general regression process is first explained and then illustrated on different examples: a 
purely numerical test function, a limited angle electromagnetic actuator and a flexible mechanical hinge.  

Keywords:  metamodels, surrogate modelling, scaling laws, Buckingham theorem, components sizing, 
preliminary/conceptual design. 

NOTATION  

CAD Computer Aided Design 
FEM Finite Element Method 
3D Three-dimensional 
LAT Limited Angle Torque 
DoE Design of Experiments 
LHC Latin HyperCube 
SLAWMM Scaling-LAW-based MetaModels 
std Standard deviation of a variable  
mean Mean value of a variable 

1. INTRODUCTION  

A mechatronic system [1] [2] expands the capabilities of conventional mechanical systems through the 
integration of different technological areas (Figure 1) around:  

• a power transmission part, which is a combination of components from mechanical, electrical, 
power electronics or fluid power technologies;  

• an information processing part, which is a combination of  electronics, instrumentation, automatic, 
signal processing, and information technologies. 

 

Figure 1 – Mechatronic system (based on reference [3]) 
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The references [3] and [4] highlight that the design of such multi-domain systems require different modeling 
layers as represented Figure 2: 

• A mechatronic layer, to take into account the functional and physical coupling between components. 
This level of modeling is usually done using 0D-1D models [3] also called lumped parameter 
models represented by algebraic equations, ordinary differential equations (ODE) or differential 
algebraic equations (DAE) [5]. 

• A specific domain layer, to describe the performance limits and parameters necessary in the 
previous layer, based on a geometric representation. The specific domain phenomena are generally 
represented through partial differential equations (PDE). This level of modeling can be achieved, for 
simplified geometries using analytical models or, for complex 2D and 3D geometries, using 
numerical approximations like finite element method (FEM) for instance. 

 

Figure 2 – Hierarchical design models (based on reference [4]) 
 

  The design of the power part with a system integrator’s point of view should allow to optimally size and 
specify the components of multiple technologies [6] interacting together. This system level design, distinct of 
component design, needs to represent in the mechatronic layer the key informations of the specific domain layer 
with dedicated models [7] [8] [9]. The latter enables the designer to take multiple design constraints into account 
easily. They are referred to as "estimation models" in this paper. They directly and explicitly link a few primary 
characteristics, such as overall dimensions of components, to the secondary characteristics needed for the sizing 
[9] and optimization [10]. The capacities required of these estimation models are: to present a form that is simple 
to handle and to implement in different calculation tools, to lend themselves to easy analytical manipulations, 
and to be reusable in an area slightly different from the one where they were initially employed. To satisfy these 
constraints, simplified analytical models are often used [11] [12]. Among them, scaling laws have proved 
effective to represent a physical phenomenon over wide ranges of variation [13] [8]. However, these models are 
valid under certain conditions, among which one can mention geometry and material similarities, and uniqueness 
of the driving physical phenomenon. For the system designer the models should be as predictive as possible. 
Detailed finite element models, able to precisely predict the physical phenomena are still too time-consuming in 
such a context. Despite a recent thrust of work on model order reduction [14] [15], the computational cost of 
finite element models remains prohibitive in the preliminary design phase. The use of metamodelling techniques 
[16] [17] [18] is thus interesting for this purpose. In this paper, we propose an enhanced power law type model 
based on metamodels to represent the models of the specific domain layer (Figure 2) into the mechatronic layer.  

The second section of this paper will show the interest of scaling laws to establish the estimation models 
needed by the system designer. In the third section, a metamodeling method based on scaling laws will be 
proposed to extract simple, global expressions of estimation models from local numerical simulations (FEM). 
The regression process is first illustrated with a mathematical function and then with two examples of 
mechatronic components from different domains: a limited-angle electromagnetic actuator and a flexible 
mechanical hinge. Noise effects and comparisons with classical metamodelling techniques are illustrated through 
these examples. 
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2. ESTIMATION M ODELS WITH SCALING LAWS  

2.1. Scaling laws and Buckingham theorem 

Scaling laws based on dimensional analysis, also called similarity laws or allometric models, have been very 
successfully used throughout the past decades for solving scientific and engineering problems and for presenting 
results in a compact form. In the design of mechatronic systems scaling laws [8] [13], allow estimation models to 
be obtained from a single reference component by using three main modeling assumptions: 

a. Material similarity: all material and physical properties are assumed to be identical to those of the 
component as the reference; 

b. Geometric similarity: the ratio of all the lengths of the component under consideration to all the lengths 
of the reference component is constant; 

c. Uniqueness of design driver: only one main dominant physical phenomenon drives the evolution of the 
secondary characteristic y. 

The mathematical form of scaling laws is a power law: � = ��� (1) 
With y the secondary characteristic to be estimated, L the main dimension of the component, and k and a 

constants. For simplicity of notation, in this article, k means a constant coefficient which may have different 
numerical values in the different equations.  

This form and the conditions for obtaining equation (1) are demonstrated here using the Buckingham 
theorem [19] [20] [21]. An estimation model seeks to identify a relationship between 2+n+m  parameters:  

f �y, L, d�, d
, … , d������������� , p�, … , p��������� � = 0 
(2) 

with: 

• 1 parameter corresponding to the secondary characteristic y to be estimated; 

• 1+n parameters characterizing the geometrical dimensions L and di ;    

• m parameters characterizing physical and material properties pi ; 

Depending on the number of physical units u (e.g. m, kg, s, etc.) involved in the problem, this relationship 
can be rewritten using dimensionless parameters ��: 

�′ ��� , ��, �
, … , ������������ , � �, … , � !"���������!#
$ = 0 (3) 

where: 

�� = ���& ' (��)  (4) 
�� = -��  (5) 

� � = ��&/) ' (0�1  (6) 
The number m’, usually smaller than m, depends on the number of physical units u as expressed by the 

Buckingham theorem: 3" = 1 + 3 − 7 (7) 
If only one main simple physical phenomenon drives the evolution of the secondary characteristic y, the 

number m’ is often equal to zero. If m' is not equal to zero, the remaining dimensionless numbers can generally 
be expressed through ratios of material properties with similar units. These m’ dimensionless number thus do not 
depend on L. With this condition and the first two assumptions a. and b., the πi  and πpi  dimensionless numbers 
are constant and it follows that: 

�� = ���& ' (��) = constant  (8) 
which gives relation (1) if we assume the material or physical properties pi to be constant during the sizing.  
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2.2. Examples of scaling laws 

To illustrate the construction and use of such laws, two examples will be given here. These examples address 
conventional components of mechatronic systems: brushless motors and bearings. We assume here that the main 
design criterion for the motor is the winding temperature. The dominant thermal phenomenon will be assumed to 
be convective. The bearings are for their part designed to withstand a maximum mechanical stress. 

For the brushless motors, equations (2), (3) and (1) become the following: 

• For thermal aspects: the current density J  can be linked to the dimensions through  

� �?, �, -�, -
, … , -������������� , @, A, ℎ���! $ = 0 (9) 

which, according to the Buckingham theorem, leads to 

 �′ CDEFG HI , JKG , JFG , … , JLG��������
M = 0 where m’=0 

(10) 

and ? = ��NO,P 
(11) 

• For magnetic aspects : the torque T can be linked to dimensions and current density through  

� �Q, �, -�, -
, … , -������������� , ?, RST! $ = 0 (12) 

which, according to the Buckingham theorem, leads to  

�′ C UEVWGX , JKG , JFG , … , JLG��������
M = 0 where m’=0 

(13) 

and Q = �?�Y 
(14) 

with : J the current density, L the length of the motor, di other geometrical dimensions, ρ the resistivity of the 
copper, θ  the maximal temperature rise for the winding insulation, h the convection coefficient, Br the remanent 
induction of the permanent magnet, and T the electromagnetic torque.  

Combining these two aspects provides an estimate of torque depending on motor size: Q = ��Z,P (15) 
The assumptions a. and b. allow the motor weight to be estimated: [ = ��Z = �QZ/Z,P (16) 
With the same approach, the weight of the bearing can be estimated from their load-bearing capacity C: ] = ��
 and [ = ��Z = �]Z/
 (17) 
More details and examples of the development of such laws for mechanical and electromechanical 

components are given in [8]. Figure 3 and Figure 4 compare these relationships to data from industrial 
catalogues, and show that scaling laws can provide good fits for the quantities of interest of such components 
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Figure 3 - Brushless motor masses according to the nominal torque. 

 

Figure 4 – Bearing  masses according to the load capacity. 
 

2.3. Interests and limitations of scaling laws 

Scaling laws have assets that make them attractive for the design of mechatronic systems [22] [23] [9]. Their 
simple form makes them easy to manipulate and customize as they require only one reference to determine the 
multiplier coefficient k, the power coefficient a being determined by the physical phenomena. They have a 
monotonous progression valid over a wide range of sizes (several orders of magnitude) which avoids the risk of 
possible mathematical aberrations of metamodels used outside their construction bounds. 

However they have some limitations. Although the similarity of the materials can be easily verified for a 
given technology, the geometric similarity is not necessarily verified or sought. For motors (Figure 3), this point 
mainly explains the estimation errors of scaling laws in Figure 3. Manufacturers have a tendency to use the same 
motor diameter (i.e. the same iron sheet) for different lengths and torques. Obtaining a scaling law also requires a 
dominant physical phenomenon. For example, in the case of the electric motor, if the conductive heat transfer 
phenomenon cannot be neglected, relations (9) and (10) should take the form: 

� �?, �, -�, -
, … , -������������� , @, A, ℎ, ^�, ^
, …�����������! $ = 0 (18) 

which gives 

 �′ CDEFG HI , JKG , JFG , … , JLG��������
, _KHG , _FHG , …�����!"

M = 0  

(19) 
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with λi the thermal conductivities of the various materials of the motor. 

In this case, either a global scaling law would have been impossible to establish or its domain of validity 
would have been smaller. 

3. SCALING LAWS BASED ON REGRESSION  

The objective of this section is to show how it is possible to increase the use and validity of scaling laws 
through appropriate regression techniques as proposed by our method.  

3.1. Form of models 

To maintain the physical meaning and benefits of scaling laws, the regression model will be based on the 
power form (1). However, to eliminate assumptions b. (geometric similarity) and c. (uniqueness of design 
driver), estimation models of the following, more general form will be sought: 

� = �(�, ��, �
, … ) = �(��, �
, … )��(`K,`F,… ) with �� = J)G  (20) 

where : 
• y is the parameter to be estimated; 
• L is the main dimension of the system; 
• di  are the secondary dimensions of the system; 

• πi  are the dimensionless numbers representative of form factors of the system. 
 

With geometrical similarity, the form factors are constant (πi=Cst) and the form (20) simplifies into the 
classic scaling law form (1). The desired form of model (20) lends itself to direct regression less easily than 
polynomial response surfaces [24], radial basis functions [16] [25], or kriging [26] [27] directly on the parameter 
y. The objective of the coming sections is to give an approach to determine the shapes of functions �(��, �
, … ) 
and a(��, �
, … ) representative of multiplier and power coefficients. 

 
3.2. Regression process 

Figure 3 describes the overall meta-modelling process proposed to carry out regressions of form (20). The 
three main steps of the process are described below and the details of each step are described in the following 
subsections.  

• Step 1 – data generation: the objective is first to generate the combinations of variables L and πi to be 
simulated. With deterministic computer experiments, these sample points should be chosen to fill the 
design space. Once the DoE is defined, a call is then made to the finite element codes, or any other 
sizing code, to obtain the desired data y. The data y are then projected according to form (20) by 
calculating the coefficients k and a for each configuration πi  of form factor parameters.  

• Step 2 - study of the general shape of the function: the evolution of each coefficient k and a is then 
analysed to determine the overall shape to be imposed on function (20) through the choice of the forms 
of functions �(��, �
, … ) and a(��, �
, … ). These forms of functions cannot be initially assumed and 
depend on each problem. 

• Step 3 - building of the metamodel: based on the function forms selected in the previous step, a 
regression process is applied to simulation data. A comparison of the results predicted using Eq. (20) 
with the initial data y can then validate the quality of these regressions.  
 

Even though the model form of Eq. (20) cannot be expressed by linear combination of basis functions, some 
of its characteristics are interesting and will be used for the proposed meta-modeling process. The following 
subsections describe the choices made here for each of these steps according to these characteristics. 
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 Figure 5 – Meta-modeling process 
 
3.2.1. Step 1 – Data generation 

The range of variation for the parameter L is potentially very large and is potentially much smaller for the 
shape parameters πi. The proposed process will use a DoE (design of experiments) which is logarithmically 
distributed on nL levels for the parameter L and linearly distributed on nπ levels for the p parameters πi. This 
simple DoE enables the design space to be filled. This DoE (step 1.1), mainly similar to a full factorial design, 
requires at least three levels for each parameter in order to calculate (steps 1.3) and analyse (steps 2.1 and 2.2) 
coefficients k and a. 

According to this DOE, calls are then made (step 1.2) to the finite element codes, or any other sizing code, to 
obtain the desired data y. The final number of data y is nL. nπ

p.  The conventional regression techniques use these 
simulation data directly. Here in order to adapt the data to form (20) and as a power law can be represented 
linearly in logarithmic-scale graphs, the projection of  the data y onto the coefficients a and k (step 1.3 of Figure 
5) is done in a logarithmic plane plotting the y according to L data for each combinations of the form factors πi. 
Figure 6 represents the graphs where, for each combination of coefficients πi., the evolution of y according to L 
follows a power law and is therefore described by a straight line in a logarithmic plane. The algorithm computes 
the slopes a of the segments between two consecutive values of L and returns the mean average slope mean(a) 
for each combinations of πi. The multiplier coefficient k is calculated for each curve by minimizing the least 
square error for the average slope. In order to check that the data are well fitted by power laws, a quality criterion 
is also calculated. This criterion expressed by the relation std(a)/mean(a) is usually very close to zero and shows 
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that the problem is well expressed by using a scaling law for a given configuration of form factors. After this 
step, the nL.nπ

p values y are transformed into nπ
p values vectors for all coefficients a and k. 

 
Figure 6 – Power law coefficients calculation 

 

3.2.2. Step 2 – Metamodel form definition 

The objective of this step is to determine the form that can be given to functions a(��, �
, … ) and �(��, �
, … ).  

The power coefficient a(��, �
, … ) of scaling laws is constant if the physical phenomenon that drives the 
design of the system does not depend on the form factors πi. If the physical phenomenon switches from one to 
another (e.g. convection to conduction for thermal transfer), the power coefficient is a function that changes 
between 2 extreme values. If the switch between the two physical phenomena is progressive (often the case for 
components of mechatronics systems) then the surface a(��, �
, … ) will be characterized by a small number of 
peaks and valleys and can potentially be well approximated by a polynomial function. It remains to determine 
the exact form of the polynomial function. Since all the parameters πi do not usually affect the power coefficient 
it is useful to conduct a sensitivity analysis at this point. Step 2.2 thus corresponds to a sensitivity analysis, 
which is conducted here by performing a linear regression after normalization between -1 and +1 of parameters 
πi. The analysis of the regression coefficients leads to the quantification of the average influence of each 
parameter. Only relevant parameters will be considered in the final expression of a(��, �
, … ). Note that any 
other technique of sensitivity analysis could be used here (e.g. ANOVA [28] or Sobol’s indices [29]). 

The multiplication coefficient �(��, �
, … ) of scaling laws can often take the form of products of functions, 
some of which may also be expressed in the form of power laws. Step 2.1 (Figure 5) analyses these options by 
using a logarithmic plane again as the functions that can be decomposed into products are represented by parallel 
curves in logarithmic-scale graphs (Figure 7a). The power laws are represented by straight lines (Figure 7b). If: �(��, �
, … ) = �(��)b(�
, … )   or   cdbe�(��, �
, … )f = cdbe�(��)f + log(b(�
, … )) (21) 

the evolution of values of �(��, �
, … ), a function of π1 for different πi≠1 configurations, can give 3 
possibilities: factorizable (Figure 7a), factorizable with a power law (Figure 7b), or non-factorizable (Figure 7c). 
This type of analysis can be carried out for each variable πi and quantified by indicators describing: 

• the possibility of factorizing �(��, �
, … )  by a function of πi. To assess this possibility we 
introduce the indicator defined by  (max(E)-min(E))/(max(log(k)-min(log(k)), where E quantifies the 
difference between two curves for different values of πi. If the difference between two curves is 
constant, this indicator is equal to zero and points out the possibility of factorization. 

• the opportunity of expressing this function by a power law. To assess this, we introduce the 
indicator (max(s)-min(s))/|(mean(s)|, where s quantifies the slope of a curve. If the slope is constant, 
the indicator is equal to zero and indicates a power law.   

These criteria can be condensed graphically on a plane, as illustrated in Figure 7d, to quickly assess the form 
that the function �(��, �
, … )  should have. 
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a) Factorizable  

 
b) Factorizable with a power law 

 

 
c) Non-factorizable 
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d) Indicator map 

Figure 7 – Multiplication coefficient form analysis 
 

3.2.3. Step 3 – Metamodel building 

The last step aims to build the metamodels from data generated in step 1 and according to the forms of 
functions defined in step 2. This process of regression is done in two sub-steps: 

• The first uses the data a and k (outputs of  step 1.3,  Figure 5): a least squares polynomial regression, 
using the most influential parameters, is directly performed on the data a to obtain an approximation 
for a(��, �
, … ). Depending on the decomposition of �(��, �
, … ) derived from the indicators of 
step 2.1 (Figure 7d), the regression is performed on each of the factorizable functions. Power laws 
are processed first by linear regression in logarithmic planes. Functions that cannot be expressed by 
power laws are approximated by polynomial functions using least squares regression. 

• The second uses y data directly (outputs of step 1.2, Figure 5): this nonlinear regression is initialized 
with results of the first regression and minimizes relative errors thanks to the lsqnonlin function 
of Matlab. 

Finally a comparison of the two regression functions with respect to the initial data y can validate the quality 
of these regressions. 

3.3. Example with a test function 

A purely numerical example will help to illustrate and detail the various steps of the process described in 
Section 4.2. This test function, which uses the form of equation (20), is:  � = ��N�(4 + 5�
�Z)�YZ�2+0.1�2  (22) 

A numerical uniformly distributed noise can be added to y data in order to test the robustness of the process 
to the possible computer noise of design codes or to variations due to neglected phenomena. For the first 
numerical application, this noise is set to +/- 1% of y data. The different stages of regression, shown from Figure 
8 to Figure 11, are: 

• Step 1.1, the generation of a design of experiments: L with 4 levels between 1 and 104 and each 

parameter πi  with 3 levels between respectively .5 and 2, 1 and 10, 2 and 7, 1 and 10. The number of 
simulations and data y is 4.34=324.  

• Step 1.3, the y data projection: The straight lines (cf. Figure 8) imply the power law nature of the 
relationship. For the example of Figure 8, the slope a is equal to 3. The deviation from a power law is 
expressed by a quality indicator, std(a)/mean(a) as explained in 3.2.1, which has the value of 0.24% and 
also appears  in Figure 8. Without the parameter L the remaining design of experiments now has 34=81 
values for each parameter a and k. 
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• Step 2, a study of the general shape of the function: Figure 9 shows the analysis (step 2.1) of the 
possible form for the function �(��, �
, … ).  From indicators presented in Figure 7 and section 4.2, it 
follows that the parameters π1  and π4  are suitable for factorization using power laws. Figure 10 
illustrates the sensitivity analysis (step 2.2) to determine parameters influencing the evolution of the a 
coefficient. Only the parameter π2  has to be kept here. We thus select an equation with the following 
form: 
 � = �(��, �
, … )��(`K,`F,… ) = �′(�
, �Z)���K�Y�X��(`F)  (23) 

with �′(�
, �Z) and a(�
) second order polynomial functions. 
• Step 3, the construction of the metamodel based on functions forms selected in the previous step: 

functions �′(�
, �Z) and a(�
) will be approximated by polynomial function. The first regression 
allows functions �(��, �
, … ) and a(��, �
, … ) to be obtained independently by a log plane study (for 
the power law) or linear regression (for the other function). This first regression (step 3.1) gives : � = (4.84 − 0.14π
 − 0.37πZ + 5.01�
�Z + 0.01π

 + 0.03π

)��NO.mm�YZ�(
�O.�O`F)  (24) 

The second non-linear regression (step 3.2) working directly on y and πi data enables us to find : � = (3.988 + 0.002π
 + 0.002πZ + 5.001�
�Z)��N��YZ�(
�O.�O`F)  (25) 

For the 2 regressions, the mean square error minimizes the relative and not the absolute errors. The 
regression quality check shows that less than 1% of error is achieved with equation (25). Without noise, 
exact relationship is found directly with the first and second regression. 

 
Figure 8 – Power law coefficients calculation for the test function 
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Figure 9 – Form analysis of multiplication coefficient k for the test function  

 

 
Figure 10 –Sensitivity analysis for the power coefficient a of the test function  

 
Even though numerical simulations are deterministic, errors may exist due to simplifications of the 

mathematical model or systematic errors of the numerical scheme. To quantify the effect of errors on the 
proposed process more precisely, we assume here that the error is similar to white noise of amplitude 
proportional to the quantity of interest y. The calculation process was repeated for different values of maximum 
noise: 0.2, 0.5, 1, 2 and 4%. Figure 9 shows the results of step 2.1 and 3.3 for these different levels. Figure 11a) 
was plotted with 10 runs for each noise level. Figure 11b) quantifies the maximum error found between the 
expression and the simulation results (with noise) or the pure analytical formula (without noise). From these 
results we can conclude that: 

• Step 3 (regression), with its two regression sub-steps, is quite robust to noise and even decreases the 
influence of noises. 



 - 13/25 - 

• Step 2.1 (determination of the shape of the coefficient k) is more sensitive to noise but allows the form 
of the function to be distinguished for noise levels less than + / - 2%. The FEM simulations should 
therefore have a meshing quality sufficient to allow for this step. 

 
a) Effect of noise on step 2.1 

 
b) Effect of noise on step 3 

 
Figure 11 – Noise effect on indicator map and final regression quality 

 
 
3.4. Comparison with other analysis and regression methods 

Reference [16] gives a classification of the different approximation techniques according to 3 criteria: the 
type of DoE, the choice of model and the model fitting approach. Here, the proposed meta-modelling approach is 
based on: 

• a full factorial DoE with logarithmic distribution of levels distribution for the main dimension L 
parameter;  
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• a model choice based on scaling laws and power laws;  

• a fitting approach using mainly linear and non-linear least square regression based on a projection of the 
data on scaling law coefficients. 

Classic regression procedures generally start with a screening step mainly focusing on selection of the input 
parameters. The process assumes that this selection has been performed thanks to a previous sensitivity analysis 
or the designer’s knowledge. Preliminary analysis, here, is devoted to determining the exact form of the model. 
Indicators and a graphical synthesis, similar to the Morris method [30], have been proposed for this purpose.  

 Compared to the classical meta-modeling approaches (polynomial, kriging, radial basis functions, etc) the 
advantage of the method proposed here lies mainly in its physical justification, demonstrated here by using the 
Buckingham theorem. A recent review about dimensional analysis and pi-theorem illustrated by an example of 
application to the modeling of a Flexible Manufacturing System can be found in [21]. Some other authors [31] 
[32] [33] have also used this theorem with the main objective of reducing the number of parameters to be 
handled by polynomial regressions. Other authors [34] have used dimensional analysis to determine constraints 
on power law regressions. Their approach, like other approaches solely based on dimensional analysis,  however 
requires handling of all the parameters representing the dimensions and physical properties. Moreover, the 
scaling laws employed are pure power laws without the possibility of using other functions to express multipliers 
or power coefficients.  

The approach proposed here does not directly use dimensional analysis but the particular form of the 
functions representing the physical characteristics of a component subjected to a change in size in the case of 
particular similarities. Previous studies [35] [20] on similarity have also worked on the development of models 
valid in the case of non-similarities (called distored models) but have not been applied to numerical simulations 
within a general framework. The possibility of keeping  constant the ratios of some of the dimensions reduces 
the complexity of representation of the detailed design models. A compact model is then obtained with only the 
relevant design parameters for the design of mechatronic layer without having to handle all the parameters of the 
detailed design. 

4. CASE STUDIES 

The objective here is to illustrate the proposed regression process on mechatronic components from different 
domains. The main focus is placed on the illustration of the regression process and not to on the complete design 
study of a system. Reference [10] presents a methodology for the optimal preliminary design of electro-
mechanical actuators using a model-based approach with different types of models (estimation, simulation, 
evaluation and meta-model). 

The components considered are:  

• an electromagnetic limited angle actuator [36], as shown in Figure 13a from [37], which illustrates 
the thermal and electromagnetic domains; 

• a flexural hinge composed of thin blades, as shown in Figure 13b from [38], which illustrates the 
structural and mechanical domains. 

The regression process could be applied to other types of motor, such as a brushless motor or a voice coil 
actuator [39], other flexural hinge [39] [38] or any other physical mechatronic components. These 2 components 
associated with a mirror, a position sensor and control electronic could be used to build up a scanning 
mechanism [40]. The overall design of such mechatronic systems requires consideration of the various 
constraints that have a direct impact on the size of the components. These design constraints may come from 
different types of specifications: 

• Performance specifications, particularly in terms of motion range, accuracy or bandwidth: the 
motion is linked to the rotational stiffness of the hinge and to the torque capability of the LAT 
actuator; the accuracy and the bandwidth are linked with resonance modes, which depend on the 
inertia and stiffness of components. 

• Endurance specifications, particularly in terms of life time and resistance to extreme stresses: the 
flexural link should be used at stress levels consistent with these specifications. 

These two points are influenced by the environmental mechanical stress (vibration, acceleration) or thermal 
stress (a function of the type of heat transfer and the ambient temperature). Embedded applications add 
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constraints of integration (size, volume or mass). All these constraints can be represented (Figure 12) by design 
scenarios such as: 

a) Thermal and mechanical mission profiles: these mission profiles are representative of the movement 
of the mirror during scanning. These time simulations can be used to calculate the average 
electromagnetic torque developed  by the LAT. One can note that there exists a coupling of this 
torque with the rotational stiffness of flexural hinges. 

b) Stability analysis: the transfer function of the overall multiphysic system can be used to estimate the 
closed loop performance especially in terms of bandwidth and stability margins. The indicators will 
be significantly influenced by the rotational resonance modes. 

c) Vibratory environment: transient or frequential profiles for acceleration at the support can be used to 
represent the aggressive vibratory environment. The transverse or longitudinal modes of resonance 
are all influenced by the transverse or longitudinal stiffness of the flexible pivots and the mass of 
components. 

 

Figure 12 – Estimation models : interface between mechatronic and domain specific layers 
 

To manage all these constraints and iterate quickly between mechatronic and domain specific layers during 
preliminary sizing, it may be interesting to have estimation models expressing, for example: 

• for the LAT actuator, torque or inertia depending on the dimensions. 

• for the flexure hinge, stiffness (in translation or in rotation), maximal stress depending on the 
dimensions. 

The following paragraphs show how these models can be obtained using the regression process presented in 
this article. The results of scaling-law-based metamodels are compared to polynomial approximations [24] or 
Radial Basis Functions (RBF) [41] and kriging [27].  
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a) Limited Angle Torque (LAT) actuator (source : [37]): thermal and electromagnetic domains 

 

b) Flexural hinge (source [38]): mechanical domain 

Figure 13 – Mechatronics component from different domains 
 

4.1. Limited angle actuator study 

The objective here was to illustrate how it is possible to link the continuous torque T to the main dimensions, 
the length, L, and the diameter, d, of the actuator. All radial dimensions were geometrically similar to d. With 
such a choice, one has two design parameters influencing significantly the torque and inertia of the actuator, two 
main characteristics for the system level design, without representing all dimensional parameters used during the 
component level design.   The desired equation thus took the following form: 

Q = �(�, ��) = �(��)��(`K) with �� = JG (26) 

 The design code, to which the regressions were applied, was set up using two 2D finite element simulations 
(Figure 14) with FEMM software [42]. A first thermal simulation found the permissible current density J for 
static continuous operation. The thermal environment was modeled by convective heat transfer between the 
periphery of the actuator and the environment. A second electromagnetic simulation used the previously 
calculated current density in order to obtain the continuous torque. 

Several cases illustrate the regression method: 

• The winding was moulded with or without a potting resin that ensured better conductive thermal 
transfer. This point addressed the effect of assumption c. (subsection 3.1). An equivalent thermal 
conductivity of copper and resin or air was deduced from a homogenization of the winding [43] 
[44]. 

• Two DoE for different ranges were used to test the robustness and validity of the regressions 
obtained outside their original design. The two DoE had 4 levels for L and 6 levels for π1 which led 
to 24 experiments. The difference between the DoE came from their range: for L, [20;60] mm for 
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the first DoE and [10;100] mm for the second, and for π1, [0.5;2.5] for the first DoE and [0.1;5] for 
the second.  

 

 
a) Thermal simulation 

 

 
b) Electromagnetic simulation 

Figure 14 – 2D finite element simulations of the LAT actuator 
 

Figure 15 illustrates the step 2.1 of the process for the cases of winding with or without potting. In the case of 
winding with potting, the power coefficient varies between 3.42 and 3.49. Without potting, this coefficient varies 
between 3.23 and 3.48. The 2 cases have a power coefficient varying between 3.5 (demonstrated in section 3.2), 
characteristic of purely convective thermal transfer, and 3, characteristic of a purely conductive thermal transfer. 
A coil without potting is naturally more influenced by the conductive effect. For both cases, it was interesting 
not to consider parameter a(��) as a constant. 

 

a) With potting resin 
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b) Without potting resin 

Figure 15 – Effect of conductive thermal transfer on the power coefficient 
 

Next, the proposed approach was applied to a winding with potting. The form of the scaling-law-based 
metamodel (SLAWMM) was: 

Q = �(��)��(`K) = o���p
�pq�pX`K�pr`KF  (27) 
It was compared to three other approximations depending on the two design variables L and d: a 3rd order 

polynomial response surface (RSM) [24], a Gaussian Radial Basis Function (RBF) [41] and a kriging 
approximation [26]. The polynomial functions were built with the same DoE as the scaling-law-based 
metamodels. The RBF and kriging approximations were built with a specific DoE: a latin hypercube (LHC) with 
the same range and number of experiments as the scaling-law-based metamodels, in this case 24. The 
polynomial regression, RBF and kriging functions were obtained with L and d parameters and not with L and π1 
which would not have been such a good choice. The least square regression for polynomial functions has 
minimized the relative error and not the absolute error in order to avoid gross errors on small actuators. The 
Gaussian width factor of RBF was chosen by minimizing a cross validation error [41]. The kriging 
approximation used a quadratic regression model and a Gaussian correlation function.  

Figure 16 illustrates step 3.3, the model quality check, of the regression process. These validations were 
performed by comparing the 48 simulated results, 24 for the SLAWMM DoE and 24 for the LHC DoE, with the 
estimated results using each metamodel. Each approximation was thus tested with 24 configurations of the initial 
DoE that served for their construction and 24 other configurations within the same range. Note that the DoE 
using range 2 was much wider than when using range 1, leading to four additional orders of magnitude of 
variations on the output quantity that was being approximated. In all cases (range 1 and range 2), the scaling-
law-based metamodels (SLAWMM) showed good prediction qualities: less than 2 and 10% of maximum error 
for the range 1 (Figure 16a) and  range 2  (Figure 16b) regression.  The expressions obtained for equation (18) 
differ slightly between the 2 ranges (see figure captions). Polynomial approximations, on the other hand, even 
with twice number of coefficients to be determined, showed a larger maximum error : 3% (Figure 16a) and 79% 
(Figure 16b) for range 1 and 2 respectively. For range 2, the maximum error was 18.5 % at the points of the DoE 
used for polynomial response surface construction but increases to 79% with the 24 configurations of the DoE 
that did not serve for its construction (predictive capability). Radial basis functions and kriging led to even worse 
results. These two metamodels had difficulty in coping with the very wide range of variation of the output 
quantity, which led, in particular to large errors for very small values. 
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When the predictive capability of metamodels was assessed by testing them at points well outside their 
construction bounds, regression-based scaling laws remained valid (less than 15% error in Figure 16c). Gaussian 
RBF and kriging functions, with their high flexibility enabling a multiple peaks surface response to be 
represented, were at a disadvantage in this case of fairly monotonous surfaces: they could give very poor results 
at points involving large extrapolation.  All three classic regression techniques (RSM, RBF and kriging) gave 
very poor results, even negative torque for small actuators, when they were used well outside the points that 
served for their construction (equations of range 1 used into range 2 as illustrated in Figure 16c).  

 Q = �(��)��(`K) = 1.29.10Ns��
.Pmt�Z.YusNO.O
�`K�O.OOZ`KF  (T in N.m, L in mm) 
a) Range 1 : L ∈ [20;60] mm and π1 ∈ [0.5;2.5] 

 

 Q = �(��)��(`K) = 1.35.10Ns��
.Ptm�Z.YstNO.O�t`K�O.OO
`KF   (T in N.m, L in mm) 

b) Range 2 : L ∈ [10;100] mm and π1 ∈ [0.1;5] 
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c) Equations from Range 1 used for Range 2 

Figure 16 – Quality check of the regressions for different range of study 
 

Power law forms are thus interesting as “structural components” for the specific metamodels of sizing 
problems where geometrical dimensions can have a wide range of variation. This robustness property can be 
important when conducting explorative design studies in areas not originally planned. As the regression form has 
a physical basis, some coefficients can be be fixed after a first complete study.  For example, the c3 coefficient of 
equation (27) can be fixed at 3.5 (see section 3.2) and future FEM simulations with different configurations have 
to find just  4 coefficients (c1, c2, c4 and c5) with a reduced size DOE. 

 

4.2. Flexural hinge study  

The objective here was to illustrate how it is possible to link the rotational stiffness, Kr, to the main 
dimensions: L the length, d the diameter, e the thickness, and r the blade root radius (Figure 17a) of a flexural 
hinge composed of 2 thin blades of titanium alloy. The desired equation thus took the following form: vS = �(-, ��, �
, �Z) = �(��, �
, �Z)-�(`K,`F,`q)  

with �� = SJ, �
 = wJ and �Z = GJ 

(28) 

 The design code, to which the regressions were applied, is set up using a 3D finite element simulation 
(Figure 17b) with ANSYS software [45]. This static analysis gave the angular deflection for a given torque on 
the hinge, which, by ratio, gave the rotational stiffness. The meta-modelling process was applied to this data Kr 
but could also have been applied to other quantities of interest for the design, such as the stress-to-deflection 
ratio or the radial stiffness. This regression problem involves more parameters than the previous application 
example and allows us to illustrate the interest of the multiplication coefficient form analysis (step 2.1 of the 
process given in Figure 5).  
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a) Hinge geometry 

 

b) Flexural deformations of the hinge 

Figure 17 – Geometry of the flexible hinge (2 blades) 
 

The DoE used had 4 levels for L and 3 levels for each πi parameters. The range studied was: d ∈  [5;50] mm,  
π1 ∈ [0.05;0.015], π2 ∈ [0.01;0.04] and π3 ∈ [0.5;2]. As illustrated by the result of step 2.1 (Figure 18), the 
power coefficient a was constant and equal to 3 for any πi parameters configurations. Thus, only one physical 
phenomenon drove the evolution of the rotational stiffness: the elasticity of the material. Figure 19, the result of 
step 2.1, shows that the influence of π2 and π3 parameters can be modeled by power laws expressions.  The form 
of the π1 function cannot be a power law and was modeled here by a polynomial response surface here. The form 
of the scaling-law-based metamodel was be thus: vS = (oO + o��� + o
��
)�
pZ�ZpY-Z (29) 

The regressions results were (with Kr in N.m/rad and d in m) : vS = (1.93.10�O + 3.10.10�O�� + 2.30.10����
)�

.mt�Z�.OP-Z    (30) 
for the first one, where regression was carried out with a and k data (see step 3 section 3.2.3). vS = (1.93.10�O + 3.10.10
�� + 2.30.10����
)�
Z�Z�-Z  (31) 
for the second one, carried out on the y data with a least squares fit (see step 3 section 3.2.3).  

For the last regression, powers of π2 and π3 parameters were set to 3 and 1 respectively. Equation (31) 
presents a simple form that can be handled and implemented in different calculation tools. As shown in Figure 
20, the relative error is controlled for a wide range of results with a maximum error of less than 15%. These 
results are compared to a 3rd order polynomial function here, which was the metamodel that performed the least 
poorly of the three alternatives (polynomial response surface, radial basis function, kriging) in the previous 
application example. The expression of the polynomial response surface required the determination of a large 
number of parameters: 26 parameters compared to 5 for the proposed form, and showed a maximum error of 
21%. The scaling-law-based metamodel allows light and compact models to be obtained, which can be easily 
integrated into other design algorithms.   
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Figure 18 – Scaling laws with geometrical similarity 

 
 
 

 
Figure 19 – Multiplication coefficient form analysis 
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Figure 20 – Quality check of the regressions 

 

5. CONCLUSION  

The design of mechatronic systems requires estimation models to make the link between the design details of 
each component and the overall design of the system. The article has shown that scaling laws possess interesting 
properties for performing this role during the sizing tasks. A demonstration of the criteria for obtaining these 
scaling laws with the Buckingham theorem highlighted the assumptions required for this work. Two of these 
assumptions, geometric similarity and the uniqueness of the design criteria, limit the generality of their use. A 
method was proposed to overcome these limitations and generalize the form of scaling laws. The process of 
regression adapted to this form was described and validated on various examples. The regressions obtained were 
compared to classical metamodels and showed the interest of the physical basis of scaling-law-based 
metamodels for preliminary sizing of mechatronic components: their shape is easy to handle while remaining 
valid over a wide range of sizes, even for prediction or extrapolation purposes. The proposed form of regression 
can be applied to various fields encountered in mechatronic systems and is illustrated here by simulations on 
thermal, electromagnetic and mechanical examples. 
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