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Scaling-law-based metamodels for the sizing of meatronic

systems
Marc Budinget, Jean-Charles Passieux, Christian Gogu, Amine Fraj

Université de Toulouse, INSA/UPS, Institut Clémader, Toulouse, 31077, France.

ABSTRACT

This paper presents a new metamodel form and adsdctonstruction procedure adapted to the sizasid
of mechatronics systems. This method of meta-nmgdees scaling laws to extract compact forms sfgie
models from local numerical simulations (FEM). Camga to traditional metamodels (polynomial response
surfaces, kriging radial basis function) the scgliaw-based metamodels have the advantage of 4, ligh
compact form and good predictive accuracy over dewiange of the design variables (several orders of
magnitude). The general regression process is fisgilained and then illustrated on different exagspla
purely numerical test function, a limited angleattemagnetic actuator and a flexible mechanicalgan

Keywords: metamodels, surrogate modelling, scalags, Buckingham theorem, components sizing,
preliminary/conceptual design.

NOTATION

CAD Computer Aided Design

FEM Finite Element Method

3D Three-dimensional

LAT Limited Angle Torque

DoE Design of Experiments

LHC Latin HyperCube

SLAWMM Scaling-LAW-based MetaModels
std Standard deviation of a variable
mean Mean value of a variable

1. INTRODUCTION
A mechatronic system [1] [2] expands the capabditof conventional mechanical systems through the
integration of different technological areas (Fgyd) around:

* a power transmission part, which is a combinatibrcamponents from mechanical, electrical,
power electronics or fluid power technologies;

e an information processing part, which is a combamabf electronics, instrumentation, automatic,
signal processing, and information technologies.

Multi-functional and multi-physic
system

ll Actuator

Controller(s)

Figure 1 —Mechatronic system (based on referef8j¢

1 Corresponding author: Tel.: (+33) 561559960; Fa83) 561559950; E-mail: marc.budinger@insa-toséofr
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The references [3] and [4] highlight that the dasifj such multi-domain systems require differendelong
layers as represented Figure 2:

* A mechatronic layer, to take into account the figral and physical coupling between components.
This level of modeling is usually done using OD-bhibdels [3] also called lumped parameter
models represented by algebraic equations, ordiddfgrential equations (ODE) or differential
algebraic equations (DAE) [5].

» A specific domain layer, to describe the perforngarinits and parameters necessary in the
previous layer, based on a geometric representalioa specific domain phenomena are generally
represented through partial differential equati@®i3E). This level of modeling can be achieved, for
simplified geometries using analytical models ar tomplex 2D and 3D geometries, using
numerical approximations like finite element metig&M) for instance.
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Figure 2 —Hierarchical design models (based on referefig

The design of the power part with a system irgttegis point of view should allow to optimally sized
specify the components of multiple technologiesifgracting together. This system level desigstinict of
component design, needs to represent in the mechatayer the key informations of the specific domlayer
with dedicated models [7] [8] [9T-he latter enables the designer to take multipggmeconstraints into account
easily. They are referred to as "estimation modielshis paper. They directly and explicitly linkfew primary
characteristics, such as overall dimensions of @orapts, to the secondary characteristics needetidosizing
[9] and optimization [10]. The capacities requitddhese estimation models are: to present a foahis simple
to handle and to implement in different calculationls, to lend themselves to easy analytical mdatpns,
and to be reusable in an area slightly differeotnfthe one where they were initially employed. atisfy these
constraints, simplified analytical models are oftesed [11] [12]. Among them, scaling laws have pobv
effective to represent a physical phenomenon ovee wanges of variation [13] [8]. However, thesedwsis are
valid under certain conditions, among which one remtion geometry and material similarities, anijueness
of the driving physical phenomenon. For the systasigner the models should be as predictive ashpess
Detailed finite element models, able to precisebdict the physical phenomena are still too timestoning in
such a context. Despite a recent thrust of worknalel order reduction [14] [15], the computationaét of
finite element models remains prohibitive in thelpninary design phase. The use of metamodellingrteues
[16] [17] [18] is thus interesting for this purpoda this paper, we propose an enhanced poweryp iihodel
based on metamodels to represent the models sptwfic domain layer (Figure 2) into the mechaitcdayer.

The second section of this paper will show therggtof scaling laws to establish the estimatiordet®
needed by the system designer. In the third seciometamodeling method based on scaling laws bill
proposed to extract simple, global expressionsstfmation models from local numerical simulatiof<EM).
The regression process is first illustrated withmathematical function and then with two examples of
mechatronic components from different domains: raitéid-angle electromagnetic actuator and a flexible
mechanical hinge. Noise effects and comparisorts eléssical metamodelling techniques are illustrdéteough
these examples.
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2. ESTIMATION MODELS WITH SCALING LAWS

2.1. Scaling laws and Buckingham theorem

Scaling laws based on dimensional analysis, alBedcaimilarity laws or allometric models, have heery
successfully used throughout the past decade®fang scientific and engineering problems andgoesenting
results in a compact form. In the design of meamtrsystems scaling laws [8] [13], allow estimatinodels to
be obtained from a single reference component mguklree main modeling assumptions:

a. Material similarity: all material and physical perties are assumed to be identical to those of the
component as the reference;

b. Geometric similarity: the ratio of all the lengtbthe component under consideration to all thgtes
of the reference component is constant;

c. Unigueness of design driver: only one main domindmntsical phenomenon drives the evolution of the
secondary characteristyc

The mathematical form of scaling laws is a power. la

y = kL* (1)
With y the secondary characteristic to be estimdtethe main dimension of the component, &nanda
constants. For simplicity of notation, in this el k means a constant coefficient which may have differ
numerical values in the different equations.

This form and the conditions for obtaining equatid) are demonstrated here using the Buckingham
theorem [19] [20] [21]. An estimation model see&sdentify a relationship betwe@+n+m parameters:

(2
fly L,d;,dy, ..., dy, Py s P ] =0

1+n m

with:
« 1 parameter corresponding to the secondary chaistitg to be estimated,;
e 1+n parameters characterizing the geometrical dimessi@ndd,; ;
e mparameters characterizing physical and mater@qniesp; ;

Depending on the number of physical unitée.g. m, kg, s, etc.) involveid the problemthis relationship
can be rewritten using dimensionless parameters

3)
f' (ny, T4, T2y ooy Ty, Ty oees T[pm,> =0
n m'
where:

Ty, = yL% 1_[ p;" )
d; 5
- ©)

. a;
T[pi = LaLpl npjj (6)

The numbem’, usually smaller tham, depends on the number of physical unitas expressed by the
Buckingham theorem:

m=1+m—u @)

If only one main simple physical phenomenon dritles evolution of the secondary characteristiche
numberm’ is often equal to zero. th'is not equal to zero, the remaining dimensiontesabers can generally
be expressed through ratios of material propewi#s similar units. Thesen’ dimensionless number thus do not
depend ork. With this condition and the first two assumpti@nsand b., ther and7 dimensionless numbers
are constant and it follows that:

T, = yL% Hpiai = constant ®
which gives relation (1) if we assume the mateigbhysical propertieg, to be constant during the sizing.
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2.2. Examples of scaling laws

To illustrate the construction and use of such |Jaws examples will be given here. These exampliesess
conventional components of mechatronic systemshbegs motors and bearings. We assume here thitsiine
design criterion for the motor is the winding temgiare. The dominant thermal phenomenon will beiassl to
be convective. The bearings are for their partghexi to withstand a maximum mechanical stress.

For the brushless motors, equations (2), (3) aht€tome the following:

¢ For thermal aspects: the current dendityan be linked to the dimensions through

©)
f ],L,dl,dz,...,dn,p,e,h =0
1+n m
which, according to the Buckingham theorem, leads t (10)
2
f' %,%,%, dL—" = 0 wherem'=0
n
and (11
J = kL%
« For magnetic aspects : the torduean be linked to dimensions and current densityuth
12)
fl1,Ld,d,y, ... d,,J,B | =0
1+n m
which, according to the Buckingham theorem, leads t (13)
f' ]BT”,%,dL—Z, dT" = 0 wherem'=0
n
and (14)
T =kjL*

with : J the current density, the length of the motod, other geometrical dimensiongthe resistivity of the
copper,8 the maximal temperature rise for the winding lagan, h the convection coefficienB, the remanent
induction of the permanent magnet, dnthe electromagnetic torque.

Combining these two aspects provides an estimai@@iie depending on motor size:

T = kL*® (15)
The assumptions a. and b. allow the motor weighietestimated:
M = kL? = kT3/35 (16)
With the same approach, the weight of the bearamgbe estimated from their load-bearing capaity
C = kL? and M = kL? = kC3/? (7)

More details and examples of the development othslasvs for mechanical and electromechanical
components are given in [8]. Figure 3 and Figureofnpare these relationships to data from industrial
catalogues, and show that scaling laws can prayadel fits for the quantities of interest of suclmgpmnents
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Figure 4 —Bearing masses according to the load capacity.

2.3. Interests and limitations of scaling laws

Scaling laws have assets that make them attrafctivibe design of mechatronic systems [22] [23] [Rjeir
simple form makes them easy to manipulate and muséoas they require only one reference to detesritie
multiplier coefficientk, the power coefficien being determined by the physical phenomena. Tl ta
monotonous progression valid over a wide rangezefss(several orders of magnitude) which avoidsrigie of
possible mathematical aberrations of metamodeld ogtside their construction bounds.

However they have some limitations. Although thmikirity of the materials can be easily verified
given technology, the geometric similarity is netassarily verified or sought. For motors (Figuyetidis point
mainly explains the estimation errors of scalingdan Figure 3. Manufacturers have a tendency #otlus same
motor diameter (i.e. the same iron sheet) for diffié lengths and torques. Obtaining a scaling lse @equires a
dominant physical phenomenon. For example, in te® of the electric motor, if the conductive heanhsfer
phenomenon cannot be neglected, relations (9) Ed)dshould take the form:

(18)
flJlLdidy....dy,p,60,h,,2,,..]=0
1+n m
which gives (19)
| pIPL dy dp dn A1 A _
f ho ‘T’T’."’T‘E‘E’". = 0
n m/
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with A; the thermal conductivities of the various matearia the motor.

In this case, either a global scaling law would éendween impossible to establish or its domain oiditsl
would have been smaller.

3. SCALING LAWS BASED ON REGRESSION

The objective of this section is to show how ifpisssible to increase the use and validity of sgallaws
through appropriate regression techniques as peolmg our method.

3.1. Form of models

To maintain the physical meaning and benefits alisg laws, the regression model will be basedtmn t
power form (1). However, to eliminate assumptions(deometric similarity) and c. (uniqueness of desi
driver), estimation models of the following, morengral form will be sought:

Y = fLmy, Ty, ) = k(3,1 . )LD with = 2L (20)
where :
» yisthe parameter to be estimated,;
» Lis the main dimension of the system;
» d; are the secondary dimensions of the system;

» JT are the dimensionless numbers representative wf factors of the system.

With geometrical similarity, the form factors arenstant 7=C*) and the form (20) simplifies into the
classic scaling law form (1). The desired form afdal (20) lends itself to direct regression lessilgahan
polynomial response surfaces [24], radial basistfons [16] [25], or kriging [26] [27] directly othe parameter
y. The objective of the coming sections is to giveapproach to determine the shapes of functidms, ,, ...)
anda(my, m,, ...) representative of multiplier and power coefficent

3.2. Regression process

Figure 3 describes the overall meta-modelling psegaroposed to carry out regressions of form (2B
three main steps of the process are described mhovithe details of each step are described irfiolleving
subsections.

» Step 1 — data generatiothe objective is first to generate the combinatiofivariabled. and 7 to be
simulated. With deterministic computer experimetitgse sample points should be chosen to fill the
design space. Once the DoE is defined, a callds thade to the finite element codes, or any other
sizing code, to obtain the desired dstaThe datay are then projected according to form (20) by
calculating the coefficientsanda for each configuratiomy of form factor parameters.

» Step 2 - study of the general shape of the functiom evolution of each coefficiektanda is then
analysed to determine the overall shape to be iegpos function (20) through the choice of the forms
of functionsk(m,, ;, ...) and a(my, 4, ... ). These forms of functions cannot be initially ased and
depend on each problem.

» Step 3 - building of the metamoddlased on the function forms selected in the previstep, a
regression process is applied to simulation dataomparison of the results predicted using Eq. (20)
with the initial datay can then validate the quality of these regressions

Even though the model form of Eq. (20) cannot bgressed by linear combination of basis functionmes
of its characteristics are interesting and will sed for the proposed meta-modeling process. Thheniog
subsections describe the choices made here forofdlcbse steps according to these characteristics.
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Figure 5 —Meta-modeling process

3.2.1. Step 1 - Data generation

The range of variation for the parameleis potentially very large and is potentially mustmaller for the
shape parameterg. The proposed process will use a DoE (design pkements) which is logarithmically
distributed onn_ levels for the parametér and linearly distributed on, levels for thep parametersz. This
simple DoE enables the design space to be fillais DoE (step 1.1), mainly similar to a full fagairdesign,
requires at least three levels for each parameterder to calculate (steps 1.3) and analyse (epand 2.2)
coefficientsk anda.

According to this DOE, calls are then made (st&) th the finite element codes, or any other siziode, to
obtain the desired daya The final number of datais n.. n,;. The conventional regression techniques use these
simulation data directly. Here in order to adap ttata to form (20) and as a power law can be septed
linearly in logarithmic-scale graphs, the projentaf the data onto the coefficienta andk (step 1.3 of Figure
5) is done in a logarithmic plane plotting thaccording td_ data for each combinations of the form factgrs
Figure 6 represents the graphs where, for each icatitin of coefficientsr., the evolution ofy according td-
follows a power law and is therefore described Isyraight line in a logarithmic plane. The algomittomputes
the slopes of the segments between two consecutive valuésawid returns the mean average slopan(a)
for each combinations of. The multiplier coefficienk is calculated for each curve by minimizing thestea
square error for the average slope. In order talctteat the data are well fitted by power lawspaliy criterion
is also calculated. This criterion expressed byrétationstd(a)/mean(a)s usually very close to zero and shows
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that the problem is well expressed by using a sgdaw for a given configuration of form factorsftéy this
step, then,.n,? valuesy are transformed into,? values vectors for all coefficienssandk.

log(») _Adog)
_‘ A(lOg(L)) (7[1,1/' 7[2,1)
I N o

i

f f T
L, L, L; L, log(L)

Figure 6 —Power law coefficients calculation

3.2.2.Step 2 — Metamodel form definition

The objective of this step is to determine the fattmt can be given to functions(r,,m,,...) and
k(my, 5, .. ).

The power coefficienti(rr,, 5, ...) of scaling laws is constant if the physical pheeaon that drives the
design of the system does not depend on the foctorasz. If the physical phenomenon switches from one to
another (e.g. convection to conduction for thertnahsfer), the power coefficient is a function tichanges
between 2 extreme values. If the switch betweenwloephysical phenomena is progressive (often tee dor
components of mechatronics systems) then the sufag, ,, ...) will be characterized by a small number of
peaks and valleys and can potentially be well axprated by a polynomial function. It remains to etetine
the exact form of the polynomial function. Sinckthé parameterg do not usually affect the power coefficient
it is useful to conduct a sensitivity analysis listpoint. Step 2.2 thus corresponds to a sertgitanalysis,
which is conducted here by performing a linear esgion after normalization between -1 and +1 c&ipaters
77. The analysis of the regression coefficients letmdshe quantification of the average influenceeafch
parameter. Only relevant parameters will be comsiiién the final expression of(m,,,, ...). Note that any
other technique of sensitivity analysis could bedisere (e.g. ANOVA [28] or Sobol’s indices [29]).

The multiplication coefficienk(m,, 7,, ...) of scaling laws can often take the form of produmft functions,
some of which may also be expressed in the formmoefer laws. Step 2.1 (Figure 5) analyses thesemgptdy
using a logarithmic plane again as the functios tan be decomposed into products are represeptearallel
curves in logarithmic-scale graphs (Figure 7a). pbeer laws are represented by straight lines (Eigb). If:

k(my, 5, ...) = f(m)g(m,, ...) oOr log(k(nl,nz, )) = log(f(nl)) + log(g(my, ...)) (21)

the evolution of values ok(my,7,,...), a function of 7z for different 7.4 configurations, can give 3
possibilities: factorizable (Figure 7a), factorilakvith a power law (Figure 7b), or non-factorizalfFigure 7c).
This type of analysis can be carried out for eaatiable 77 and quantified by indicators describing:

» the possibility of factorizingk(m,,m,,...) by a function of77. To assess this possibility we
introduce the indicator defined bymax(E)-min(E))/(max(log(k)-min(log(k)vhereE quantifies the
difference between two curves for different valeés. If the difference between two curves is
constant, this indicator is equal to zero and oinit the possibility of factorization.

» the opportunity of expressing this function by awpo law. To assess this, we introduce the
indicator fax(s)-min(s))/|(mean(s)lyheres quantifies the slope of a curve. If the slopedestant,
the indicator is equal to zero and indicates a pdae.

These criteria can be condensed graphically omeplas illustrated in Figure 7d, to quickly asskesform
that the functiork (r,, 5, ... ) should have.
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max (s) — min(s)

|[mean(s)|
Any Figure 5a Figure 5¢
function | | * *
Power Figure 5b |
law &
\“""“, ________ P I ) max(E) — min(E)
Factorizable Non factorizable max (log(k)) — min(log(k))

d) Indicator map
Figure 7 —Multiplication coefficient form analysis

3.2.3.Step 3 — Metamodel building

The last step aims to build the metamodels frona dggnerated in step 1 and according to the forms of
functions defined in step 2. This process of regjogsis done in two sub-steps:

» The first uses the dataandk (outputs of step 1.3, Figure 5): a least squpobmomial regression,
using the most influential parameters, is direpttyformed on the datato obtain an approximation
for a(my,m,, ...). Depending on the decomposition kfr,, 7, ... ) derived from the indicators of
step 2.1 (Figure 7d), the regression is performee@ach of the factorizable functions. Power laws
are processed first by linear regression in logarit planes. Functions that cannot be expressed by
power laws are approximated by polynomial functioamg least squares regression.

* The second uses y data directly (outputs of st2pFigure 5): this nonlinear regression is inideati
with results of the first regression and minimizekative errors thanks to thesgnonl i n function
of Matlab.

Finally a comparison of the two regression fundi@ith respect to the initial dayacan validate the quality
of these regressions.

3.3. Example with a test function

A purely numerical example will help to illustrated detail the various steps of the process dextiiitp
Section 4.2. This test function, which uses thenfof equation (20), is:

y = n7 (4 + Smymg)mi 120 (22)

A numerical uniformly distributed noise can be atltey data in order to test the robustness of the psoces
to the possible computer noise of design codesoovatiations due to neglected phenomena. For tisé fi
numerical application, this noise is set to +/- &84 data. The different stages of regression, shfvam Figure
8 to Figure 11, are:

« Step 1.1, the generation of a design of experimdntwith 4 levels between 1 and “l@nd each
parameter/T with 3 levels between respectively .5 and 2, 1 80d2 and 7, 1 and 10. The number of
simulations and datgis 4.3=324.

e Step 1.3, they data projection: The straight lines (cf. Figurei®ply the power law nature of the
relationship. For the example of Figure 8, the slajs equal to 3. The deviation from a power law is
expressed by a quality indicatstd(a)/mean(aas explained in 3.2.1, which has the value of %h2¢hd

also appears in Figure ®vithout the parametdr the remaining design of experiments now Ha83
values for each parameteandk.
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Step 2, a study of the general shape of the fumctidgure 9 shows the analysis (step 2.1) of the
possible form for the functiok(m,, m,, ...). From indicators presented in Figure 7 and secti@, it
follows that the parameters; and 7z are suitable for factorization using power lawsgure 10
illustrates the sensitivity analysis (step 2.2&germine parameters influencing the evolutionhefa
coefficient. Only the parametep has to be kept here. We thus select an equatidntie following
form:

y = k(my, my, .. )LOT0T2) = k' (10, 7r3)mry Py * L4(T2) (23)
with k'(m,, ;) anda(m,) second order polynomial functions.
Step 3, the construction of the metamodel basedupations forms selected in the previous step:
functions k'(m,, m3) and a(m,) will be approximated by polynomial function. Thiest regression
allows functionsk(m,, 7, ... ) anda(my, 75, ... ) to be obtained independently by a log plane stiioly (
the power law) or linear regression (for the offoction). This first regression (step 3.1) gives :

y = (4.84 — 0.147, — 0.37 755 + 5.01m,m; + 0.0172 + 0.0372) 770203 L (2+0-1072) (24)
The second non-linear regression (step 3.2) wordtirectly ony and 77 data enables us to find :
y = (3.988 + 0.0027, + 0.00275 + 5.001m,m3)my i L(2+0-107m2) (25)

For the 2 regressions, the mean square error naasnihe relative and not the absolute errors. The
regression quality check shows that less than 1&grof is achieved with equation (25). Without ®gis
exact relationship is found directly with the fiestd second regression.

20 Coefficients calculation

10 T T T
The mean slope and the
coefficient a of this curve is 3 A
with less than 0.24 % of error =
1051 (std(a)/mean(a)) Ny
2 Z
S 1010 Z
r 7 0
? @300 (0.24 %)
/’/’“/7, —
__ | 34=81
10° & curves 4
10° L Y| L L
10° 10’ 10° 10° 10°

Log(L)
Figure 8 —Power law coefficients calculation for the testdtion
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Power coefficient analyis (Pl normalized between -1 and +1)

a(my, my, ...) = Ag + A1y + Aymy + Asmg + Agmy

Cste
2.5 /

0.5 q
0 PI3 P14
-0.5 I L L I I
1 2 3 4 5

Figure 10 -Sensitivity analysis for the power coefficient ahaf test function

Even though numerical simulations are determinisérors may exist due to simplifications of the
mathematical model or systematic errors of the migaescheme. To quantify the effect of errors te t
proposed process more precisely, we assume hetethtbaerror is similar to white noise of amplitude
proportional to the quantity of interegtThe calculation process was repeated for diffevatues of maximum
noise: 0.2, 0.5, 1, 2 and 4%. Figure 9 shows thelt®of step 2.1 and 3.3 for these different IgvElgure 11a)
was plotted with 10 runs for each noise level. Feglilb) quantifies the maximum error found betwéen
expression and the simulation results (with noejhe pure analytical formula (without noise). frehese
results we can conclude that:

e Step 3 (regression), with its two regression sepstis quite robust to noise and even decreases th
influence of noises.
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« Step 2.1 (determination of the shape of the cdeffick) is more sensitive to noise but allows therf
of the function to be distinguished for noise lesvldss than + / - 2%. The FEM simulations should

therefore have a meshing quality sufficient towalfor this step.

Multiplication coefficient analysis
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Figure 11 —Noise effect on indicator map and final regresjoiality

3.4. Comparison with other analysis and regression mettus

Reference [16] gives a classification of the défdr approximation techniques according to 3 chteilie
type of DoE, the choice of model and the moddhfitapproach. Here, the proposed meta-modellingoagp is

based on:

« a full factorial DoE with logarithmic distributioof levels distribution for the main dimensidn

parameter;
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» a model choice based on scaling laws and power, laws

» afitting approach using mainly linear and non-dinkeast square regression based on a projectitire of
data on scaling law coefficients.

Classic regression procedures generally start svghreening step mainly focusing on selection efitiput
parameters. The process assumes that this seléetsoheen performed thanks to a previous sengitivialysis
or the designer’s knowledge. Preliminary analysesge, is devoted to determining the exact formhefrnodel.
Indicators and a graphical synthesis, similar toNtorris method [30], have been proposed for thippse.

Compared to the classical meta-modeling approafgagnomial, kriging, radial basis functions, etbge
advantage of the method proposed here lies mainitg iphysical justification, demonstrated hereusing the
Buckingham theorem. A recent review about dimerai@malysis and pi-theorem illustrated by an exangfl
application to the modeling of a Flexible Manufastg System can be found in [21]. Some other awstlidi]
[32] [33] have also used this theorem with the meljective of reducing the number of parameterbeo
handled by polynomial regressions. Other authof$ fiawve used dimensional analysis to determinetraings
on power law regressions. Their approach, like oépproaches solely based on dimensional analysigever
requires handling of all the parameters represgntie dimensions and physical properties. Moreotle,
scaling laws employed are pure power laws withbatgossibility of using other functions to expresdtipliers
or power coefficients.

The approach proposed here does not directly userdiional analysis but the particular form of the
functions representing the physical characterigtica component subjected to a change in sizearctse of
particular similarities. Previous studies [35] [28] similarity have also worked on the developnahntodels
valid in the case of non-similarities (called drstth models) but have not been applied to numesicalilations
within a general framework. The possibility of keep constant the ratios of some of the dimensiedsices
the complexity of representation of the detailedigie models. A compact model is then obtained witly the
relevant design parameters for the design of memhiatlayer without having to handle all the parsene of the
detailed design.

4, CASE STUDIES

The objective here is to illustrate the proposeagtassion process on mechatronic components froferelift
domains. The main focus is placed on the illustratf the regression process and not to on the lstengdesign
study of a system. Reference [10] presents a metbgyg for the optimal preliminary design of eleetro
mechanical actuators using a model-based appro@thdifferent types of models (estimation, simudati
evaluation and meta-model).

The components considered are:

« an electromagnetic limited angle actuator [36]slagwn in Figure 13a from [37], which illustrates
the thermal and electromagnetic domains;

« a flexural hinge composed of thin blades, as shimmRigure 13b from [38], which illustrates the
structural and mechanical domains.

The regression process could be applied to othmrstpf motor, such as a brushless motor or a @ide
actuator [39], other flexural hinge [39] [38] oryaother physical mechatronic components. Thesen®ooents
associated with a mirror, a position sensor andtrobrelectronic could be used to build up a scagnin
mechanism [40]. The overall design of such mechatrsystems requires consideration of the various
constraints that have a direct impact on the sfzh® components. These design constraints may doone
different types of specifications:

¢ Performance specifications, particularly in ternfsnwotion range, accuracy or bandwidth: the
motion is linked to the rotational stiffness of thange and to the torque capability of the LAT
actuator; the accuracy and the bandwidth are linkiéd resonance modes, which depend on the
inertia and stiffness of components.

« Endurance specifications, particularly in termdifef time and resistance to extreme stresses: the
flexural link should be used at stress levels airat with these specifications.

These two points are influenced by the environmentchanical stress (vibration, acceleration) erral
stress (a function of the type of heat transfer #mel ambient temperature). Embedded applicatiorts ad
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constraints of integration (size, volume or magd)these constraints can be represented (Figuyebg2iesign
scenarios such as:

a) Thermal and mechanical mission profiles: theseinnisgrofiles are representative of the movement
of the mirror during scanning. These time simulatiocan be used to calculate the average
electromagnetic torque developed by the LAT. Oae oote that there exists a coupling of this
torgue with the rotational stiffness of flexurahes.

b) Stability analysis: the transfer function of theemadl multiphysic system can be used to estimate th
closed loop performance especially in terms of badth and stability margins. The indicators will
be significantly influenced by the rotational reanne modes.

c) Vibratory environment: transient or frequential files for acceleration at the support can be ueed t
represent the aggressive vibratory environment. tidresverse or longitudinal modes of resonance
are all influenced by the transverse or longitulstdfness of the flexible pivots and the mass of

components.
Mechatronic Layer
i
Design scenarios a) Thermal and b) Stability analysis c) Vibratory N
and system-level mechanical mission profile environment

models

ateey OV ; !
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Figure 12 —Estimation models : interface between mechatronit domain specific layers

To manage all these constraints and iterate quicktyeen mechatronic and domain specific layersndur
preliminary sizing, it may be interesting to hagtimation models expressing, for example:

« for the LAT actuator, torque or inertia dependimgtioe dimensions.

» for the flexure hinge, stiffness (in translation iar rotation), maximal stress depending on the
dimensions.

The following paragraphs show how these modelsbeanbtained using the regression process presamted
this article. The results of scaling-law-based metdels are compared to polynomial approximatiory [
Radial Basis Functions (RBF) [41] and kriging [27].
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a) Limited Angle Torque (LAT) actuator (source : [37hermal and electromagnetic domains

b) Flexural hinge (source [38]): mechanical domain

Figure 13 —Mechatronics component from different domains

4.1. Limited angle actuator study

The objective here was to illustrate how it is floigsto link the continuous torquieto the main dimensions,
the length,L, and the diameted, of the actuator. All radial dimensions were getinally similar tod. With
such a choice, one has two design parameters g significantly the torque and inertia of theuator, two
main characteristics for the system level desigthout representing all dimensional parameters aggthg the
component level design. The desired equationtitnlsthe following form:

T = f(L,my) = k()L™ withm, =% (26)

The design code, to which the regressions werbkeahpvas set up using two 2D finite element sirtiales
(Figure 14) with FEMM software [42]. A first theringimulation found the permissible current densitfor
static continuous operation. The thermal environmeas modeled by convective heat transfer betwaen t
periphery of the actuator and the environment. Bord electromagnetic simulation used the previously
calculated current density in order to obtain thetinuous torque.

Several cases illustrate the regression method:

* The winding was moulded with or without a pottirgsin that ensured better conductive thermal
transfer. This point addressed the effect of assiom. (subsection 3.1). An equivalent thermal
conductivity of copper and resin or air was dedufreth a homogenization of the winding [43]
[44].

« Two DoE for different ranges were used to test thisustness and validity of the regressions
obtained outside their original design. The two Dt 4 levels fok and 6 levels forz which led
to 24 experiments. The difference between the Dafaecfrom their range: for L, [20;60] mm for
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the first DoE and [10;100] mm for the second, amd7#, [0.5;2.5] for the first DoE and [0.1;5] for
the second.

a) Thermal simulation b) Electromagnetic simulation
Figure 14 -2D finite element simulations of the LAT actuator

Figure 15 illustrates the step 2.1 of the processhie cases of winding with or without potting.the case of
winding with potting, the power coefficient variestween 3.42 and 3.49. Without potting, this coéffit varies
between 3.23 and 3.48. The 2 cases have a powficeog varying between 3.5 (demonstrated in set8.2),
characteristic of purely convective thermal transéad 3, characteristic of a purely conductiveriie transfer.
A coil without potting is naturally more influencday the conductive effect. For both cases, it wesréesting

not to consider paramete(r,) as a constant.

10°

E2.28 %

Log(y)

Log(L)

a) With potting resin
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Figure 15 —Effect of conductive thermal transfer on the pow@efficient

Next, the proposed approach was applied to a wineiith potting. The form of the scaling-law-based
metamodel (SLAWMM) was:

T = k(m,) L2 = Cln—chLC3+047T1+Cs7T§ (27)

It was compared to three other approximations deipgnon the two design variablésandd: a 3¢ order
polynomial response surface (RSM) [24], a Gausgtadial Basis Function (RBF) [41] and a kriging
approximation [26]. The polynomial functions wereailb with the same DoE as the scaling-law-based
metamodels. The RBF and kriging approximations vieii#t with a specific DoE: a latin hypercube (LH®ijth
the same range and number of experiments as tHmgskaw-based metamodels, in this case 24. The
polynomial regression, RBF and kriging functionsgr@vebtained with. andd parameters and not withand 7z
which would not have been such a good choice. Bastlsquare regression for polynomial functions has
minimized the relative error and not the absoluterein order to avoid gross errors on small aatgatThe
Gaussian width factor of RBF was chosen by miningizia cross validation error [41]. The kriging
approximation used a quadratic regression modebaBdussian correlation function.

Figure 16 illustrates step 3.3, the model qualiteak, of the regression process. These validatizer®
performed by comparing the 48 simulated resultfp24he SLAWMM DoE and 24 for the LHC DoE, witheth
estimated results using each metamodel. Each appatgn was thus tested with 24 configurationshef initial
DoE that served for their construction and 24 ottmmfigurations within the same range. Note that BloE
using range 2 was much wider than when using rdndeading to four additional orders of magnitude o
variations on the output quantity that was beingragimated. In all cases (range 1 and range 2)stiading-
law-based metamodels (SLAWMM) showed good predictjaalities: less than 2 and 10% of maximum error
for the range 1 (Figure 16a) and range 2 (Fiduite) regression. The expressions obtained fortenuél8)
differ slightly between the 2 ranges (see figurpticas). Polynomial approximations, on the othemchaeven
with twice number of coefficients to be determinsdowed a larger maximum error : 3% (Figure 16a) #0906
(Figure 16b) for range 1 and 2 respectively. Foge2, the maximum error was 18.5 % at the poihtseoDoE
used for polynomial response surface constructistnincreases to 79% with the 24 configurationshef DoE
that did not serve for its construction (predictoagpability). Radial basis functions and krigind te even worse
results. These two metamodels had difficulty iningpwith the very wide range of variation of thetmut
guantity, which led, in particular to large erréos very small values.
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When the predictive capability of metamodels wasessed by testing them at points well outside their
construction bounds, regression-based scaling femsined valid (less than 15% error in Figure 1&gussian
RBF and kriging functions, with their high flexiltif enabling a multiple peaks surface response é@o b
represented, were at a disadvantage in this cafsrlgfmonotonous surfaces: they could give veopipresults
at points involving large extrapolation. All threlassic regression techniques (RSM, RBF and lgiggave
very poor results, even negative torque for smetiiaors, when they were used well outside thetpdimat
served for their construction (equations of rangesédd into range 2 as illustrated in Figure 16c).

Regression validation (log plan)
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Regression validation (log plan)
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Figure 16 —Quality check of the regressions for different ramg study

Power law forms are thus interesting as “structw@hponents” for the specific metamodels of sizing
problems where geometrical dimensions can haveda wange of variation. This robustness property lman
important when conducting explorative design stsidtieareas not originally planned. As the regresfiom has
a physical basis, some coefficients can be be fiftt a first complete study. For example, ¢heoefficient of
equation (27) can be fixed at 3.5 (see sectionahd)future FEM simulations with different configtions have
to find just 4 coefficientscq, ¢,, ¢, andcs) with a reduced size DOE.

4.2. Flexural hinge study

The objective here was to illustrate how it is polssto link the rotational stiffnes¥, to the main
dimensionsl the lengthd the diametere the thickness, andthe blade root radius (Figure 17a) of a flexural
hinge composed of 2 thin blades of titanium allblye desired equation thus took the following form:

K. = f(d, 7y, 15, m3) = k(my, 05, 3)d * (172 72) (28)
. r e L
with m; = E’ T, = E andT[3 = E

The design code, to which the regressions werdieahpds set up using a 3D finite element simulatio
(Figure 17b) with ANSYS software [45]. This statinalysis gave the angular deflection for a giveque on
the hinge, which, by ratio, gave the rotationdfrstiss. The meta-modelling process was applietiitodatak,
but could also have been applied to other quastifeinterest for the design, such as the stresiefiection
ratio or the radial stiffness. This regression jEobinvolves more parameters than the previousican
example and allows us to illustrate the interesthef multiplication coefficient form analysis (stépl of the
process given in Figure 5).
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a) Hinge geometry b) Flexural deformations of the hinge

Figure 17 —Geometry of the flexible hinge (2 blades)

The DoE used had 4 levels forand 3 levels for eacit parameters. The range studied whE!: [5;50] mm,
78 0 [0.05;0.015],75 O [0.01;0.04] andrg O [0.5;2]. As illustrated by the result of step ZHigure 18), the
power coefficienta was constant and equal to 3 for amyparameters configurations. Thus, only one physical
phenomenon drove the evolution of the rotationiffnstss: the elasticity of the material. Figure 1% result of
step 2.1, shows that the influencerpfand 75 parameters can be modeled by power laws expressidresform
of the 7z function cannot be a power law and was modeled Ineeepolynomial response surface here. The form
of the scaling-law-based metamodel was be thus:

K, = (co + o1y + cpmP)ns3mstd3 (29)
The regressions results were (wWithin N.m/rad andl in m) :
K, = (1.93.10'° + 3.10.10*%7; + 2.30.10'* )20 0543 (30)
for the first one, where regression was carriedwitht a andk data (see step 3 section 3.2.3).
K, = (1.93.10'° + 3.10.10%m; + 2.30.10" n¥) 3 mwid? (31)

for the second one, carried out on thdata with a least squares fit (see step 3 se8tidB).

For the last regression, powers @&f and 78 parameters were set to 3 and 1 respectively. Equd81)
presents a simple form that can be handled andeimgted in different calculation tools. As showrFigure
20, the relative error is controlled for a wide garof results with a maximum error of less than 19¥ese
results are compared to & 8rder polynomial function here, which was the megeel that performed the least
poorly of the three alternatives (polynomial resgmrsurface, radial basis function, kriging) in fhrevious
application example. The expression of the polyrmbmresponse surface required the determination lafge
number of parameters: 26 parameters compared to fhé proposed form, and showed a maximum error of
21%. The scaling-law-based metamodel allows ligit eompact models to be obtained, which can bdyeasi
integrated into other design algorithms.

-21/25 -



Log(y)

Power law indicator (near zero mean expressible as power law)

10°

Coefficients calculation

10° L

10' b

10 ¢

107

10°L

10°

.00 (0.02 %)

10°

102
Log(L)

10"

Figure 18 —Scaling laws with geometrical similarity

Multiplication coefficient analysis

=~
53
N
=)

olynomial

»
»N
©

0.8

0.6

o
[N)

0.4

/

0.2

P |
FOWCT Taw

0.002

0.004 0.006 0.008 0.01 0.012
Product indicator (near zero mean factorizable)

0.014

| Power

coefficients

Figure 19 —Multiplication coefficient form analysis

-22/25 -



Regression validation (log plan)
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Figure 20 —Quality check of the regressions

5. CONCLUSION

The design of mechatronic systems requires estomatiodels to make the link between the design Idathi

each component and the overall design of the systbmarticle has shown that scaling laws possesseisting
properties for performing this role during the sizitasks. A demonstration of the criteria for ohitag these
scaling laws with the Buckingham theorem highlightee assumptions required for this work. Two afsn
assumptions, geometric similarity and the uniquertdshe design criteria, limit the generality bkir use. A
method was proposed to overcome these limitations ggeneralize the form of scaling laws. The proagss
regression adapted to this form was described atidated on various examples. The regressionsraataivere
compared to classical metamodels and showed tharesit of the physical basis of scaling-law-based
metamodels for preliminary sizing of mechatronienpmnents: their shape is easy to handle while m@ngi
valid over a wide range of sizes, even for predicor extrapolation purposes. The proposed formegifession
can be applied to various fields encountered inhagonic systems and is illustrated here by sinaraton
thermal, electromagnetic and mechanical examples.
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