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Abstract As any Digital Image Correlation (DIC) method, Finite-Element (FE)

based DIC methods lead to uncertainties which are related to the spatial reso-

lution (in pixel / element). To overcome the tricky and well-known compromise

between spatial resolution and uncertainty, a multiscale approach to FE-DIC is

proposed. Additional nearfield images are used to improve locally the resolution

of the measurement for a given measurement mesh. An automatic and accurate

estimation of the nearfield / farfield transformation is obtained by a dedicated

DIC based method, in order to bridge precisely the measurement performed at

both scales. This multiscale measurement is then associated to a multiscale Finite
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Element Model Updating (FEMU) identification technique. After being validated

on synthetic test cases, the method is applied to a tensile test carried out on an

open-hole specimen made of glass / epoxy laminate. The four in-plane orthotropic

elastic parameters are identified at different levels of loading. Results show that

the multiscale approach greatly improves the uncertainty of both the measured

displacements and the identified material parameters.

Keywords multiscale · mechanical identification · full-field measurement · digital

image correlation · finite element

1 Introduction

Over the three last decades, full-field measurement techniques have become in-

creasingly popular in the community of experimental mechanics. One can report

geometrical methods, such as grid method, moiré, or Digital Image Correlation

(DIC), and interferometric methods such as electronic speckle pattern interfer-

ometry, holographic interferometry, or shearography, etc. [1]. Among these ex-

perimental techniques, DIC is probably the most used either in the academic or

industrial community thanks to its (apparent) simplicity [2]. Displacement (or

strain) fields measured by DIC can also be used for constitutive parameters iden-

tification, e.g. from heterogeneous mechanical tests. In fact, with conventional

identification methods [3,4] more than one test is usually required for the iden-

tification of the constitutive parameters. Since they provide a sufficiently large

amount of information, full-field measurement techniques allow the identification

of several parameters from a single non-homogeneous test [5–10]. For that pur-

pose, several identification strategies based on full-field measurements have been

recently developed, see e.g. [8] or [1] for more details. However a drawback of this

approach is obviously that the level of uncertainty associated with the identified

parameters depends on the quality of the kinematic measurements [11], and thus

in our concern, of the DIC displacement measurement uncertainties [12]. The lat-

ter are related at least to the DIC method itself [13], but also depend strongly on

the spatial resolution of the displacement measurement [14,13].

DIC is based on the assumption that the distortion of the image pattern is

due to the mechanical transformation of the seen object. Classically, DIC meth-
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ods consist in the minimization of a quantity that express the difference between

the gray levels in the undeformed I0 and the deformed I1 images. DIC meth-

ods roughly comprise two broad categories: (i) subset-based method (or local ap-

proach) in which the parameters of a shape function (typically linear or quadratic)

are searched across a (generally small and square) subset of the whole region of

interest (ROI) [15], and (ii) the global approach, that minimize the criteria over the

entire ROI at one time. In this work, a global DIC method based on Finite Element

kinematics (FE-DIC) is used, following [16–18]. The main advantage, besides the

fact that between the numerical simulations and the full-field measurements no

projection is necessary because the displacement is discretized in the same way, is

that FE-DIC approaches reduce measurement uncertainties because they require

the continuity of the found displacement field throughout the ROI [13]. In the

following, a unique mesh is used for the discretization of both experimental and

simulated displacements.

Concerning the measurement uncertainties in DIC, the most restricting ones

are the random errors, which are linked to the subset size (local approach) [19,12,

2] or to the number of pixels per element (global approach) [17], thus defining the

spatial resolution (expressed in pixel). More precisely, the higher the number of

pixels per element is, the smaller uncertainties are. This compromise is classical to

DIC [17,2]. It is worth noting that a kinematic model (i.e. mesh) sufficiently rich

to catch strain gradients, may lead to high spatial resolution, to the detrimental

of larger measurement errors.

On the other hand, if one wishes to identify all the model parameters, the

kinematic field is obviously not enough, and the static quantities must also be

taken into account [10]. To this purpose, the region of interest (ROI) must include

the boundaries of the domain on which a resultant of the external loads is partially

measured. The image definition which is a characteristic of the camera (number

of pixels) and the size of the ROI, which characterizes the experimental test,

set the image resolution (in pixel / mm). As a result, the spatial resolution is

thus a highly constrained experimental parameter (large structure, high gradients,

complex geometry, low levels of deformation in the elastic range, etc.). In some

cases it may be that the measurement uncertainties become disadvantageous for

the inverse parameter identification [20]. This is particularly true when it comes



4 Jean-Charles Passieux et al.

to identifying the model parameters describing the elastic behavior of composite

materials.

To overcome this spatial resolution / uncertainty compromise, we introduce in

this work a nearfield / farfield multiscale approach, that utilizes a Finite Element-

based DIC measurement method and a Finite Element Model Updating (FEMU)

identification procedure [21,22]. In a first step, we propose to use two cameras that

acquire images with two different image resolutions to measure the displacement

fields by FE-DIC on the surface of the specimen. A series of images capture the

full specimen (farfield images: at the scale of the structure), while a second series

of images zoom on a structural detail (nearfield images: for example, in a local

region where the displacement field is particularly sensitive to the parameters

to be identified). The FE simulation mesh is used for the FE-DIC measurement

at both scales. An image registration process that automatically and accurately

repositions the nearfield image into the farfield image, based on a global DIC

approach, allows to place precisely the mesh on the nearfield image.

In a second step, an ad hoc inverse multiscale identification method is pre-

sented. Based on the FEMU, it takes advantage of the multiscale FE-DIC. On

the one hand the farfield FE-DIC measurement provides representative Dirichlet

boundary conditions for the numerical simulation [9,23,10]. The corresponding

reaction force is compared to the one provided by a load cell. The addition of this

force term in the cost function is essential for the identification of elastic moduli.

On the second hand, the nearfield FE-DIC measurement provides a high spatial

resolution kinematics field for the test / calculation displacement comparison, in

a region where the model parameters are particularly sensitive.

The outline of the paper is as follows: in Section 2, after a brief review on digital

image correlation, an automatic nearfield / farfield image registration technique is

proposed. An a priori analysis of the multiscale FE-DIC approach is then presented

in Section 3. Measurement uncertainties are evaluated through synthetic images

(shifted or strained). In Section 4, the method is applied to an open-hole tensile test

performed on a glass/epoxy laminate. The experimental set-up is presented and

both farfield and nearfield images are analyzed. In section 5, after being validated

on previous synthetic test cases, the multiscale inverse method is applied to identify

in-plane parameters of an orthotropic elastic model.
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2 Multiscale digital image correlation

2.1 Digital Image Correlation

Digital Image Correlation (DIC [24,14]) consists in seeking the displacement field

u that register an image I1 into another image I0 of a specimen in two different

loading conditions. Following [17,13], a weak form of the gray level conservation

equation [25] is written globally over the whole region of interest (ROI):

u
⋆ = argmin

u(x)

∫

ROI

(I0(x)− I1(x+ u(x)))2 dx (1)

In practice, the unknown displacement field u : I0 → I1 is sought in an

approximation subspace UN , spanned by a finite dimension interpolation basis

φi(x) as follows:

u =
N
∑

i=1

φi(x)qi (2)

where q is the corresponding vector of degrees of freedom qi. A large choice of

interpolations can be used in this framework, among which Fourier series [26,27],

B-Splines [28,29], separation of variables [30], mechanical based analytical func-

tions [31,32] or precomputed numerical functions [20]. In this work, a DIC method

based on Finite Element kinematics (FE-DIC) has been developed following [16–

18]. The stationarity conditions associated to the minimization of the linearized

problem (1) yields a set of linear systems:

Mq
k = b

k (3)

whereM is a N×N matrix called the correlation operator and b the corresponding

right-hand-side:

Mij =

∫

ROI

(

∇I⊤
0 φi

)(

∇I⊤
0 φj

)

dx

b
k
i =

∫

ROI

(

∇I⊤
0 φi

)(

I0(x)− I1(x+ u
k−1)

)

dx

where uk−1 =
∑k−1

j=0

∑N
i=1 φi qji is the approximation of the displacement at it-

eration k − 1. Since x + uk−1 may be non-integer, a gray level interpolation is

required to evaluate the right-hand-side. In this paper, a classical spline interpo-

lation is used.
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The definition of the approximation subspace UN has a direct impact on the

accuracy of the estimation. First N should be far lower than the number of pixels

in the ROI because of the ill-posedness nature of the correlation problem. Namely,

the larger N , the larger are measurement uncertainties. However, UN should be

rich enough to accurately represent the a priori unknown displacement. Namely,

measurement uncertainties result from a compromise between the accuracy of the

displacement interpolation, that manages what is called the ”mismatch error”

in Bornert et al. [12], and the so-called ”ultimate error” when the displacement

interpolation is sufficiently accurate according to the true deformation of the

image. In the case of FE-DIC, a mesh that would be optimal for simulation

purposes, is not necessarily optimal for the DIC measurement. Thus the choice of

a common mesh is not, in general, an easy task in the context of identification [20].

Most often, digital images are taken at one single resolution. In this case,

a first way to use a simulation mesh including small elements (i.e. with a

poor measurement resolution) is to search only for solutions that have some

numerical [30] or mechanical [20,33] regularity. The aim of this article is to

explore another route, which consists in using images of the same speckle at more

than one resolution. The multiscale (or multi-resolution) measurement technique

proposed herein, is designed to adapt the image resolution to the mesh and not

the reverse.

In this paper, the case of image pairs taken from two cameras at two different

scales is considered, one being denoted farfield and the second nearfield. The first

question that arises, is how to characterize accurately the transformation which

links the position of a point in the nearfield image to its corresponding in the

farfield image. For this purpose, a dedicated digital image correlation technique is

devised in section 2.2.

2.2 Farfield / nearfield image registration

A key issue of the proposed multiscale correlation method consists in registering

accurately the nearfield reference image In
0 in the farfield reference image If

0 . In
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this study, this multiscale transformation t(x) is estimated by considering only

the speckle of both scales. Thus a dedicated digital image correlation algorithm

is devised for that purpose. Indeed, t(x) is sought to minimize the gray level

conservation equation:

t
⋆ = argmin

t(x)

∫

ROI

(

In
0 (x)− If

0 (x+ t(x))
)2

dx (4)

where the ROI corresponds, here, to the entire nearfield image In
0 .

As mentionned previously, the key point of a correlation method is to propose

an adequate and sufficiently accurate kinematic interpolation model in the DIC

algorithm. One way to do this is to use the a priori knowledge of the unknown

transformation in order to reduce the number of unknowns N . In the context of the

near/farfield registration, and since the studied specimen are assumed to be planar,

the proposed contribution consists in seeking the transformation t as an arbitrary

homography H relating In
0 to If

0 . An homography is an invertible mapping of

points (and lines) on the projective plane P
2, represented by a non-singular 3×3

matrix H. In other words, for a given point x ∈ In
0 and its corresponding point

x′
i ∈ If

0 we have the constraint: x′ = Hx. Note that H can be multiplied by

an arbitrary non-zero constant without modifying the projective transformation.

Thus H is an homogeneous matrix with only 8 degrees of freedom even though

it contains 9 parameters. So, the dimension of the approximation subspace is

reduced to 8 for the whole nearfield image. Finally, the solution is computed by a

Levenberg-Marquardt algorithm applied to the following problem:

H
⋆ = argmin

H∈M3,3(R)

∫

ROI

(

In
0 (x)− If

0 (Hx)
)2

dx (5)

where the numerical integration over the ROI In
0 is performed by a mid-pixel

rectangle method following [13].

Since the scales can be very different between near and farfield images, this

algorithm has to be initialized with a coarse approximation of the homography.

Typically, an homography is estimated between two images by finding a set of

r matched points (mi,m
′
i). Three algorithms have been compared for extracting

and matching interest points : SURF [34], MSER [35], SIFT [36]. In most of the

examples that have been processed, the SIFT algorithm [36] was the most efficient

because it provides a large sets of matched points for most of our configurations.
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Next, consider a sufficient set (i.e. r ≥ 8) of matched points (mi,m
′
i). Written

element by element, in homogenous coordinates one gets the following constraint:











x′
i

y′i

z′i











=











h11 h12 h13

h21 h22 h23

h31 h32 h33





















xi

yi

zi











⇔ m
′
i = Hmi (6)

which, in inhomogenous coordinates, corresponds to:

x′
i ≡

x′
i

z′i
=

h11xi + h12yi + h13zi
h31xi + h32yi + h33zi

(7)

y′i ≡
y′i
z′i

=
h21xi + h22yi + h23zi
h31xi + h32yi + h33zi

(8)

Without loss of generality, zi is set to zi = 1 and (7) and (8) are rearranged in

order to have an overdetermined linear system (solved in a least square sense)

where coefficients of H appear linearly:

Ah = 0 where A =
(

ax1 ay2 . . . axr ayr

)⊤

(9)

and

axi =
(

−xi −yi −1 0 0 0 x′
ixi x′

iyi x′
i

)⊤

ayi =
(

0 0 0 −xi −yi −1 y′ixi y′iyi y′i

)⊤

h =
(

h11 h12 h13 h21 h22 h23 h31 h32 h33

)⊤

This two step method is applied to synthetic images whose construction is

detailed in section 3.1. In order to visualize the results, a point cloud which corre-

sponds to the nodes of a FE mesh are adjusted on the nearfield image In
0 . Their

image under the initial and optimized homography operators are plotted on the

farfield image If
0 in Figure 1. (Note that the homography is estimated in the

nearfield region only and extrapolated in the farfield). The corresponding raw dis-

crepancy maps (in gray levels for a 256 gray levels range) In
0 (xi) − If

0 (Hxi) are

plotted in Figure 2. Theoretically, with exact matched points the result of the ini-

tial value of H estimated by SIFT should be accurate. But, in practice, the couples

(mi,m
′
i) are not properly matched and the solution of (9) is inaccurate, see Fig-

ure 1(left). The gray level conservation is also poorly verified since the standard
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Fig. 1 The mesh nodes are adjusted on the nearfield reference image I
n
0 by hand. The images

of these nodes under the initial homography estimated by SIFT (left) and the one measured

by the DIC technique (right) are plotted on the farfield reference image I
f
0 .

Fig. 2 The raw discrepancy map I
n
0 (xi)−I

f
0 (Hxi) (in gray levels) with the initial homography

estimated by SIFT (left) and the one measured by the DIC technique (right)

deviation of the residual map is equal to 23.5% of the dynamic range of the image,

see Figure 2(left). However it provides a sufficiently good approximation to initial-

ize the DIC algorithm of equation (5), see Figure 1(right). The latter provides a

very good estimation of the transformation since the gray level conservation seems

accurately verified: standard deviation of the discrepancy map is equal to 1.14%

of the dynamic range, as shown in Figure 2(right).
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Remark. In the particular case of the synthetic images described in 3.1, the

homography has additional properties. First, because the scales are the same ev-

erywhere in In
0 , the coefficients h31 and h32, responsible of the non-linearity in (7)

and (8), are equal to zero.

h31 = h32 = 0 (10)

In such a condition, the homography is said affine. Second, because, in this case,

H is a composition of a pure scaling of factor 5 and a translation, the following

relations must apply:

h12 = h21 = 0 (11)

h11 = h22 =
1

5
. (12)

Finally, h13 and h23, coefficients of the rigid body translations, are arbitrary and

only depend on the localization of the nearfield region of interest. Thus, in addition

to the measurement of the discrepancy map of Figure 2, a good way to validate

the proposed DIC algorithm is to underline that the optimized homography (13)

H
⋆ =











0.199899 5.86 10−6 499.812

−3.41 10−5 0.199985 359.793

−1.22 10−7 −1.11 10−10 1











(13)

solution of (5), meets properties (10), (11) and (12).

3 A priori analysis of synthetic images

Images used in these sections are synthetized from a mechanical analytical dis-

placement field. Their construction is detailed in section 3.1. The nearfield / farfield

registration described in the previous section is performed. It is then possible to

quantify both ultimate and model random errors with the same meshes in section

3.2.

3.1 Multiscale image synthesis

The main idea is to build a set of synthetic images in order to evaluate the deviation

between the measured and prescribed displacement fields. The set of synthetic
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speckle-pattern images is obtained using the TexGen software [37]. This software

has been developed to produce synthetic speckle-pattern images which simulate

real DIC speckle patterns as realistically as possible. Deformed synthetic images

can also be generated with any displacement field.

Details of the speckle-pattern generator algorithm can be found in [37]. Let

us simply mention that Perlin’s coherent noise function [38] is used to generate a

continuous texture function η:

η : [−1, 1]2 → [0, 1]

(x, y) → η(x, y).

The speckle-pattern image is generated by a photometric mapping and an 8-bit

digitization of the texture function computed for each integer pixel of the image.

The integration of the texture function over the domain corresponding to the pho-

tosensitive area of one pixel is performed by a super-sampling technique in order

to simulate the pixel fill factor. A reference speckle-pattern image, represented by

a gray level function I0(x), is first generated. Next, the deformed speckle-pattern

image I1(x) is generated by applying a transformation Φ using the optical flow

conservation equation:

I1(x) = I0(Φ
−1(x)), with Φ(x) = x+ u(x), (14)

where u must be an analytical C1 function in order to ensure the computation of

Φ−1 thanks to an iterative root finding algorithm. Note that Φ is applied to the

continuous texture function η, and not to the pixel (i.e. discrete gray level) values

of I0. Then, the continuous deformed texture obtained by solving (14) is mapped

to generate the deformed image. Regarding classical procedures (e.g. based on gray

level interpolation in the space [39] or Fourier [40] domain), this method is known

to limit the introduction of any bias due to interpolation.

In order to perform a virtual mechanical test, the displacement u is calculated

from the analytical solution uL of an infinite orthotropic open hole plate in vertical

remote tension. Theoretical solution of this problem has been proposed in [41] and

already used for identification purposes in [6]. The four orthotropic parameters

are set to El = 60 GPa, Et = 56 GPa , Glt = 4.26 GPa and νlt = 0.049, the hole

radius is set to r = 2 mm and the prescribed stress to σ∞ = 100 MPa.



12 Jean-Charles Passieux et al.

Fig. 3 Reference image generated with TexGen for the farfield image I
f
0 (left) and the

nearfield image I
n
0 (right)

A first pair of 1000×1000 pixels images (If
0 , I

f
1 ) is generated with a resolution

of 26 µm per pixel. This pair of images correspond to the farfield, as the field

of view is 26 mm wide. A second pair of 1000 × 1000 pixels images (In
0 , I

n
1 ) is

generated, but with a resolution of 5.2 µm per pixel (5 times smaller). This one

corresponds to the nearfield images, with a field of view of 5.2 mm wide. The

caracteristic size of the speckle is 34 µm, which corresponds to 1.3 pixel in the

farfield images and 6.5 pixel in the nearfield images. These speckles, shown in

Figure 3, are thus respectively suboptimal and superoptimal according to [2]. The

corresponding theoretical reference nearfield and farfield displacement fields are

shown in Figure 4.

3.2 Separate analysis of multiresolution images

As mentioned above, in DIC, the total measurement uncertainties is classically

viewed as a competition of the so-called ultimate and model errors [12,29]. Know-

ing the exact analytical displacement field uref (see section 3.1), it possible to

compute the random error of a displacement field u measured by FE-DIC as the

standard deviation of the discrepancy ∆u = u−uref over the pixels overlaped by

finite elements within the ROI. The discrepancy term ∆u depends on the chosen

uncertainty:



Multiscale displacement field measurement using digital image correlation: 13

Fig. 4 Horizontal x-component of the reference displacement field in pixel, in farfield (left)

and in nearfield (right)

– ultimate error. A simple rigid body translation along x-axis is imposed to the

reference image, here by a shift in the Fourier space [17,12]. Such a displace-

ment field does belong to the finite element approximation subspace Uh. Thus

the ultimate error only considers the errors inherent to the DIC technique in

situation where the adopted kinematic model of the DIC algorithm perfectly

fits the actual displacement field in the image. In this work, the magnitude

of the x-component of the displacement is set to u
shift
ref = 0.5 pixel since it

maximises the standard uncertainty in the case of noiseless images [42]. The

FE-DIC measurement yields an inexact displacement map um which is used

to estimate the ultimate random error as follows:

σult = σ(um − u
shift
ref ) (15)

where σ(·) is the standard deviation operator.

– model error. It correponds to the so-called interpolation error in the compu-

tational mechanics jargon [29]. It only consists in the evaluation of the distance

between a non-constant analytical displacement field and its projection on the

finite element approximation subspace Uh. No DIC is performed at this stage.

In this paper, the mechanical analytical displacement field described in the

previous section serves as the reference uL
ref . Its projection uproj on the FE

approximation subspace is computed in the least square sense:

uproj = argmin
u∈Uh

m
∑

i=1

(

u
L
ref − u

)2
(16)
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which only requires the resolution of a linear system whose operator is the

finite element mass matrix. The model error is thus estimated by:

σmod = σ(uproj − u
L
ref ) (17)

– total error. The mechanical analytical field uL
ref is prescribed to the reference

image as described in section 3.1. The measured displacement um between

these synthetic images is computed by performing a FE-DIC. The total error

is then computed as:

σtot = σ(um − u
L
ref ) (18)

This quantity, which measures the exact error between the measured and ref-

erence displacement maps, takes into account both sources of uncertainties.

Remark. The total error is always greater than the model error σtot ≥ σmod.

However, the ultimate error may, in some cases, be slightly lower than the total

error since a prescribed rigid body translation of 0.5 pixel does not always maxi-

mize the ultimate error, in particular when noise is present in the image, or when

the characteristic speckle size is not optimal [42].

This a priori performance analysis is performed with both fields of view as a

function of the characteristic mesh size (which corresponds to the spatial resolution

i.e. the subset size for subset-based DIC approaches). Therefore, a set of eleven

unstructured finite element meshes are generated with Gmsh [43]. Their elements

size are rather tightly clustered around the mean value that ranges from 78 µm

to 5 mm, as shown in Figure 5. The mesh is adjusted on the farfield image and

transfered to the nearfield image thanks to the inverse of the optimized homogra-

phy (H⋆)−1. Like this, the same meshes are used for both near and farfield images

analyses.

Figure 6 presents the evolution of ultimate, model and total random errors in

millimeter as a function of the element size in millimeter, for both nearfield (in red)

and farfield (in black) images. When nearfield and farfield analyses are considered

independantly, it can be observed that the larger the elements (or equivalent, the

more pixels per element), the lower is the ultimate error. Conversely, the larger the

elements, the higher is the model error. The overmentionned compromise can be

seen graphically on this figure, since the total error results from the competition

of these two antithetical behaviors.
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Fig. 5 Example of unstructured meshes used for the a priori uncertainty analysis described

in this section: from left to right, the average element size is respectively 163, 411 and 719 µm,

which corresponds to 6, 16 and 28 pixels per element width in the farfield image (top) and 31,

79 and 138 pixels per element width in nearfield image (bottom).

10
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model error (nearfield)

total error (nearfield)
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model error (farfield)

total error (farfield)

ultimate error (farfield)

Fig. 6 Evolution of the ultimate (wedge), model (circles) and total (solid line) random errors
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When nearfield and farfield curves are compared, it appears that the model er-

rors seems to broadly follow the same trend. Theoretically, they should be aligned,

since this error simply depends on the physical mesh size (mm). In practice, it is

not exactly the case, since the number of elements considered for computing this

error is not the same in nearfield and farfield analyses as shown in Figure 5. Con-

versely, the ultimate error associated to the nearfield image is much lower than

that of the farfield, for a given element size. This gain can be explained, almost in

its entirety, by the resolution ratio. As a result, the total error is logically shifted

by the same ratio, along the direction of the model error.

A naive conclusion would be to use exclusively high definition images every-

where on the specimen. But, it is neither conceptually desirable nor technically

possible for the following reasons:

– even if ultra-high definition digital camera (up to 29 MPixels) are now available

at a reasonnable price, there will always exist technical limits. The compromise

between the image resolution and the ROI size will remain, since, as stated in

section 5.1, a large field of view may be requested in the context of identifica-

tion. For representative structures, the ratio between the structural scale and

the detail scale does generally not counterbalance by the increase in camera

definition.

– in addition, depending on the application, the choice of the resolution may be

limited by the acquisition framerate [44–46].

– generally, the finite element meshes used for simulation are only refined where

higher gradients are expected, in order to rationalise computational costs [47].

It is thus unnecessary to have the same image resolution everywhere.

– computational mechanics develop more and more multiscale models that de-

scribe the behavior at two or more different scales (homogenized/refined). Ded-

icated measurement techniques have to be developped concurrently.

As a conclusion, for a given physical element size, the total error is thus signif-

icantly reduced thanks to such a multiscale approach. In other words, for a given

target error, the multiscale measurement makes it possible to use much smaller

elements. Consequently, it makes the use of a simulation mesh for measurement

purposes more flexible.
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Fig. 7 Images taken at different scales. A zoom on a particular region is shown to compare

the corresponding spatial resolutions

4 Analysis of real images

4.1 Description of the test and experimental setup

The proposed multiscale methodology is now applied to a real experiment. A quasi-

static tensile test is performed on an open hole glass/epoxy composite coupon.

The base plate was manufactured by stacking four pre-preg plies made of 8-harness

satin balanced woven fabric (8-HS) in the same draping direction [48]. It was

formed using a vacuum bag technique and cured in a polymerization oven. The

1.26 mm thick laminated plate was cut with a diamond wheel into a straight-sided

30 x 250 mm [0]4 coupon (i.e. orientated at 0◦ with respect to the warp direction).

Once the tabs glued, the gauge section is 150 mm long. Finally, a 10 mm hole is

drilled in the centre of the specimen. The macroscopic behavior of the studied thin

laminate is assumed to be orthotropic without in-plane bending-twisting coupling.

The major material axis is aligned with the tensile direction. In the following, a

2D stress state is assumed. As proposed by [6,22], the idea is to take advantage

of the non-uniformity of the resulting 2D strain field in order to identify the four

in-plane elastic properties at once.

The test was carried out on an electromechanical tensile machine (Instron

5800). The loading was periodically interrupted after a load increment of approx-

imately 0.5 kN up to 5 kN. In between the steps, the loading rate was around

0.25 mm/mn. At each load step, once the load stabilized, both the farfield and

nearfield images were recorded.
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Fig. 8 Experimental setup. The two digital cameras are facing the specimen: their optical

axis is perpendicular to the laminate plane. Here, a translation stage is used to retract the

nearfied camera in order to capture the farfield image.

Two CCD cameras (AVT Dolphin F-145B) have been used to capture these

images (definition: 1392× 1040 pixels, 8-bit). Assuming that the specimen under-

goes in-plane deformations, both the optical axes are set to be perpendicular to

the laminate plane. The first camera takes pictures which cover approximately

the whole gauge region, while the second concentrates over a smaller area located

around the hole. The choice of the location of this nearfield region is justified

in section 4.2. Here the ratio between the two optical resolutions is around 5.

The nearfield camera, mounted on a translation stage, is then retracted to take a

picture of the farfield region, see Figure 8.

A black and white speckle is sprayed on top of the surface in order to provide

a random texture suited for the DIC. In practice, the speckle was intentionally

made finer in the nearfield region [2], see Figure 7.

As expected in such a situation, the global load / displacement response is linear

elastic. A typical simulation mesh is used in the FE-DIC to measure the dis-

placement field at both scales. In practice, the simulation mesh is adjusted on the

farfield image (the diameter of the hole and the width of the coupon are measured,

but the position of the hole is adjusted). On the contrary, the mesh is adjusted

automatically on the reference nearfield image using the optimized homography

operator computed from real images, as described in Section 2.2. The multiscale

images and corresponding mesh positions are plotted in Figure 9. The correspond-

ing measured FE-DIC displacement fields along the tensile direction are presented
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Fig. 9 Multiscale digital images with corresponding finite element mesh. The yellow lines

correspond to the ROIs

Fig. 10 Vertical y-component of the displacement field (in meter) measured by FE-DIC from

farfield (left) and nearfield (right) images.

in Figure 10. It can be seen, even in the bare eye, that the displacement is more

regular when using nearfield images.
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Fig. 11 Displacement sensitivity maps with respect to the four parameters to identify: (from

left to right) El, Et, νlt and Glt

4.2 Choice of the nearfield region of interest

The identifiability of a constitutive parameter from full-field measurements obvi-

ously depends on the sensitivity of the field with respect to the sought parameter.

The stacking sequence, the geometry and/or the loading play here a great role. In

the following, the configuration of an open hole specimen subjected to a simple

tensile test is evaluated.

The sensitivity of the displacement field u with respect to the constitutive pa-

rameter pi can be simply estimated from a couple of finite element computations

using finite differences. An homogeneous orthotropic linear elastic is used to model

the plate. To be representative, the applied boundary conditions are directly ex-

trapolated from the FE-DIC farfield measurements. The constitutive parameters

p are set to reference values. The latter were obtained classically by performing

tensile tests on standard coupons (DIN EN ISO 527-4) [3,4,48]. Secondly, one com-

putes the sensitivity δu/δpi. Figure 11 presents the sensitivity maps corresponding

to the four in-plane elastic parameters (El, Et, νlt, Glt).

As expected in such a simple case, these maps highlight that the close vicinity

of the hole is particularly relevant for identification purposes. The nearfield images

will thus focus on this local area in order to get a higher displacement resolution

(see Figure 9). Moreover the sensitivity analysis also exhibits that it will be much

easier to identify the longitudinal Young modulus El than the other parameters.
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Fig. 12 Random (left) and systematic (right) errors (in µm) as a function of the prescribed

shift in pixel with the unstructured mesh.

In particular, a change of the transverse Young modulus Et will hardly affect the

displacement field in a very narrow region.

4.3 Error analysis of the real images

An a priori performance analysis is performed on the real images, in order to

assess the efficiency of the multiscale approach. A typical FE mesh is built for the

simulation. It is irregular but structured and made of 4-noded bilinear elements

whose size ranges gradually from 2.8 mm to 0.64 mm near the hole. Therefore the

spatial resolution for the DIC displacement measurement varies from 33 to 145

(respectively 7 to 30) pixels in the nearfield (respectively farfield) image. In this

case, the FE mesh is assumed to be optimized for the simulation. As a consequence,

only the ultimate error is considered in this section. From the real reference images

If
0 and In

0 , two series of synthetic deformed images are generated by a subpixel

shift in the Fourier space whose magnitude ranges between 0 and 1 pixel. A FE-

DIC measurement is then performed at both scales. The ultimate random error

σult and systematic error (bias) µult are thus computed from the discrepancy

between measured and prescribed displacement fields, as described in section 3.2

for each value of the shift. The evolution of these two quantities is plotted in Figure

4.2 as a function of the shift magnitude in pixel. Note that for the farfield images,

only measurement values inside the ROI corresponding to the nearfield images
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are considered in the error calculation. First, with the FE-DIC approach, typical

bell -shaped and S -shaped curves are obtained for random and systematic errors

respectively. This results is in good agreement with the litterature on subset based

methods [42]. By using such a multiscale approach, the gain is hence double, since

it takes advantage of both (a) the improvement of the image resolution (number

of pixel/mm) and (b) the improvement of the DIC spatial resolution in pixel in

the image (number of pixel/element width), for a given mesh. This corresponds

respectively to (a) a vertical and (b) a horizontal translation between nearfield

(red) and farfield (black) curves, in figure 6. Thanks to that, the ratio between

nearfield and farfield uncertainties is more than one order of magnitude for an

image resolution ratio of only 5.

5 Application to the identification of elastic properties

Many techniques have been proposed to identify constitutive parameters from full-

field kinematical measurements [8]. Among them, the Virtual Fields Method [49–

51], the Equilibrium Gap Method [52–54] or the Finite Element Model Updating [6,

22,20,55] have for instance been used for composite materials. In the following,

the latter technique is chosen. The objective here is to show how multiscale mea-

surements can improve the performance of such an identification technique.

5.1 Identification from multiscale measurements

The Finite Element Model Updating (FEMU) method is a popular, intuitive and

versatile identification technique [21,8]. It consists in updating a set of p constitu-

tive parameters p in a FE analysis in order to reduce, in the least squares sense,

the distance R(p) between the measured and the simulated quantities.

p
⋆ = argmin

p∈Rp

‖R(p)‖ (19)

Different optimization techniques, norms ‖.‖ and cost functions may be used to

exploit measured displacement fields [21,8,6,22,11]. For instance, in [6,22] strain

fields are compared. In the following, we rather compare directly the displacement

fields to avoid the amplification of the measurement noise linked to a numerical

differentiation [11,56]. This calls for a strengthened emphasis on the boundary



Multiscale displacement field measurement using digital image correlation: 23

conditions. The identification of the elastic moduli requires moreover the mini-

mization of the difference between the applied resultant load (measured by a load

cell) and the simulated one. In this case, a hybrid residual vector R(p) is generally

built as follows:

p
⋆ = argmin

p∈Rp

√

‖Ru(p)‖2 + ‖Rf (p)‖2 (20)

where the displacement and force residuals read:

Ru(p) =
us(p)− um

‖um‖
(21)

Rf (p) =
Fs(p)− Fm

Fm
(22)

where u denotes the displacement dof vector and F the resultant force while

.m and .s stand respectively for the measured and the simulated quantities. A

Levenberg-Marquardt algorithm is usually used to solve the minimization problem

(19). Instead of using this L2-norm, one could alternatively solve a weighted least

squares problem. In particular, the FE-DIC correlation matrix M is related to the

inverse of the covariance matrix for the degrees of freedom [17]. The use of M

allows thus for a convenient weighting of the degrees of freedom [20,55]:

p
⋆ = argmin

p∈Rp

√

‖Ru(p)‖2M + ‖Rf (p)‖22 (23)

where the M-norm is defined as ‖Ru‖
2
M = R⊤

uMRu. It should be noted that the

matrix M is symmetric and positive by construction. When invertible, it can be

decomposed using the Cholesky decomposition as follows M = LL⊤. Thus the

M -norm of Ru can be written using the L2 norm as ‖Ru‖M = ‖L⊤Ru‖2 which

makes it compatible with a standard implementation of the Levenberg-Marquardt

algorithm.

A simple standard monoscale FEMU approach is first applied. It exploits as

usual exclusively the farfield FE-DIC measurements. On the one hand, the dis-

placement field is measured using FE-DIC. On the other hand, a FE simulation

if performed. The plate is meshed with the same mesh (optimized for simulation)

as in section 4.3 (see Figure 9). As mentioned earlier, the simulated displacement

field strongly depends on the chosen boundary conditions. To minimise the im-

pact of this part of the modelling, the measured displacements on the nodes of

the upper and lower boundaries are imposed as Dirichlet boundary conditions in
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the simulation. The reaction force F can then be computed for the current set of

constitutive parameters. As mentioned in section 3.2, the use of a locally refined

mesh is relevant for the simulation. Nevertheless, it has to be coarse enough to

measure accurate FE-DIC displacements. Indeed, a displacement field corrupted

by large uncertainties will obviously yield large uncertainties on the identified pa-

rameters [20].

To avoid such a delicate compromise, a multiscale FEMU approach is thus de-

veloped. Like previously, farfield measurements are used to define Dirichlet bound-

ary conditions in the FE simulation. They are indeed mandatory to compute the

reaction Fs(p). However, the FEMU now takes advantage of nearfield FE-DIC

measurements. Once the simulation mesh adjusted on the reference nearfield im-

age following the multiscale registration technique (see Section 2.2), one measures

better resolved nodal displacements um|near in a restricted region where it is par-

ticularly sensitive to the sought parameters (see Section 4.2). As a first step, in this

multiscale approach of FEMU, only those nearfield measurements are compared

to the simulated displacements. The residual vector Ru(p) turns to:

Ru(p) =
us(p)− um|near

‖um|near‖
(24)

Finally, a flowchart of the principal steps in the multiscale measurement and

identification algorithm is provided in Figure 13. The strategy (global DIC mea-

surements, optimizations, homography, image synthesis...) has been implemented

in the Matlab environment. It takes less than 3 minutes to perform the overall

multiscale identification strategy on a laptop with an Intel R© CoreTM i5 2.53GHz

CPU and 8Go memory.

5.2 A priori analysis of the identification robustness

In this section, the uncertainties associated to the identified parameters from syn-

thetic images are compared. At each scale, an image is generated by warping the

real reference images (Figure 9) with a displacement corresponding to the solution

of the FE model with a known set of parameters denoted pref . Both identification

procedures are then applied to these two image pairs. To compare the approaches,

the relative error between the reference pref and the identified parameters p⋆
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Fig. 13 Flowchart of the multiscale procedure

Fig. 14 Relative error e(p) of the identified parameters as a function of the image noise

for the standard single-camera identification technique (FEMU) and the proposed multiscale

identification method (MS-FEMU) with the cost function expressed in the L2-norm and M -

norm. (note that the errorbars are also in logscale)

is quantified by e(p⋆) = ‖pref − p⋆‖/‖pref‖. The standard and multiscale ap-

proaches give respectively e(p⋆) = 2.08 × 10−3 and e(p⋆) = 3.15 × 10−4. Thus

the identification accuracy is improved by almost one order of magnitude on e(p)

with only a ratio of 5 between the image resolutions, in the proposed multiscale

method.
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In addition, in order to further compare the robustness of the methods, the

impact of the image noise is evaluated. A Gaussian noise, with zero mean and a

standard deviation ranging from one to twelve gray levels, is added to the farfield

and the nearfied images. For each level of noise, both the identification methods

are run for 20 random samples. The evolution of the standard and multiscale

identification errors are plotted in Figure 14 as a function of the image noise. It

can be seen, that the proposed multiscale procedure reduces also the sensitivity of

the identification with respect to image noise roughly by one order of magnitude.

Finally, the use of the M -norm helps to further improve the identification accuracy

(e(p⋆) = 1.58×10−4 compared to 3.15×10−4 previously) and the noise robustness

of the identified process.

5.3 Identification from a true experimental image sequence

The ten pairs of images recorded during the tensile test (see Section 4) are used to

measure both farfield and nearfield displacement fields. The FEMU procedure is

initialized using the elastic parameters identified classically (reference values): El=

21.53 GPa, El= 20.59 GPa, νlt= 0.15 et Glt= 3.54 GPa [57]. Figure 15 shows the

evolution of the parameters identified with both standard and multiscale FEMU

methods, at the nine last load steps.

As envisioned from the sensitivity analysis (Figure 11), the identification re-

sults demonstrate that the longitudinal modulus can correctly be estimated from

both FEMU analyses. At the first loading steps, the multiscale approach produces

more realistic values for all the parameters. Moreover, except for the transverse

modulus Et, the values of the parameters are close to the reference ones. It is worth

remembering that the sensitivity of the displacement field with respect to this pa-

rameter is lower than for the other parameters, and that the highest sensitivities

are restricted to a very small area. It is therefore logical that both approaches fail

to provide relevant results for this parameter. On the other hand, the evolution of

the identified parameters as a function of the loading step is much more regular

with MS-FEMU than with standard FEMU, in particular at the first steps, where

the signal to noise ratio is bad. This is in accordance with the uncertainty analysis

of Figure 14.
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Fig. 15 Identified parameters from different loading magnitude. From top left to bottom

right: Et; El; vlt; Glt standard FEMU (solid line) and MS-FEMU (dashed line)

Paradoxically, the identification of the elastic properties of a composite lami-

nate is quite a tricky problem. In order to stay in the elastic domain (including in

the hole vicinity), the loading must be sufficiently low, which leads to small strain

levels. The resulting signal to noise ratio makes standard FEMU fail to identify

accurately elastic parameters. Conservely, high levels of loading, inevitably lead to

material degradations (at least locally) which invalidate the elastic assumption. In

this regard, the proposed multiscale identification technique is a good alternative

since is proved to reduce significantly the noise sensitivity.

A complete analysis of the results reveals that the parameters seem to

evolve significantly at a very early stage of the loading. The shear modulus Glt

continuously decreases all along the tensile experiment. This could be related to

the development of damage in the plate. The model considered herein (orthotropic

linear elastic) is unable to model this phenomenon which is in addition most

prominent in the nearfield region [58]. This may explain the reason why the
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(a) (b) (c) (d)

Fig. 16 Discrepancy maps of the vertical component of the displacement between measure-

ment and simulation with the identified parameters for two extreme load amplitudes, 2kN (a

and c) and 5 kN (b and d) for both the standard single-camera (a and b) and the proposed

multiscale (c and d) FEMU.

parameters identified from the mono and the multiscale approaches can not be

compared for the higher loading steps.

The difference between measured displacements um and the displacements

us(p
⋆) simulated with the optimized parameters p⋆ does give an interesting indi-

cator of the relevance of the elastic assumption. Figure 16 shows the corresponding

discrepancy maps for the set of parameters identified with the multiscale approach

at both scales and at two distinct loading steps (2 kN and 5 kN). Discrepancies

are present but hardly visible at 2 kN, but they are significant at 5 kN. Those

maps simply confirm that the chosen model is (obviously) not able to describe the

observed behavior throughout the tensile test, particularly in the vicinity of the

hole where damage is known to localize.

6 Conclusions

Connection between simulation and full-field measurement was originally a criti-

cal task. With the advent of finite element based digital image correlation meth-

ods [16–18], it is now possible to bridge efficiently both of them with a common

language: a finite element mesh [20,55]. However, choosing an appropriate mesh

and / or spatial resolution may be quite tricky because of the spatial resolution
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/ uncertainty compromise [12,42]. In addition, this choice is also constrained by

hardwamultiscalere limitations. Moreover, in the context of identification, the spa-

tial resolution is often limited because the field of view generally needs to include

the boundaries of the specimen [10]. At the same time, a high spatial resolution

is required in the regions where the displacement is sensitive to the parameter

to identify. And in some cases (which is the case of the real experiment here),

these region are very small. All these remarks led us to devise both a new DIC

methodology and an associated FEMU technique able to take the best of images

taken at two different resolutions. Thus, in this paper, (a) a dedicated DIC method

was proposed for the automatic and accurate registration of the farfield image in

the nearfield image and (b) an hybrid multiscale cost function was used in the

FEMU technique. Finally, to assess the effectiveness of the proposed multiscale

approach, multi-resolution speckle pattern images were synthetized from a me-

chanical analytical field in order to simulate the whole chain from acquisition to

the identification of elastic properties.

The results show that the proposed multiscale method significantly improves

both measured displacements and identified parameters. It is shown that even with

a ratio of 5 between the image resolutions, the measurement and identification

uncertainties can be reduced by one order of magnitude which is one of the most

interesting ouput of the study. Not only the uncertainties are reduced, but it is

shown that the proposed method is also more robust with respect to image noise

by approximately one order of magnitude. This noise robustness can be further

reduced by using a weighted M-norm as in [20].

Besides the case of more than two cameras or larger resolution ratios, there

is a large number of work prospects, such as using other enhanced identification

methods [20,10], extension to stereo-DIC which is of great interest for more com-

plex structures [9,23]. It may also avoid the movements of the nearfield camera

between two shots. Ultimately, such multiscale methods will make sense when try-

ing to identify multiscale simulation models including local non-linearities, like for

instance damage [59,60].
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