Modeling IR spectra of CO2 isotopologues and CH4 trapped In type I clathrate
Azzedine Lakhlifi, Pierre-Richard Dahoo, Emmanuel Dartois, Eric Chassefière, Olivier Mousis

To cite this version:

HAL Id: hal-00948919
https://hal.archives-ouvertes.fr/hal-00948919
Submitted on 21 Feb 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Modeling IR spectra of CO$_2$ isotopologues and CH$_4$ trapped in type I clathrate

A. Lakhlifi1, P.R.Dahoo2, E Dartois3, E. Chassefière4 and O. Mousis1

1 Institut UT IN A M , UMR CNRS 6213-Université de Franche-Comté, Observatoire de Besançon, 25010 Besançon Cedex, France

2 Université Versailles St-Quentin; CNRS/INSU, LATMOS-IPSL, 78820 Guyancourt, France

3 Institut d' Astrophysique Spatiale (IAS-CNRS), Campus de l'Université Paris XI, 91405, Orsay, France

4 UMR 8148 IDES, Interactions et Dynamique des Environnements de Surface, Université Paris-Sud, 91405, Orsay, France

Abstract. To test the hypothesis of atmospheric carbon dioxide or methane storage in metastable clathrate, a theoretical formalism is developed to model and simulate the spectra of the CO$_2$ or CH$_4$ molecule trapped in clathrates. 12-6 Lennard-Jones atom-atom potentials are used to account for short and long range interactions between the atoms of the trapped molecules and atoms of H$_2$O molecules of the cage. Effective electric charges are used for electrostatic interactions with H$_2$O molecules. The calculations were performed on clathrates of type I, with a small and a large cage to determine equilibrium configurations for both CO$_2$ and CH$_4$ and vibrational shifts were determined for CO$_2$ in an undistorted trapping nano-cage.

1 The interaction potential energy

The interaction potential energy V_{MC} between the trapped CO$_2$ or CH$_4$ molecule and the rigid clathrate cage is expressed as:

$$V_{MC} = \sum_{k=1}^{N_w} \sum_{i=1}^{3} \sum_{j=1}^{3} 4\varepsilon_{ij} \left(\frac{\sigma_{ij}}{r_{ijk}} \right)^{12} - \left(\frac{\sigma_{ij}}{r_{ijk}} \right)^{6} - \frac{1}{4\pi\varepsilon_0} \frac{q_i q_j}{r_{ij}}$$

where i and j denote the i^{th} atom of the trapped CO$_2$ or CH$_4$ molecule and the j^{th} atom of the k^{th} water molecule of the clathrate matrix, separated by the distance vector r_{ijk}; and ε_{ij} and σ_{ij} are the mixed LJ potential parameters, obtained from the usual Lorentz-Berthelot combination rules $\varepsilon_{ij} = \sqrt{\varepsilon_{ii} \varepsilon_{jj}}$ and $\sigma_{ij} = (\sigma_{ii} + \sigma_{jj})/2$. In the second term of the above equation q_i and q_j are the electric charges of the i^{th} atom of the trapped molecule and the j^{th} atom of the water molecules.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License 2.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Article available at http://www.bio-conferences.org or http://dx.doi.org/10.1051/bioconf/20140203008
2 Results of equilibrium configuration

Calculations were performed on clathrates of type I, with unit cell consisting of 2 dodecahedral cages \((5^{12})\) and 6 tetrakaidecahedral cages \((5^{12}6^2)\), termed small and large cage respectively and results are given in Figures 1a) and 1b). The minimum configuration energy for the small cage corresponds to an interaction energy of -378 meV (-3050 cm\(^{-1}\)). The molecule is at the center of the cage opposite to the centers of 2 pentagonal faces and with an allowed translation motion around the center of the cage. For the large cage, energy minimum is calculated to be -418 meV (-3375 cm\(^{-1}\)). The molecule is parallel to the two hexagonal faces of the cage with a translational motion of large amplitude (0.07 nm) around the center of the cage in the direction parallel to the hexagons. Only librations are expected from calculations [1,2].

![Figure 1](image)

Figure 1 a) CO\(_2\) in large cage b) CO\(_2\) in small cage c) CH\(_4\) in large cage d) CH\(_4\) in small cage.

For CH\(_4\), results are given in Figures 1c) and 1d). Calculations give in the small cage a minimum potential energy of -405 meV (-3270 cm\(^{-1}\)). CH\(_4\) is at the center of the cage, with H atoms more or less facing pentagonal faces. In the large cage: the minimum potential energy is determined to be -338 meV (-2730 cm\(^{-1}\)). CH\(_4\) is not at the center of the cage and H atoms point more or less to pentagonal faces. For both cages, translational motions of large amplitudes and hindered orientational motions are expected from calculations [3].

Results in the undistorted cages show that the CO\(_2\) vibrational fundamental modes are blue shifted in the small cage and red shifted in the large one. A larger effect is shown for levels coupled by Fermi Resonance and a splitting of the degenerate vibrational mode \(v_2\) is expected. Preliminary results in distorted cages show only red shifts are to be expected.

References

