I. Galasiu and R. Galasiu, Inert Anodes for Aluminium Electrolysis, p.212, 2007.

. Fig, Summary of oxide layer formation mechanism on iron at low potentials: metal dissolution (a), ferrite precipitation (b), wüstite growth (c)

Y. A. Vassiliev and . Velikodny, Electrochemical behavior of metals and binary alloys in cryolite-alumina melts, pp.403-408, 2006.

Z. Shi, J. Xu, Z. Qiu, Z. Wang, and B. Gao, Copper-nickel superalloys as inert alloy anodes for aluminum electrolysis, JOM, vol.48, issue.5/6, pp.63-65, 2003.
DOI : 10.1007/s11837-003-0213-9

L. Cassayre, P. Chamelot, L. Arurault, L. Massot, P. Palau et al., Electrochemical oxidation of binary copper???nickel alloys in cryolite melts, Corrosion Science, vol.49, issue.9, pp.3610-3625, 2007.
DOI : 10.1016/j.corsci.2007.03.020

S. Helle, B. Brodu, B. Davis, D. Guay, and L. Roué, Influence of the iron content in Cu???Ni based inert anodes on their corrosion resistance for aluminium electrolysis, Corrosion Science, vol.53, issue.10, pp.3248-3253, 2011.
DOI : 10.1016/j.corsci.2011.05.069

V. Chapman, B. J. Welch, and M. Skyllas-kazacos, Anodic behaviour of oxidised Ni???Fe alloys in cryolite???alumina melts, Electrochimica Acta, vol.56, issue.3, pp.1227-1238, 2011.
DOI : 10.1016/j.electacta.2010.10.095

V. A. Kovrov, A. P. Khramov, Y. P. Zaikov, V. N. Nekrasov, and M. V. Ananyev, Studies on the oxidation rate of metallic inert anodes by measuring the oxygen evolved in low-temperature aluminium electrolysis, Journal of Applied Electrochemistry, vol.46, issue.6, pp.41-1301, 2011.
DOI : 10.1007/s10800-011-0345-5

G. C. Wood and T. G. Wright, The scaling of nickel and nickel-cobalt alloys in air, Corrosion Science, vol.5, issue.12, pp.841-857, 1965.
DOI : 10.1016/S0010-938X(65)80013-0

D. P. Whittle and G. C. Wood, Two-phase scale formation on Cu-Ni alloys, Corrosion Science, vol.8, issue.5, pp.295-308, 1968.
DOI : 10.1016/S0010-938X(68)80159-3

G. L. Wulf, T. J. Carter, and G. R. Wallwork, The oxidation of FeNi alloys, Corrosion Science, vol.9, issue.9, pp.689-701, 1969.
DOI : 10.1016/S0010-938X(69)80100-9

W. J. Tomlinson, M. J. Gardner, and R. J. Kowalski, The scale constituents and spalling characteristics of Ni???Fe (0???60%) alloys oxidized in air at 800???1200??C, Corrosion Science, vol.17, issue.4, pp.301-304, 1977.
DOI : 10.1016/0010-938X(77)90054-3

R. Haugsrud, T. Norby, and P. Kofstad, High-temperature oxidation of Cu???30 wt.% Ni???15 wt.% Fe, Corrosion Science, vol.43, issue.2, pp.283-299, 2001.
DOI : 10.1016/S0010-938X(00)00080-9

R. Haugsrud, On the high-temperature oxidation of Fe, Co, Ni and Cu-based alloys with addition of a less noble element, Materials Science and Engineering: A, vol.298, issue.1-2, pp.1-2, 2001.
DOI : 10.1016/S0921-5093(00)01315-0

R. Haugsrud, High-temperature oxidation of Ni?20 wt.% Cu from 700 to 1100°C, Oxidation of Metals, vol.55, issue.5/6, pp.571-583, 2001.
DOI : 10.1023/A:1010368017367

B. S. Kim, B. G. Kim, H. W. Lee, and W. S. Chung, Kinetics of Fe-30% Ni-12.5% Co invar alloy during high temperature oxidation, Metals and Materials International, vol.47, issue.4, pp.367-373, 2002.
DOI : 10.1007/BF03186109

]. V. Chapman, B. J. Welch, and M. Skyllas-kazacos, High temperature oxidation behaviour of Ni???Fe???Co anodes for aluminium electrolysis, Corrosion Science, vol.53, issue.9, pp.2815-2825, 2011.
DOI : 10.1016/j.corsci.2011.05.018

I. Gallino, M. E. Kassner, and R. Busch, Oxidation and corrosion of highly alloyed Cu???Fe???Ni as inert anode material for aluminum electrowinning in as-cast and homogenized conditions, Corrosion Science, vol.63, pp.63-293, 2012.
DOI : 10.1016/j.corsci.2012.06.013

R. Y. Chen and W. Y. Yuen, Review of the high-temperature oxidation of iron and carbon steels in air or oxygen, Oxide Met, pp.5-6, 2003.

Q. Diep, F. Dewing, and A. Sterten, The solubility of Fe2O3 in cryolite-alumina melts, Metallurgical and Materials Transactions B, vol.21, issue.1, pp.140-142, 2002.
DOI : 10.1007/s11663-002-0095-1

T. Jentoftsen, E. Dewing, O. Lorentsen, G. Haarberg, and J. Thonstad, An Electrochemical Investigation of Fe(II) Dissolved in a Cryolite Melt, Metallurgical and Materials Transactions B, vol.75, issue.4, pp.869-874, 2012.
DOI : 10.1007/s11663-012-9645-3

T. Jentoftsen, O. Lorentsen, E. Dewing, G. Haarberg, and J. Thonstad, Solubility of some transition metal oxides in cryolite-alumina melts: Part I. Solubility of FeO, FeAl2O4, NiO, and NiAl2O4, Solubility of FeO, FeAl 2 O 4 , NiO, and NiAl 2 O 4, pp.901-908, 2002.
DOI : 10.1007/s11663-002-0073-7

P. Chamelot, B. Lafage, and P. , Studies of Niobium Electrocrystallization Phenomena in Molten Fluorides, Journal of The Electrochemical Society, vol.143, issue.5, pp.1570-1576, 1996.
DOI : 10.1149/1.1836681

C. W. Bale, P. Chartrand, S. A. Decterov, G. Eriksson, K. Hack et al., FactSage thermochemical software and databases, Calphad, vol.26, issue.2, pp.62-189, 2002.
DOI : 10.1016/S0364-5916(02)00035-4

URL : http://dx.doi.org/10.1016/j.calphad.2016.05.002

A. P. Khramov, V. A. Kovrov, Y. P. Zaikov, and V. M. Chumarev, Anodic behaviour of the Cu82Al8Ni5Fe5 alloy in low-temperature aluminium electrolysis, Corrosion Science, vol.70, pp.194-202, 2013.
DOI : 10.1016/j.corsci.2013.01.029

A. Solheim and Å. Sterten, Activity of alumina in the system NaF?AlF 3 ?Al 2 O 3 at NaF/AlF 3 molar ratios ranging from 1.4 to 3, pp.445-452, 1999.

L. Cassayre, P. Chamelot, L. Arurault, and P. , Anodic Dissolution of Metals in Oxide-Free Cryolite Melts, Journal of Applied Electrochemistry, vol.26, issue.6, pp.999-1004, 2005.
DOI : 10.1007/s10800-005-6727-9

T. R. Beck, C. M. Macrae, and N. C. Wilson, Metal Anode Performance in Low-Temperature Electrolytes for Aluminum Production, Metallurgical and Materials Transactions B, vol.24, issue.4, pp.807-813, 2011.
DOI : 10.1007/s11663-011-9511-8