Service interruption on Monday 11 July from 12:30 to 13:00: all the sites of the CCSD (HAL, EpiSciences, SciencesConf, AureHAL) will be inaccessible (network hardware connection).
Skip to Main content Skip to Navigation
Journal articles

Large-scale simultaneous hypothesis testing in monitoring carbon content from French soil database - A semi-parametric mixture approach

Abstract : Investigating the information of the French National Soil Tests database for soil monitoring produces multiple hypothesis testing problems with hundreds or thousands of test responses to consider simultaneously. A largely used concept of error control in such multiple testing is the expected proportion of falsely rejected hypotheses, or False Discovery Rate (FDR). A related notion of local FDR (lFDR) can be appropriately represented by considering that the observed p-values come from a two-components mixture model where the component corresponding to the null hypothesis is known. In this work, we explore different solutions for FDR estimation. In particular, we introduce a specific version of a semi-parametric Expectation-Maximization (EM) algorithm for lFDR estimation, and compare it to classical lFDR estimation using parametric mixtures, and conventional FDR approaches. The performances of the different models for estimating the FDR and related criteria are first illustrated on the results of simulated multiple comparison tests. These approaches are then applied to soil carbon content monitoring on our database. The results show that not taking into account the FDR estimation can lead to over-estimation of the number of cantons (locations) subject to a significant change. However, we have detected large numbers of significant changes in the database that occured during the time period of this study. Globally, losses in organic carbon are observed in Northern France, along the Atlantic coastal regions, and to a less extend for the data collected over the North-Eastern regions. The OC increases are more scattered over the territory. We also use the data to estimate the minimum number of samples needed at each period to detect a given change.
Complete list of metadata

Cited literature [36 references]  Display  Hide  Download
Contributor : Didier Chauveau Connect in order to contact the contributor
Submitted on : Tuesday, February 18, 2014 - 2:35:24 PM
Last modification on : Wednesday, April 6, 2022 - 4:08:09 PM
Long-term archiving on: : Sunday, May 18, 2014 - 11:51:05 AM


Files produced by the author(s)



Didier Chauveau, Nicolas P.A. Saby, Thomas G. Orton, Blandine Lemercier, Christian Walter, et al.. Large-scale simultaneous hypothesis testing in monitoring carbon content from French soil database - A semi-parametric mixture approach. Geoderma, Elsevier, 2014, 219-220, pp.117-124. ⟨10.1016/j.geoderma.2013.12.016⟩. ⟨hal-00948553⟩



Record views


Files downloads