Synthesis of single-walled carbon nanotubes using binary (Fe, Co, Ni) alloy nanoparticles prepared in situ by the reduction of oxide solid solutions

Emmanuel Flahaut, A. Govindaraj, Alain Peigney, Christophe Laurent, Abel Rousset, Chintamani Nagesa Ramachandra Rao

To cite this version:

HAL Id: hal-00948432
https://hal.archives-ouvertes.fr/hal-00948432
Submitted on 21 Feb 2014
Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: http://oatao.univ-toulouse.fr
Eprints ID: 10893

To link to this article: DOI:10.1016/S0009-2614(98)01304-9
URL: http://dx.doi.org/10.1016/S0009-2614(98)01304-9

To cite this version:

Any correspondance concerning this service should be sent to the repository administrator: staff-oatao@listes-diff.inp-toulouse.fr
Synthesis of single-walled carbon nanotubes using binary (Fe, Co, Ni) alloy nanoparticles prepared in situ by the reduction of oxide solid solutions

E. Flahaut a, A. Govindaraj b,c, A. Peigney a, Ch. Laurent a, A. Rousset a, C.N.R. Rao b,c, *

a Laboratoire de Chimie des Matériaux Inorganiques, ESA CNRS 5070, Université Paul-Sabatier, F-31062 Toulouse Cedex 4, France
b CSIR Centre of Excellence in Chemistry, Indian Institute of Science, Bangalore 560012, India
c Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India

Abstract

Passing a H₂–CH₄ mixture over oxide spinels containing two transition elements as in Mg₀.₈M₂₋ₓₓ爔(167,247),(951,280)

1. Introduction

Carbon nanotubes are attracting much attention because of their novel mechanical and electronic properties. In order to suitably make use of the nanotubes, it is necessary to have them in uniform size, with a narrow size distribution. Towards this purpose, most workers employ metal particles to catalyse the decomposition of hydrocarbons or carbon monoxide. The metal particles are suggested to play a catalytic role at an atomic level rather than as heterogeneous nucleation sites [1]. Although Ni and Co nanoparticles appear to be the best amongst monometallic catalysts, nanoparticles of bimetallic alloys formed by these metals give 10–100 times higher yields of single-walled nanotubes (SWNTs) [2,3]. If the particle size of the metals and alloys is large, carbon filaments or fibres rather than the Iijima-type nanotubes are generally obtained [4–8]. Small nanoparticles of transition metals produced by the pyrolysis of organometallics containing Fe, Co and Ni along with hydrocarbons give multiwalled nanotubes (MWNTs), but through a careful manipulation of partial pressures, SWNTs are obtained [9,10]. We have employed reduced spinel oxides containing small quantities of two transition metals (amongst Fe, Co, and Ni) to synthesize nanotubes,

* Corresponding author. E-mail: cnrrao@sscu.iisc.ernet.in
since the method is known to give rise to narrow compositions of small alloy nanoparticles [11].

In the method employed in the present study, high-temperature hydrogen reduction of the oxide spinels of the general composition \(\text{Mg}_{0.2} \text{M}_y \text{M}_z \text{Al}_2 \text{O}_4 \) (M, M’ = Fe, Co, Ni, \(y + z = 0.2 \) and \(y \) or \(z = 0.05, 0.10, 0.15 \) and 0.20) generates catalytic transition metal alloy nanoparticles required for the formation of the nanotubes by the pyrolysis of methane. Surface area measurements have been employed to quantify the yield and quality of nanotubes. High-quality SWNTs have been obtained particularly with FeCo alloy nanoparticles.

2. Experimental

Spinel oxides of the general formula \(\text{Mg}_{0.2} \text{M}_y \text{M}_z \text{Al}_2 \text{O}_4 \) (M, M’ = Fe, Co, Ni, \(y + z = 0.2 \) and \(y \) or \(z = 0.05, 0.10 \) and 0.15) were prepared starting with a stoichiometric mixture of the metal nitrates and subjecting the nitrate mixture along with urea to the usual procedure employed in combustion synthesis [12]. The combustion product was attrition-milled in a Nylon vessel in an aqueous medium, passed through a sieve, washed with ethanol and calcined at 500°C for 30 min. The oxide product contained essentially the lacunar spinel phase [11,13] of the general formula \(\text{D}_1_{-3a} \text{T}_{2+2a} \text{O}_4 \), where D and T stand for divalent and trivalent cations and () represents vacancies. A dry mixture of \(\text{H}_2-\text{CH}_4 \) (18 mole% \(\text{CH}_4 \)) was passed over the calcined oxide at 1070°C for 6 min at a flow rate of 250 sccm. This resulted in the reduction of the transition metal ions to the metals in the form of nanoparticles, followed by the formation of carbon nanotubes, the entire process was very facile. We shall designate the various samples by \(\text{M}_{1-y} \text{M}_y \text{ } \) (M, M’ = Fe, Co, Ni) for brevity.

The carbon content, \(C_a \), of the products subjected to the \(\text{H}_2-\text{CH}_4 \) treatment, containing carbon (in the form of nanotubes) along with the metal particles and the oxide, was determined by flash combustion. The values of \(C_a \) so obtained are listed in Table 1. The products after \(\text{H}_2-\text{CH}_4 \) treatment were oxidized in air at 900°C for 2 h to eliminate the carbon. The composition of the transition metal alloy clearly affects the conversion of \(\text{CH}_4 \) to carbon by hydrogen reduction. The values of \(C_a \) are plotted against the alloy composition in Fig. 1. FeCoNi and FeCoNi appear to be most efficient in terms of the carbon yield.

<table>
<thead>
<tr>
<th>Specimen</th>
<th>(C_a) (wt%)</th>
<th>(S_1) (m² g⁻¹)</th>
<th>(S_2) (m² g⁻¹)</th>
<th>(\Delta S) (m² g⁻¹)</th>
<th>(\Delta S/C_a) (m² g⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe</td>
<td>5.81</td>
<td>18.20</td>
<td>10.48</td>
<td>7.72</td>
<td>133</td>
</tr>
<tr>
<td>FeCo.25</td>
<td>7.10</td>
<td>25.06</td>
<td>10.14</td>
<td>14.92</td>
<td>210</td>
</tr>
<tr>
<td>FeCo.50</td>
<td>6.99</td>
<td>31.65</td>
<td>11.79</td>
<td>19.86</td>
<td>284</td>
</tr>
<tr>
<td>FeCo.25</td>
<td>5.61</td>
<td>25.29</td>
<td>10.41</td>
<td>14.88</td>
<td>265</td>
</tr>
<tr>
<td>Co</td>
<td>3.77</td>
<td>23.27</td>
<td>10.52</td>
<td>12.75</td>
<td>338</td>
</tr>
<tr>
<td>Fe</td>
<td>5.81</td>
<td>18.20</td>
<td>10.48</td>
<td>7.72</td>
<td>133</td>
</tr>
<tr>
<td>FeNi.25</td>
<td>5.12</td>
<td>20.01</td>
<td>10.05</td>
<td>9.96</td>
<td>195</td>
</tr>
<tr>
<td>FeNi.50</td>
<td>4.07</td>
<td>19.55</td>
<td>10.15</td>
<td>9.40</td>
<td>231</td>
</tr>
<tr>
<td>FeNi.25</td>
<td>2.58</td>
<td>15.17</td>
<td>8.75</td>
<td>6.42</td>
<td>249</td>
</tr>
<tr>
<td>Ni</td>
<td>1.97</td>
<td>13.54</td>
<td>9.20</td>
<td>4.34</td>
<td>220</td>
</tr>
<tr>
<td>Co</td>
<td>3.77</td>
<td>23.27</td>
<td>10.52</td>
<td>12.75</td>
<td>338</td>
</tr>
<tr>
<td>CoNi.25</td>
<td>2.39</td>
<td>19.14</td>
<td>11.29</td>
<td>7.85</td>
<td>328</td>
</tr>
<tr>
<td>CoNi.50</td>
<td>1.75</td>
<td>13.22</td>
<td>8.70</td>
<td>4.52</td>
<td>259</td>
</tr>
<tr>
<td>CoNi.25</td>
<td>2.00</td>
<td>15.67</td>
<td>8.93</td>
<td>6.74</td>
<td>338</td>
</tr>
<tr>
<td>Ni</td>
<td>1.97</td>
<td>13.54</td>
<td>9.20</td>
<td>4.34</td>
<td>220</td>
</tr>
</tbody>
</table>

* Metal content was 6.7 wt% in all the compositions.

![Fig. 1. Variation of the carbon content (C_a) with the composition of the alloy nanoparticle. The dashed lines are guides to the eye.](image-url)
BET \(^1\) surface areas of the following materials were measured by N\(_2\) adsorption: reduced product after passing the H\(_2\)–CH\(_4\) mixture and hence containing carbon along with metal particles (\(S_c\)) and the material obtained after oxidizing the product of H\(_2\)–CH\(_4\) treatment and hence free of carbon (\(S_s\)). The values of the surface areas are listed in Table 1. The products obtained after passing the H\(_2\)–CH\(_4\) mixture over the oxide spinels were examined by X-ray diffraction (XRD), scanning electron microscopy (SEM) as well as transmission electron microscopy (TEM).

\(^1\)Brünnauer–Emmett–Teller adsorption isotherm.

3. Results and discussion

The XRD patterns of the products obtained after subjecting the oxide spinels containing the transition metals to treatment with the H\(_2\)–CH\(_4\) mixture at 1070°C showed evidence for the presence of metal or alloy particles (depending on the starting composition) and the oxide spinel, Mg\(_{0.3}\)Al\(_{12.133}\)(\(\text{OH}_{0.067}\))\(_4\) where \((\cdot)\) represents a vacancy. Thus, the oxide composition containing only Co gave reflections due to e-Co whereas those with both Co and Ni gave reflections due to the alloys of the respective compositions. Reflections due to Fe–Ni and Fe–Co alloys were similarly found in the corresponding oxide compositions. With the iron-containing oxide spinel,
Fig. 3. TEM images of the nanotubes obtained with Fe_{52.5}Co_{47.5} nanoparticles: (a) a single-wall nanotube (noted SWNT hereafter) 1.1 nm in diameter emerges from a bundle the diameter of which is ~ 4 nm; (b) the largest observed bundle, ~ 14 nm in diameter, with an emerging SWNT, 2 nm in diameter; (c) the thinnest observed SWNT, 0.8 nm in diameter, superimposed with two larger SWNTs; (d) a tight SWNT, 0.85 nm in diameter, with neighbouring larger tubes (between 1.6 and 2.8 nm in diameter); (e) a nanotube with 2 walls (2.1 nm in diameter); (f) a SWNT, 2.5 nm in diameter, with a closed hemisphere tip.
reflections due to Fe,C were found as well as those
due to α-Fe. Clearly, treatment with the H2–CH4
mixture not only reduces the transition metal ions
into the metallic state, but also forms binary alloys
when two metal ions are present.

The SEM images of the oxide spinels subjected to
the H2–CH4 treatment showed the presence of nan-
otubes in the form of a web-like network of long
filaments. In Fig. 2, we show typical SEM images.
The images generally reveal the presence of bundles
of nanotubes, the bundle diameters varying with the
composition of the alloy particles. Thus, with
Fe0.50Ni0.50 and Co0.30Ni0.70, the bundle diameters
are in the 20–50 and 10–20 nm ranges, respectively.
Individual filaments are generally much smaller than
5 nm in diameter. The SEM image with Fe0.50Co0.50
particles shows very few nanotubes mainly because
the nanotubes and their bundles are considerably
smaller than 10 nm in diameter. The presence of
large quantities of single-walled nanotubes in the
case of Fe0.50Co0.50 could, however, be definitively
established from the TEM images. SEM fails to
reveal such thin nanotubes because of the limitation
of the resolution. In Fig. 3, we show typical TEM
images revealing the presence of isolated SWNTs as
well as bundles of SWNTs. Fig. 3a shows a SWNT
1.1 nm in diameter emerging from a bundle of 4 nm
diameter. Amorphous carbon deposits present on
the bundle result from the degradation of the nanotubes
under electron beam irradiation. Pristine samples
accordingly show little of such deposits. The largest
bundle observed by us is ~14 nm in diameter (Fig.
3b). An emerging SWNT, 2 nm in diameter, can be
seen at the bottom of this image. In Fig. 3c, we show
the thinnest SWNT (0.8 nm in diameter) observed by
us; it is superimposed by two larger SWNTs, the
walls of which are irregular because of degradation
under the electron beam. A straight SWNT (0.85 nm
in diameter) along with larger ones (between 1.6 and
2.8 nm in diameter) are shown in Fig. 3d. A nano-
tube (2.1 nm in diameter) with two walls is seen in
Fig. 3e. It is interesting that most of the isolated
nanotubes (~80%) are SWNTs with diameters in the
0.8–5 nm range. Multiwalled nanotubes found
occasionally have diameters smaller than 10 nm, and
generally possess only two graphite layers. Those
with 3, 4 and 5 graphitic sheaths were rarely ob-
served. In Fig. 3f, a SWNT (2.5 nm in diameter)
with a closed hemispheric tip is seen coming out of a
thin bundle (3 nm in diameter). Interestingly, no
catalyst particle is present at the tube tip.

From the values of the surface areas before and
after H2–CH4 treatment (Table 1), we can obtain the
contribution to the surface area by the carbon formed
by the decomposition of CH4 [14]. We list the
ΔS = Sf – S0 values in Table 1. We show the varia-
tion of ΔS with the composition of the alloy
nanoparticles in Fig. 4. The alloys are generally
associated with higher ΔS values than either compon-
ent metal, and the highest values are found with the
Fe–Co alloys. The ΔS/Cn values, corresponding to
the surface area per gram of carbon (produced by the
decomposition of CH4) may be taken to represent
the quality of the nanotubes, a higher figure denoting
a smaller tube diameter as well as a greater nanotube
yield. We have listed the ΔS/Cn values in Table 1
and plotted them against the composition of the
metal alloy particles in Fig. 5. A progressive increase
in ΔS/Cn is observed with the Co content in the
Fe–Co system, the Fe–Ni system shows such an
increase with the Ni content partially. In the case of
the Co–Ni system, ΔS/Cn actually decreases with
the Ni content. The ΔS/Cn values in the alloys are
generally in the range 195–338 m2 g–1, the highest

![Fig. 4. Variation of the surface area due to the carbon product, ΔS, with the composition of the alloy nanoparticles. The dashed lines are guides to the eye.](image-url)
value corresponding to that found with cobalt alone. The $\Delta S/C_a$ values found by us indicate that both Fe–Co and Co–Ni alloy particles yield high-quality nanotubes, the presence of Co is probably responsible for the effect. Interestingly, TEM studies also show that the Fe$_{0.5}$Co$_{0.5}$ alloy gives the highest yield of SWNTs as discussed earlier. The $\Delta S/C_a$ values found by us are close to the recently reported surface area of 268 m2 g$^{-1}$ for multi-walled nanotubes [15].

The above results show that transition metal alloy nanoparticles produced by the reduction of oxide spinels are good agents for generating single-walled nanotubes. This is consistent with the earlier observation [11] that reduction of spinels gives relatively small nanoparticles with a narrow size distribution. It is indeed known that the small size of the nanoparticles is essential to form SWNTs [10,16]. The presence of a metal such as Co appears to prevent the formation of Fe$_3$C and such carbides. It is likely that the oxide support affords a good distribution of the alloy nanoparticles on its surface. Alloying promotes the decomposition of CH$_4$ to produce carbon nanotubes, the quality of which depends on the alloy composition. It is noteworthy that the best performance is found with FeCo nanoparticles which give a high yield of SWNTs of good quality, as judged both by electron microscopy and surface area measurements. The successful synthesis of good-quality SWNTs reported here by using FeCo alloy nanoparticles dispersed on oxide spinels is to be compared with the recent report of Kong et al. [17] who obtained SWNTs by chemical vapor deposition of CH$_4$ over impregnated Fe$_2$O$_3$/Al$_2$O$_3$ at low loading. These workers could not quantify the yield or quality of the nanotubes.

Acknowledgements

The authors would like to thank Dr. O. Quenard for his help in the preparation of the oxide solid solutions and Mr. L. Datas for his assistance with the TEM observations. The financial support of the Indo-French Centre for the Promotion of Advanced Research (New Delhi) is gratefully acknowledged.

References

