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Discrete triangular distributions are introduced in order to serve as kernels in the nonparametric estimation for probability mass
function. They are locally symmetric around every point of estimation. Their variances depend on the smoothing bandwidth, and they
establish a bridge between a Dirac distribution and a discrete uniform one. The boundary bias related to the discrete triangular kernel
estimator is solved through a modification of the kernel near the boundary. The mean integrated squared errors and then the optimal
bandwidth are investigated. We also study the adequate bandwidth for excess zeros. The performance of the discrete triangular kernel
estimator is illustrated by using simulated count data. An application to count data from football is described and compared to a
binomial kernel estimator.
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1 Introduction

Let X1, · · · , Xn be a random sample from a discrete distribution with an unknown probability mass function
f which is defined on the discrete set ℵ. From [1], the discrete kernel estimator of f has been defined by [2]
as follows:

f̂(x) =
1

n

n∑

i=1

Kx,h(Xi) =: f̂n,h,K(x), x ∈ ℵ, (1)

where h > 0 is the bandwidth (or smoothing parameter) and K is a discrete kernel. Given x ∈ ℵ and
h > 0, the associated discrete kernel Kx,h(·) connecting to a discrete random variable Kx,h on ℵx,h is such
that ℵx,h ∩ ℵ 6= ∅, ∪xℵx,h ⊇ ℵ, E(Kx,h) ∼ x when h → 0, and

E[f̂n,h,K(x)] =
∑

y∈N

Kx,h(y)f(y)

=
∑

y∈N

Pr(Kx,h = y)f(y)

= E[f(Kx,h)]. (2)
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sszocchi@esalq.usp.br (Silvio S. Zocchi).

Nonparametric Statistics

ISSN 1048-5252 print/ ISSN 1029-0311 online c©2006 Taylor & Francis Ltd

http://www.tandf.co.uk/journals

DOI: 10.1080/10485250xxxxxxxxxxxxx



September 13, 2007 14:8 Journal of Nonparametric Statistics jNpScKSZrev

2 Discrete triangular kernels estimation

Thus, the estimator f̂ = f̂n,h,K of f can be explicitly written and the basic (asymptotical) properties
investigated under the following general hypothesis:

E(Kx,h) = x + h + o(h) and V ar(Kx,h) = VK(x, h) + o(h), (3)

with VK(x, h) ≥ 0. Naturally, the discrete kernel estimators are more appropriated for estimating any
(weighted or regression) discrete function than the use of continuous kernels. Standard discrete distributions
such as Poisson and binomial (see also in [3]) can be used as discrete kernels under the conditions (3)
according to the intrinsic parameters of the considered discrete distribution. However, it would be necessary
to be skillful in the choice of parameters satisfying (3) for obtaining pointwise and global properties of
the estimator (1). Since classical discrete distributions are not thought-out to be kernels in (1), the role of
standard discrete kernels for small samples is essential than for continuous kernels. In general, the choice
of kernel function is not very important asymptotically, like “frequency estimator”. But, in small samples
the kernel structure may play a more crucial role in approximating the sample distribution especially for
count random variables. About secondary importance of continuous kernels, the readers can refer to [4]
and [5] for generality of (assumed) continuous data, [6] for multivariate cases, [7] for functional data, [8]
for ordered categorial data, and [9] for discrete data. Let us note here that there exists another way for
smoothing discrete probability distribution; see, for example, Ouyang et al. [10] and references therein for
categorical data or finite discrete distributions. In its conception, the smoothed estimator (1) of this paper
is the discrete analogue of the continuous case which is well known (e.g. [11–13]).

The kernel function K is usually symmetric and is regarded as less important than the smoothing
bandwidth. While using a symmetric (discrete) kernel is appropriate for estimating probability densities
with unbounded supports, it is not adequate for at least one-side bounded supports as it causes boundary
bias. Precise here that the cause of boundary bias (or edge effect) is due to the fact that the fixed symmetric
kernel which assignes weight outside the density support when smoothing is made near the boundary. An
efficacious remedy is to use kernels that never allocate weight outside the support. See, for example,
Chen [12,13] and references therein for continuous cases.

In this paper we introduce a new family of symmetric discrete distributions called discrete triangular
distributions in order to serve as kernels in (1). From (3), the associated random variables Kx,h are
symmetric around the mean value which is the point x of estimation, and its variances do not depend on
x ∈ ℵ. Without loss of generality, we consider that the support ℵ of f is the set N of nonnegative integers.
Bias, variance and mean (integrated) squared errors are investigated to deduce the optimal bandwidth of
a discrete triangular kernel estimator. In this context, the boundary bias is remedied by modifying the
kernel near x = 0 such that the associated discrete triangular kernels do not assign weight outside N. We
also provide a solution to the phenomena of excess zeros.

The paper is structured as follows. In Section 2 discrete triangular distributions are introduced. Their
connections to discrete kernel estimators are studied in Section 3. Mean integrated squared error, optimal
bandwidth, adapted bandwidth for excess zeros and boundary bias are therefore derived. Section 4 first
illustrates various aspects of the performance of the estimators using simulated count data. Then, there
is an illustration for estimating count data from football choosen among many count data which exist in
different areas as economy, finance, ecology, medicine, insurance. This is followed by a comparison with a
binomial kernel estimator. Section 5 contains concluding remarks.

2 Discrete triangular distributions

Let a, c ∈ N. A discrete random variable Ta,c is said triangular with arm a and center c, if its support is
ℵa,c = {c, c ± 1, · · · , c ± a} and the probability mass function is given by

Pr(Ta,c = y) =
a + 1 − |y − c|

(a + 1)2
, y ∈ ℵa,c.
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A graphical representation points out the triangular form on the support ℵa,c and it is symmetric around
its mean value c = E(Ta,c). An extension of discrete triangular random variable on the same support ℵa,c

is the following.

Definition 2.1 Let h > 0 and (a, c) ∈ N2. A discrete random variable Ta,h,c is said triangular of order h,
centered in c with arm a, if its support is ℵa,c = {c, c ± 1, · · · , c ± a} and its probability mass function is

Pr(Ta,h,c = y) =
(a + 1)h − |y − c|h

P (a, h)
, y ∈ ℵa,c,

with the normalizing constant

P (a, h) = (2a + 1)(a + 1)h − 2
a∑

k=0

kh.

Note that h = 1 corresponds to the discrete triangular random variable Ta,c. The cases h ≤ 0 are not
defined to the center c ∈ N and, in particular, it gives the null random variable for h = 0. For positive
integers h ∈ N∗, the normalizing constant P (a, h) can be written as

P (a, h) = (2a + 1)(a + 1)h − 2

a∑

k=0

(−1)h−k+1h!Bh−k+1

k!(h − k + 1)!
ak, (4)

where Bj is the Bernoulli number (see, for example, [14]). We are able to provide some expressions of
P (a, h) for h = 1, 2, · · · , 8, by using formula for sum of powers of integers. Figure 1 presents some graphics
of discrete triangular distributions which we can denote by T (a, h, c).

(Figure 1 about here)

The following proposition shows some elementary but basic properties of discrete triangular random
variables.

Proposition 2.2 Let Ta,h,c be a discrete triangular random variable of order h > 0, centered in c ∈ N with
arm a ∈ N. Then Ta,h,c is symmetric around its mean value c = E(Ta,h,c), and its variance V ar(Ta,h,c) =
V (a, h) does not depend on c with

V (a, h) =
1

P (a, h)

(
a(2a + 1)(a + 1)h+1

3
− 2

a∑

k=0

kh+2

)
.

Proof From Definition 2.1, one has successively

E(Ta,h,c) =
∑

y∈ℵa,c

y Pr(Ta,h,c = y)

=
1

P (a, h)



(a + 1)h
∑

y∈ℵa,c

y −
∑

y∈ℵa,c

y|y − c|





= c ×
(a + 1)h(2a + 1) − 2

∑a
k=0 kh

P (a, h)

= c,
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and trivially for y ∈ ℵa,c

Pr(Ta,h,c = c − y) =
(a + 1)h − |y|h

P (a, h)

= Pr(Ta,h,c = c + y).

Finally, one gets

V ar(Ta,h,c) =
∑

y∈ℵa,c

y2 Pr(Ta,h,c = y) − [E(Ta,h,c)]
2

=
1

P (a, h)



(a + 1)h
∑

y∈ℵa,c

y2 −
∑

y∈ℵa,c

y2|y − c|h



 − c2

=
1

P (a, h)

(
2a(a + 1)h+1(2a + 1)

6
− 2

a∑

k=0

kh+2 + c2P (a, h)

)
− c2

=
1

P (a, h)

(
a(a + 1)h+1(2a + 1)

3
− 2

a∑

k=0

kh+2

)
.

¤

From expression (4) of P (a, h) obtained by the Bernoulli number, one can calculate corresponding
forms of V (a, h) = V ar(Ta,h,c) for h = 1, 2, · · · , 8.

A part of the following remark is easy to check through Definition 2.1, Proposition 2.2, and the fact that
the support ℵa,c = {c, c ± 1, · · · , c ± a} of Ta,h,c depends on the arm a ∈ N but not on the order h > 0. In
general, it can be also observed by using a computer algebra program.

Remark 1

(i) For fixed h > 0, the first partial variance function a 7→ V (a, h) = V ar(Ta,h,c) of Ta,h,c is increasing and
unbounded with respect to the arm a ∈ N.

(ii) For fixed a ∈ N, the second partial variance function h 7→ V (a, h) = V ar(Ta,h,c) of Ta,h,c is increasing
from 0 to a(a + 1)/3 with respect to the order h > 0 .

In order to see the boundaries of the function h 7→ V (a, h) = V ar(Ta,h,c) in Part (ii) of Remark 1, the
following proposition shows the limits with respect to h of the random variables Ta,h,c.

Proposition 2.3 Let Ta,h,c be a discrete triangular random variable of order h > 0, centered in c ∈ N

with arm a ∈ N. Then for all (a, c) ∈ N2:

(i) when h → 0 the limit random variable Ta,0,c follows the Dirac law at c;
(ii) when h → ∞ the limit random variable Ta,∞,c follows the discrete uniform law on the support ℵa,c =

{c, c ± 1, · · · , c ± a}.

Proof Since the support of Ta,h,c is the discrete set ℵa,c, it is enough to calculate the limits of individual
probabilities of Ta,h,c with respect to h.
(i) On the first hand we have

lim
h→0

Pr(Ta,h,c = c) = lim
h→0

1

2a + 1 − 2
∑a

k=0[k/(a + 1)]h

=
1

2a + 1 − 2a
= 1.
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On the other hand, for all y 6= c, there exists j ∈ {1, 2, · · · , a} such that y = c ± j; and, therefore, we get

lim
h→0

Pr(Ta,h,c = y) = lim
h→0

(a + 1)h − jh

(2a + 1)(a + 1)h − 2
∑a

k=0 kh

=
1 − 1

2a + 1 − 2a
= 0.

(ii) Let y ∈ ℵa,c. We can always write y as y = c ± j with j ∈ {0, 1, · · · , a}. Then, we obtain

Pr(Ta,h,c = y) =
(a + 1)h − jh

(2a + 1)(a + 1)h − 2
∑a

k=0 kh

=
1

2a + 1
×

1 − [j/(a + 1)]h

1 − [2/(2a + 1)]
∑a

k=0[k/(a + 1)]h

for j ∈ {0, 1, 2, · · · , a}. It follows that limh→∞ Pr(Ta,h,c = y) = 1/(2a + 1), for any y ∈ ℵa,c. ¤

3 Discrete triangular kernel estimators

Now we can define the discrete triangular kernel estimators. Let X1, · · · , Xn be a random sample from
a count distribution with an unknown probability mass function x 7→ f(x) := Pr(Xi = x) on N. Given
a ∈ N, a discrete triangular kernel estimator of arm a of f is defined by

f̂n,h,a(x) =
1

n

n∑

i=1

Ta,h,x(Xi)

=
1

n

n∑

i=1

(a + 1)h − |Xi − x|h

(2a + 1)(a + 1)h − 2
∑a

k=0 kh
, x ∈ N, (5)

where h > 0 is the smoothing bandwidth, and Ta,h,x is the associated discrete kernel to the discrete

triangular random variable Ta,h,x on ℵa,x = {x, x±1, · · · , x±a}. According to [2], we have f̂n,h,a(x) ∈ [0, 1]

for all x ∈ N and, up to normalizing constant C =
∑

x∈N
f̂n,h,a(x), we assume that the function x 7→

f̂n,h,a(x) is a density of probability on N. Note also that the equivalent of (2) is here as

E[f̂n,h,a(x)] = E[f(Ta,h,x)]. (6)

Also, the support ℵa,x of the random variable Ta,h,x does not depend on h as in general case (2), and we

have ∪xℵa,x ⊇ N. If a = 0 we get ∪xℵ0,x = N. In this case a = 0, the estimator f̂n,h,0 of f is only the
empirical distribution f0 of observations. While if a 6= 0 we obtain

⋃

x∈N

ℵa,x = {−a, · · · ,−1} ∪ N. (7)

The fact that the support ∪xℵa,x (7) of the discrete triangular kernel at fixed a 6= 0 contained strictly
the support N of f induces a boundary bias on the left of N. We remedy at the end of subsection 3.2 by
modifying lightly a to a0 such that, for any a0, one has

⋃

x∈N

ℵa0,x = N. (8)
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Let us indicate here that if the support of f is Z (unbounded integers set) then ∪x∈Zℵa,x = Z and,
therefore, there is no problem of boundary bias. Whereas if the support of f is {0, 1, · · · , N} (compact)
then ∪x∈{0,1,···,N}ℵa,x = {−a, · · · ,−1}∪{0, 1, · · · , N}∪{N+1, · · · , N+a}; what would lead to the boundaries
bias at the same moment to the left and to the right of the support of f .

3.1 Mean integrated squared errors

From (6) we investigate the behaviour of the smoothing parameter h > 0 and, also, of the arm a ∈ N

through the common measure of accuracy for an estimator which is the Mean Integrated Squared Error:

MISEa(n, h)(f) = E
∑

x∈N

[
f̂n,h,a(x) − f(x)

]2
(9)

=
∑

x∈N

MSEa(n, h, x) (10)

=
∑

x∈N

V ar[f̂n,h,a(x)] +
∑

x∈N

Bias2[f̂n,h,a(x)] (11)

of the estimator f̂n,h,a of f defined in (5), where MSEa(n, h, x) is the Mean Squared Error at a point
x ∈ N.

Indeed, given x ∈ N. Since E(Ta,h,x) = x and V ar(Ta,h,x) = V (a, h) (Proposition 2.2), the approximate

expression of the bias of f̂n,h,a(x) is given classically by the discrete Taylor expansion as

Bias[f̂n,h,a(x)] = E[f̂n,h,a(x)] − f(x)

= E[f(Ta,h,x)] − f(x)

=
1

2
V ar(Ta,h,x)f ′′(x) + o(h)

=
1

2
V (a, h)f ′′(x) + o(h), (12)

and its variance can be approximated successively by

V ar
[
f̂n,h,a(x)

]
=

1

n
V ar [Ta,h,x(X1)]

=
1

n
E

[
(Ta,h,x(X1))

2
]

+ O(n−1)

=
1

n

∑

y∈ℵa,x

f(y) [Pr(Ta,h,x = y)]2 + O(n−1)

=
1

n
f(x) Pr(Ta,h,x = x) + o(n−1a−h)

=
(a + 1)h

nP (a, h)
f(x) + o(n−1a−h), (13)

where P (a, h) is given in Definition 2.1, V (a, h) in Proposition 2.2, and the second derivative of f at each
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point x ∈ N is replaced by the following finite differences

f ′′(x) =






[f(x + 2) − 2f(x) + f(x − 2)]/4 if x ∈ N \ {0, 1}
[f(3) − f(2) − f(1) + f(0)]/2 if x = 1
f(2) − 2f(1) + f(0) if x = 0.

(14)

The fourth equality of (13) can be obtained through properties of Ta,h,c and the global majorations:

∑

y∈ℵa,x

f(y) [Pr(Ta,h,x = y)]2 ≤ fmax max
y∈ℵa,x

Pr(Ta,h,x = y) ≤ 1.

Using (13) the approximate of the integrated variance is given by

∑

x∈N

V ar[f̂n,h,a(x)] =
(a + 1)h

nP (a, h)
+ o(n−1a−h), (15)

which does not depend on f . Observe that (a + 1)h/P (a, h) = Pr(Ta,h,x = x) is the modal probability
of the random variable Ta,h,x (Definition 2.1 and also Figure 1), it follows that the function h 7→ (a +

1)h[nP (a, h)]−1 is decreasing from n−1 to [n (2a + 1)]−1 for all n and a in N∗.
From pointwise bias (12), the approximate of the integrated squared bias is written

∑

x∈N

Bias2[f̂n,h,a(x)] =
1

4
[V (a, h)]2

∑

x∈N

[
f ′′(x)

]2
+ o(h2). (16)

Since f ′′(x) is a finite linear combination of f(x± j) ∈ [0, 1] for j ∈ {0, 1, 2} (14), one has
∑

x∈N
[f ′′(x)]2 <

∞. We deduce from Part (ii) of Remark 1 that the function h 7→ [V (a, h)]2 /4 = [V ar(Ta,h,x)/2]2 is
increasing from 0 to a2(a + 1)2/36 for all a ∈ N.

Replacing (15) and (16) in (11), we obtain

MISEa(n, h)(f) =
(a + 1)h

nP (a, h)
+

1

4
[V (a, h)]2

∑

x∈N

[
f ′′(x)

]2
+ o(n−1a−h + h2), (17)

which leads to choosing the optimal parameter of h and an adequate arm a.

3.2 Optimal parameters

The optimal value of h > 0 and of a ∈ N∗ are obtained (if there exists) by minimizing the asymptotic
MISE of (17):

AMISEa(n, h)(f) =
(a + 1)h

nP (a, h)
+

1

4
[V (a, h)]2

∑

x∈N

[
f ′′(x)

]2
. (18)

Firstly, since a ∈ N∗ and the function a 7→ AMISEa(n, h)(f) is always increasing for fixed h > 0, the most
interesting positive arm is a = 1 = a∗ which we can call “adequate” or “optimal” arm for convenience.
Secondly, for given arm a ∈ N∗, the optimal bandwidth for a discrete triangular kernel estimator is defined
by

h∗ = arg min
h>0

AMISEa(n, h)(f) = h∗(n, a, f). (19)
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Its existence is guaranteed by the diminishing of the approximate of the integrated variance (15) and the
growth of the approximate of the integrated squared bias (16) in the global squared error (18). For h small,
the bias is small too but the variance is large. On the other hand, if h is large, the variance becomes small
and the bias large. To find the optimal value of h, one should balance the approximate of the squared bias
and the variance terms. This means that there exists ε > 0 such that the function h 7→ AMISEa(n, h)(f)
is decreasing for h belongs to (0, ε) and increasing for h in (ε,∞) for all a ∈ N∗. Since h∗ = h∗(n, a, f)
cannot be computed in practice because it depends on the unknown f , one way to “estimate” is to take an
empirical distribution f0 of f and choose the corresponding bandwidth h∗

0 = h∗(n, a, f0). That is equivalent
to

h∗
0 = arg min

h>0
AMISEa(n, h)(f0) = h∗

0(n, a, f0). (20)

Because of f0 tends to f when n → ∞, we may have

lim
n→∞

h∗
0(n, a, f0) = lim

n→∞
h∗(n, a, f), (21)

for fixed a ∈ N. This procedure allows to choose the optimal bandwidth (20) to estimate a probability
mass function from an empirical distribution.

An alternative to the choice of optimal bandwidth is the use of the well-known cross validation method
(e.g., [15], [16] and also [17]). Even in the discrete case, this procedure has the advantage that it does not
approximate MISEa(n, h)(f) by using finite differences of f . Hence, we can differently develop the MISE
(9) as

MISEa(n, h)(f) = E

[
∑

x∈N

f̂2
n,h,a(x)

]
− 2E

[
∑

x∈N

f̂n,h,a(x)f(x)

]
+

∑

x∈N

f2(x);

and, therefore, the optimal bandwidth is obtained by

hcv = arg min
h>0

CVa(h) = hcv(a), (22)

where

CVa(h) =
∑

x∈N

[
1

n

n∑

i=1

Ta,h,x (Xi)

]2

−
2

n(n − 1)

n∑

i=1

∑

j 6=i

Ta,h,Xi
(Xj)

is the unbiased estimator of E

[∑
x∈N

f̂2
n,h,a(x)

]
− 2E

[∑
x∈N

f̂n,h,a(x)f(x)
]
.

Following [2], another way to find an adapted bandwidth h0 in the particular situation of excess zeros for
count data would be to solve the equation

∑n
i=1 Pr (Ta,h0,Xi

= 0) = n0, equivalent to

[n − (2a + 1)n0] (a + 1)h + 2n0

a∑

k=0

kh −
n∑

i=1

Xh
i = 0, (23)

where n0 = ♮(Xi = 0) represents the number of observations equal to zero. But this equation has no
solution. Indeed, because k ≤ a in the second term of the first member in (23), we have

[n − (2a + 1)n0] (a + 1)h + 2n0

a∑

k=0

kh < [n − (2a + 1)n0] (a + 1)h + 2n0a(a + 1)h
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= (n − n0)(a + 1)h.

Since
∑n

i=1 Xh
i =

∑k
j=0 njX

h
j with

∑k
j=0 nj = n and Xj ≥ a + 1, j = 1, 2, · · · , k, we can see that

n∑

i=1

Xh
i ≥ (n − n0)(a + 1)h.

This result, combined with the previous inequality, allows to deduce that equality (23) does not hold and
we finally have

[n − (2a + 1)n0] (a + 1)h + 2n0

a∑

k=0

kh −
n∑

i=1

Xh
i < 0.

Let us now propose our remedy to the problem of boundary bias. For significant observations to the
boundary {0, 1, · · · ,m} of the support N of f (m too small, like 0, 1 or 2), we consider the modified arm
a0 of a satisfying (8). Our solution is such that, for given k ∈ N∗ and x ∈ N,

a0 = k ⇐⇒ a =

{
j if x = j, j ∈ {0, 1, · · · , k − 1}
k if x ∈ {k, k + 1, · · ·}.

(24)

Thus, the discrete triangular kernel associated to this modified arm a0 preserves the structure of local
symmetry of the discrete kernel around every point of estimation. An alternative to our method would be
to consider an asymmetric triangular kernel for the boundary. In practice, this procedure is done before the
normalization of the estimator f̂n,h,a∗ by the constant C∗ =

∑
x∈N

f̂n,h,a∗(x). So that f̂n,h,0(0) is generally
not equal to the empirical estimation f0(0) of f at the edge x = 0 under circumstances of an excess of
zero.

For a = 1 and a0 = 1, we respectively have

AMISEa0=1(n, h)(f) = AMSEa=0(n, h, 0) +
∑

x∈N∗

AMSEa=1(n, h, x)

=
f(0)

n
+

∑

x∈N∗

AMSEa=1(n, h, x)

and

AMISEa=1(n, h)(f) = AMSEa=1(n, h, 0) +
∑

x∈N∗

AMSEa=1(n, h, x)

=
2h

P (1, h)

f(0)

n
+

1

4
[V (1, h)]2(f ′′(0))2 +

∑

x∈N∗

AMSEa=1(n, h, x),

where AMSEa is the asymptotic MSEa of (10). Consequently, comparison between AMISEa0
(n, h)(f)

and AMISEa(n, h)(f) is reduced to compare f(0)/n to 2hf(0)/[nP (1, h)]+[V (1, h)]2(f ′′(0))2/4, for which
we cannot conclude. Indeed, it depends on smoothing parameter h and on both size n and proportion f(0)
from sample. So, in the next section we present some graphs of AMISEa0

(n, h)(f) and AMISEa(n, h)(f)
to illustrate their behaviour (see Figure 2).
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Finally, the choices of bandwidths h∗
0 or hcv and of arms a∗ or a∗0 are wide enough to obtain a very good

quality for smoothing any probability mass function. The use of a∗0 instead of a∗ is recommended for count
data having a large proportion of zeros.

4 Illustrations from data

In this section we illustrate some previous results. We firstly use simulated data and then real data from
football already presented in [2]. All computations are done by the R software [18].

4.1 Simulated data

Consider the following discrete function

f(x) = 0.4 e−0.5 0.5x/x! + 0.6 e−10 10x/x!, x ∈ N,

which is a mixture of two Poisson distributions with means µ1 = 0.5 and µ2 = 10. This probability mass
function f defined on N has a bimodality with the maximum at x = 0 (f(0) = 0.243), a local minimum at
x = 3 (f(3) = 9.594 × 10−3), a local maximum at x = 9 (f(9) = 7.506603 × 10−2) and a tail from x = 22
(1 −

∑21
x=0 f(x) = 4.198 × 10−4).

In general, for given random sample n, we consider 1000 independent simulated samples f0 of f
and in most of 98% of cases it is easy to observe the following results. First, each corresponding
function h 7→ AMISEa(n, h)(f0) observed is bounded, of the same order (very small) as theoretical
h 7→ AMISEa(n, h)(f) and is increasing for a ∈ N∗. One gets the optimal triangular kernel associated to
optimal bandwidth h∗ of (19) with arm a = 1 = a∗. Furthermore, the behaviour of the equality (21) holds
easily for a sample size n = 1000 and a = 1 = a∗. Thus, the approximate h∗

0 of (20) is a well indicatory of
h∗ for large n.

From simulated data that we omit here to present all results, we obtained that the functions
h 7→ AMISEa0=1(n, h)(f0) and h 7→ AMISEa=1(n, h)(f0) have the same aspect for different samples
sizes. For a sample with both large size n and important proportion f0(0), the values of h which realize
the minimum of each of the two previous functions are of the same order.

For a simulated sample f0 with a significant proportion (e.g. f0(0) = 0.240), we observed that we can
estimate parameter h∗ by h∗

0. The use of the modified arm a0 or of the arm a is possible for any discrete
distribution f0, but the arm a0 is suitable with a large number of zeros.

Figure 2 below will show the behaviour of AMISEa0
(n, h)(f) and AMISEa(n, h)(f) for real data with

a moderate sample size n = 380.

4.2 Real data

We realize some nonparametric estimation f̂ of the distribution of count data from the French football
championship of League 1 with n = 380 (Table 1). We first use some discrete triangular kernel estimators
and we then compare them with a binomial kernel estimator. Note that, for a given goal g ∈ N, the nearest
integer to n × f̂(g) is the nonparametric estimation of the corresponding matches number.

(Tables 1 and 2 about here)

In Figure 2 we plot h 7→ AMISEa(n, h)(f0) and h 7→ AMISEa0
(n, h)(f0) for the arms a ∈ {1, 2}

and a0 ∈ {1, 2}. We observe that for a = 1 and a0 = 1, curve of AMISEa0
(n, h)(f0) is over then under

those of AMISEa(n, h)(f0). The behaviour is the same for a = 2 and a0 = 2, except that the point of
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intersection is near to zero. In what follows we do not use the values of bandwidth h which realize the
minimum of AMISEa(n, h)(f0) for smoothing but the optimal smoothing parameter hcv(a) of (22) found
by cross validation procedure.

In order to measure the performance of the estimators, we simply use the practical Integrated Squared
Error

ISE0 =
∑

x∈N

[
f̂n,hcv(a)(x) − f0(x)

]2

(which can be directly observed in graphics) and also the estimate ̂AMISE(f̂n,hcv(a)) of AMISEa(n, h)(f)
for fixed a ∈ N. In Table 2 we can see the results from smoothing of data of League 1 by discrete triangular
kernel for a ∈ {1, 2} and a0 = 1 with the corresponding values of hcv(a) and the normalizing constant C.

According to the measure ̂AMISE(f̂n,hcv(a)), the best performance among triangular kernels is obtained
with a = 1. It is due to the proportion f0(0) = 0.134 of zeros in the sample which is smaller than
f(0) = 0.243 for the previous study. So, the arm a0 = 1 does not give a better result than a = 1. But,
by using practical measure ISE0, the modified arm a0 = 1 is better than the arm a = 1, even if both

are of the same order. The difference comes from ̂AMISE(f̂n,hcv(a)) which is a biased theoretical measure
approximated by the use of finite differences of f . Discrete triangular kernels improve discrete standard
kernels. One can observe this last fact in the following comparison with the best of them: the binomial
kernel corresponding to the estimator

f̂n,h(x) =
1

n

n∑

i=1

Bx,h(Xi)

=
1

n

n∑

i=1

(x + 1)!

Xi!(x + 1 − Xi)!

(
x + h

x + 1

)Xi
(

1 − h

x + 1

)x+1−Xi

, x ∈ N,

where h ∈ (0, 1] is the smoothing parameter and Bx,h is the discrete kernel associated to the binomial
distribution B(x + 1, (x + h)/(x + 1)) with its support ℵx,h = {0, 1, · · · , x + 1}; see [2], Exemple 2.2, for
more details. The corresponding results of the binomial kernel estimation with hcv = 0.177 are compared
to those obtained by discrete triangular kernels in Figure 3 and Table 2. By using the estimate error

̂AMISE(f̂n,hcv(a)), discrete triangular kernels are better than the binomial kernel with orders 2.26× 10−3

(for triangular a = 1) and 2.41 × 10−3 (binomial). As for error ISE0 generally used in practice, one can
clearly see that the best results are obtained by discrete triangular kernel (ISE0 = 10−5 for a0 = 1)

compared to binomial kernel (ISE0 = 3.95 × 10−3). Since ISE0 is more appropriated than ̂AMISE we
can conclude that triangular (a0 = 1) kernel estimation is better than binomial one for these count data.

(Figures 2 and 3 about here)

5 Concluding remarks

Univariate discrete triangular distributions Ta,h,c complete the families of so many discrete distributions [3].
We can define other versions of Ta,h,c such multivariate case. Discrete triangular kernel estimators which
include frequency estimator (with a = 0 and h = 1) are now ready to use and may be adapted for discrete
regression functions or other discrete functions. However, it remains to investigate performance of discrete
triangular kernels with respect to any underdispersed discrete kernel in lieu of the prototype binomial.
In practice, a binomial kernel seems to be appropriated for small size count data which are not sparsed.
In comparison with binomial estimator, triangular kernel estimators with small arm (a ∈ N∗) are more
consistent than the frequency one.
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Tables and figures

Table 1. Data of matches having a certain number of goals in the French

football championship of League 1 (season 2005-2006)

Goals (g) 0 1 2 3 4 5 6 7 8 9 Total

matches 51 90 109 61 44 12 9 3 0 1 380

Table 2. Results from smoothing by both discrete triangular and binomial ker-

nels of real data from the French League 1 with n = 380

Triang(a = 1) Triang(a = 2) Triang(a0 = 1) Binomial

hcv 0.204 0.055 0.028 0.177
C 0.98600 0.98618 0.99810 0.95872
ISE0 0.00042 0.00023 0.00001 0.00395

̂AMISE 0.00226 0.00462 0.00255 0.00241

Figure 1. Some discrete triangular distributions of order h ∈ {1/12, 1/2, 1, 2, 12} centered in c = 5 with arm a = 4
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Figure 2. Graphs of functions AMISEa(n, h)(f0) [solid line] and AMISEa0
(n, h)(f0) [dashed line] of the discrete triangular kernel

estimator for data from the French League 1 (season 2005-2006) with n = 380

Figure 3. Discrete smoothing [dashed line] by discrete triangular a0 = 1 and binomial kernels for empirical distribution [solid line] of
data from the French League 1 with n = 380


