N. Ahmed, G. Matthies, L. Tobiska, and H. Xie, Discontinuous Galerkin time stepping with local projection stabilization for transient convection???diffusion-reaction problems, Computer Methods in Applied Mechanics and Engineering, vol.200, issue.21-22, pp.21-22, 2011.
DOI : 10.1016/j.cma.2011.02.003

R. E. Bank and H. Yserentant, On the $${H^1}$$ H 1 -stability of the $${L_2}$$ L 2 -projection onto finite element spaces, Numerische Mathematik, vol.2, issue.2, pp.361-381, 2014.
DOI : 10.1017/S0962492900002385

M. Braack, E. Burman, V. John, and G. Lube, Stabilized finite element methods for the generalized Oseen problem, Computer Methods in Applied Mechanics and Engineering, vol.196, issue.4-6, pp.853-866, 2007.
DOI : 10.1016/j.cma.2006.07.011

A. Brenner, E. Bänsch, and M. Bause, A priori error analysis for finite element approximations of the Stokes problem on dynamic meshes, IMA Journal of Numerical Analysis, vol.34, issue.1, pp.123-146, 2014.
DOI : 10.1093/imanum/drt001

F. Brezzi, L. D. Marini, and E. Süli, DISCONTINUOUS GALERKIN METHODS FOR FIRST-ORDER HYPERBOLIC PROBLEMS, Mathematical Models and Methods in Applied Sciences, vol.17, issue.12, pp.1893-1903, 2004.
DOI : 10.1016/B978-0-12-208350-1.50008-X

E. Burman, A Unified Analysis for Conforming and Nonconforming Stabilized Finite Element Methods Using Interior Penalty, SIAM Journal on Numerical Analysis, vol.43, issue.5, pp.2012-2033, 2005.
DOI : 10.1137/S0036142903437374

URL : http://discovery.ucl.ac.uk/1384737/1/Burman_Sinum_IP_Bur.pdf

E. Burman and A. Ern, A continuous finite element method with face penalty to approximate Friedrichs' systems, ESAIM: Mathematical Modelling and Numerical Analysis, vol.41, issue.1, pp.55-76, 2007.
DOI : 10.1137/S0036142902405217

URL : http://www.esaim-m2an.org/articles/m2an/pdf/2007/01/m2an0587.pdf

E. Burman, A. Ern, and M. A. Fernández, Explicit Runge???Kutta Schemes and Finite Elements with Symmetric Stabilization for First-Order Linear PDE Systems, SIAM Journal on Numerical Analysis, vol.48, issue.6, pp.2019-2042, 2010.
DOI : 10.1137/090757940

URL : https://hal.archives-ouvertes.fr/hal-00380659

E. Burman and P. Hansbo, Edge stabilization for Galerkin approximations of convection???diffusion???reaction problems, Computer Methods in Applied Mechanics and Engineering, vol.193, issue.15-16, pp.1437-1453, 2004.
DOI : 10.1016/j.cma.2003.12.032

J. Cesenek and M. Feistauer, Theory of the Space-Time Discontinuous Galerkin Method for Nonstationary Parabolic Problems with Nonlinear Convection and Diffusion, SIAM Journal on Numerical Analysis, vol.50, issue.3, pp.1181-1206, 2012.
DOI : 10.1137/110828903

B. Cockburn, S. Hou, and C. Shu, The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case, Math. Comp, issue.190, pp.54-545, 1990.

B. Cockburn, S. Lin, and C. Shu, TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: One-dimensional systems, Journal of Computational Physics, vol.84, issue.1, pp.90-113, 1989.
DOI : 10.1016/0021-9991(89)90183-6

B. Cockburn and C. Shu, TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework, Math. Comp, vol.52, issue.186, pp.411-435, 1989.

R. Codina, Stabilization of incompressibility and convection through orthogonal sub-scales in finite element methods) 15. , Stabilized finite element approximation of transient incompressible flows using orthogonal subscales, Comput. Methods Appl. Mech. Engrg. Comput. Methods Appl. Mech. Engrg, vol.190, pp.13-14, 2000.

D. A. Di-pietro and A. Ern, Mathematical aspects of discontinuous galerkin methods, Mathématiques & Applications, vol.69
DOI : 10.1007/978-3-642-22980-0

K. Eriksson and C. Johnson, Adaptive finite element methods for parabolic problems. II. Optimal error estimates in L?L 2 and L?L?, SIAM J. Numer. Anal, vol.3296, issue.3, pp.706-740, 1995.

A. Ern, J. Guermond, and J. , Theory and practice of finite elements:65002) 19. , Discontinuous Galerkin methods for Friedrichs' systems. I. General theory, Applied Mathematical Sciences, vol.159, 2004.

M. Feistauer, V. Ku?era, K. Najzar, and J. Prokopová, Analysis of space???time discontinuous Galerkin method for nonlinear convection???diffusion problems, Numerische Mathematik, vol.15, issue.23, pp.251-288, 2011.
DOI : 10.1137/0715010

K. O. Friedrichs, Symmetric positive linear differential equations, Communications on Pure and Applied Mathematics, vol.35, issue.3, pp.333-418, 1958.
DOI : 10.1002/cpa.3160110306

F. D. Gaspoz, C. Heine, and K. G. Siebert, Optimal grading of the Newest Vertex Bisection and H1-stability of the L2-projection, 2014.

J. Guermond, Stabilization of Galerkin approximations of transport equations by subgrid modeling, Subgrid stabilization of Galerkin approximations of linear monotone operators, pp.1293-1316, 1999.
DOI : 10.1051/m2an:1999145

M. Hochbruck and T. Pa?ur, Implicit Runge--Kutta Methods and Discontinuous Galerkin Discretizations for Linear Maxwell's Equations, SIAM Journal on Numerical Analysis, vol.53, issue.1, pp.485-507, 2015.
DOI : 10.1137/130944114

S. Hussain, F. Schieweck, and S. Turek, Higher order Galerkin time discretizations and fast multigrid solvers for the heat equation A note on accurate and efficient higher order Galerkin time stepping schemes for the nonstationary Stokes equations, The Open Numerical An efficient and stable finite element solver of higher order in space and time for nonstationary incompressible flow, Internat, J. Numer. Math. Methods Journal J. Numer. Methods Fluids, vol.19, issue.28 11, pp.41-61, 2011.

J. Jaffré, C. Johnson, and A. Szepessy, CONVERGENCE OF THE DISCONTINUOUS GALERKIN FINITE ELEMENT METHOD FOR HYPERBOLIC CONSERVATION LAWS, Mathematical Models and Methods in Applied Sciences, vol.05, issue.03, pp.367-386, 1995.
DOI : 10.1142/S021820259500022X

C. Johnson and J. Pitkäranta, An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation, Mathematics of Computation, vol.46, issue.173, pp.1-26, 1986.
DOI : 10.1090/S0025-5718-1986-0815828-4

P. Lesaint and P. Raviart, On a finite element method for solving the neutron transport equation, Mathematical Aspects of Finite Elements in Partial Differential Equations, Math. Res. Center, pp.89-123, 1974.

D. Leykekhman and B. Vexler, Optimal A Priori Error Estimates of Parabolic Optimal Control Problems with Pointwise Control, SIAM Journal on Numerical Analysis, vol.51, issue.5, pp.2797-2821, 2013.
DOI : 10.1137/120885772

G. Matthies and F. Schieweck, Higher order variational time discretizations for nonlinear systems of ordinary differential equations, 2011.

T. Richter, A. Springer, and B. Vexler, Efficient numerical realization of discontinuous Galerkin methods for temporal discretization of parabolic problems, Numerische Mathematik, vol.21, issue.3, pp.151-182, 2013.
DOI : 10.1137/0721040

H. Roos, M. Stynes, and L. Tobiska, Robust numerical methods for singularly perturbed differential equations Convection-diffusion-reaction and flow problems, Springer Series in Computational Mathematics, 2008.

D. Schötzau and C. Schwab, An hp a priori error analysis of??the DG time-stepping method for initial value problems, Calcolo, vol.37, issue.4, pp.207-232, 2000.
DOI : 10.1007/s100920070002

A. Springer and B. Vexler, Third order convergent time discretization for parabolic optimal control problems with control constraints, Computational Optimization and Applications, vol.115, issue.3, pp.205-240, 2014.
DOI : 10.1017/CBO9781139171755

V. Thomée, Galerkin finite element methods for parabolic problems, p.224902465003, 2006.
DOI : 10.1007/978-3-662-03359-3

J. J. Van-der-vegt and S. Rhebergen, hp-Multigrid as Smoother algorithm for higher order discontinuous Galerkin discretizations of advection dominated flows: Part I. Multilevel analysis, Journal of Computational Physics, vol.231, issue.22, pp.7537-7563, 2012.
DOI : 10.1016/j.jcp.2012.05.038

J. J. Van-der-vegt and H. Van-der-ven, Space???Time Discontinuous Galerkin Finite Element Method with Dynamic Grid Motion for Inviscid Compressible Flows, Journal of Computational Physics, vol.182, issue.2, pp.546-585, 2002.
DOI : 10.1006/jcph.2002.7185

T. Werder, K. Gerdes, D. Schötzau, and C. Schwab, hp-Discontinuous Galerkin time stepping for parabolic problems, Computer Methods in Applied Mechanics and Engineering, vol.190, issue.49-50, pp.49-50, 2001.
DOI : 10.1016/S0045-7825(01)00258-4

D. Yang, Improved error estimation of dynamic finite element methods for second-order parabolic equations, Journal of Computational and Applied Mathematics, vol.126, issue.1-2, pp.319-338, 2000.
DOI : 10.1016/S0377-0427(99)00362-3

K. Yosida, Functional analysis, Classics in Mathematics, p.46001, 1980.

Q. Zhang and C. Shu, Error Estimates to Smooth Solutions of Runge--Kutta Discontinuous Galerkin Methods for Scalar Conservation Laws, SIAM Journal on Numerical Analysis, vol.42, issue.2, pp.641-666, 2004.
DOI : 10.1137/S0036142902404182