A. Nazarian and R. Müller, Time-lapsed microstructural imaging of bone failure behavior, Journal of Biomechanics, vol.37, issue.1, pp.55-65, 2004.
DOI : 10.1016/S0021-9290(03)00254-9

S. Youssef, E. Maire, and R. Gaertner, Finite element modelling of the actual structure of cellular materials determined by X-ray tomography, Acta Materialia, vol.53, issue.3, pp.719-749, 2005.
DOI : 10.1016/j.actamat.2004.10.024

URL : https://hal.archives-ouvertes.fr/hal-00436799

J. Buffière, M. E. , A. J. Masse, J. Boller, and E. , In Situ Experiments with X ray Tomography: an Attractive Tool for Experimental Mechanics, Experimental Mechanics, vol.17, issue.2, pp.289-294, 2010.
DOI : 10.1007/s11340-010-9333-7

B. Bay, T. Smith, D. Fyrhie, and M. Saad, Digital volume correlation: Three-dimensional strain mapping using X-ray tomography, Experimental Mechanics, vol.27, issue.10???12, pp.217-243, 1999.
DOI : 10.1007/BF02323555

A. Benoit, S. Guerard, B. Gillet, G. Guillot, F. Hild et al., 3D analysis from micro-MRI during in situ compression on cancellous bone, Journal of Biomechanics, vol.42, issue.14, pp.2381-2387, 2009.
DOI : 10.1016/j.jbiomech.2009.06.034

URL : https://hal.archives-ouvertes.fr/hal-00410326

M. Bornert, J. Chaix, P. Doumalin, J. Dupré, T. Fournel et al., Mesure tridimensionnelle de champs cinématiques par imagerie volumique pour l'analyse des matériaux et des structures, Instrum Mes Metrol, vol.4, issue.3, pp.43-88, 2004.

A. Germaneau, P. Doumalin, and J. Dupré, 3D Strain Field Measurement by Correlation of Volume Images Using Scattered Light: Recording of Images and Choice of Marks, Strain, vol.17, issue.3, pp.207-225, 2007.
DOI : 10.1111/j.1475-1305.2007.00340.x

URL : https://hal.archives-ouvertes.fr/hal-00239902

F. Hild, M. E. Roux, S. Witz, and J. , Three-dimensional analysis of a compression test on stone wool, Acta Materialia, vol.57, issue.11, pp.3310-3330, 2009.
DOI : 10.1016/j.actamat.2009.03.038

URL : https://hal.archives-ouvertes.fr/hal-00371354

L. Liu and E. Morgan, Accuracy and precision of digital volume correlation in quantifying displacements and strains in trabecular bone, Journal of Biomechanics, vol.40, issue.15, pp.3516-3536, 2007.
DOI : 10.1016/j.jbiomech.2007.04.019

J. Rannou, N. Limodin, J. Réthoré, A. Gravouil, W. Ludwig et al., Three dimensional experimental and numerical multiscale analysis of a fatigue crack, Computer Methods in Applied Mechanics and Engineering, vol.199, issue.21-22, pp.1307-1332, 2010.
DOI : 10.1016/j.cma.2009.09.013

URL : https://hal.archives-ouvertes.fr/hal-00430486

S. Roux, F. Hild, P. Viot, and D. Bernard, Three-dimensional image correlation from X-ray computed tomography of solid foam, Composites Part A: Applied Science and Manufacturing, vol.39, issue.8, pp.1253-65, 2008.
DOI : 10.1016/j.compositesa.2007.11.011

URL : https://hal.archives-ouvertes.fr/hal-01006730

E. Verhulp, B. Van-rietbergen, and R. Huiskes, A three-dimensional digital image correlation technique for strain measurements in microstructures, Journal of Biomechanics, vol.37, issue.9, pp.1313-1333, 2004.
DOI : 10.1016/j.jbiomech.2003.12.036

M. Sutton, W. Wolters, W. Peters, W. Ranson, and S. Mcneill, Determination of displacements using an improved digital correlation method, Image and Vision Computing, vol.1, issue.3, pp.133-142, 1983.
DOI : 10.1016/0262-8856(83)90064-1

W. Peters and W. Ranson, Digital Imaging Techniques In Experimental Stress Analysis, Optical Engineering, vol.21, issue.3, pp.427-459, 1982.
DOI : 10.1117/12.7972925

B. Bay, Texture correlation: A method for the measurement of detailed strain distributions within trabecular bone, Journal of Orthopaedic Research, vol.1, issue.2, pp.258-67, 1995.
DOI : 10.1002/jor.1100130214

M. Sjödahl and L. Benckert, Electronic speckle photography: analysis of an algorithm giving the displacement with subpixel accuracy, Applied Optics, vol.32, issue.13, pp.2278-84, 1993.
DOI : 10.1364/AO.32.002278

P. Luo, Y. Chao, M. Sutton, and W. Peters, Accurate measurement of three-dimensional deformations in deformable and rigid bodies using computer vision, Experimental Mechanics, vol.31, issue.2, pp.123-155, 1993.
DOI : 10.1007/BF02322488

J. Helm, S. Mcneil, and M. Sutton, Improved three???dimensional image correlation for surface displacement measurement, Optical Engineering, vol.35, issue.7, pp.1911-1931, 1996.
DOI : 10.1117/1.600624

B. Bay, Experimental Measurement of Three-Dimensional Continuum-Level Strain Fields in Trabecular Bone, Adv Expl Med Biol, vol.496, pp.181-97, 2001.
DOI : 10.1007/978-1-4615-0651-5_18

T. Smith, B. Bay, and M. Rashid, Digital volume correlation including rotational degrees of freedom during minimization, Experimental Mechanics, vol.48, issue.10, pp.272-280, 2002.
DOI : 10.1007/BF02410982

R. Zauel, Y. Yeni, B. Bay, X. Dong, and D. Fyhrie, Comparison of the Linear Finite Element Prediction of Deformation and Strain of Human Cancellous Bone to 3D Digital Volume Correlation Measurements, Journal of Biomechanical Engineering, vol.128, issue.1, pp.1-6, 2006.
DOI : 10.1115/1.2146001

N. Lenoir, M. Bornert, J. Desrues, P. Bésuelle, and G. Viggiani, Volumetric Digital Image Correlation Applied to X-ray Microtomography Images from Triaxial Compression Tests on Argillaceous Rock, Strain, vol.23, issue.3, pp.193-198, 2007.
DOI : 10.1111/j.1475-1305.2007.00348.x

URL : https://hal.archives-ouvertes.fr/hal-00541503

F. Forsberg, M. Sjodahl, R. Mooser, E. Hack, and P. Wyss, Full Three-Dimensional Strain Measurements on Wood Exposed to Three-Point Bending: Analysis by Use of Digital Volume Correlation Applied to Synchrotron Radiation Micro-Computed Tomography Image Data, Strain, vol.41, issue.1, pp.47-60, 2010.
DOI : 10.1111/j.1475-1305.2009.00687.x

A. Germaneau, P. Doumalin, and J. Dupré, Comparison between X-ray micro-computed tomography and optical scanning tomography for full 3D strain measurement by digital volume correlation, NDT & E International, vol.41, issue.6, pp.407-422, 2008.
DOI : 10.1016/j.ndteint.2008.04.001

F. Scarano and M. Riethmuller, Advances in iterative multigrid PIV image processing, Experiments in Fluids, vol.29, issue.7, pp.51-60, 2000.
DOI : 10.1007/s003480070007

P. Cheng, M. Sutton, H. Schreier, and S. Mcneill, Full-field speckle pattern image correlation with B-Spline deformation function, Experimental Mechanics, vol.39, issue.11, pp.344-52, 2002.
DOI : 10.1007/BF02410992

Y. Sun, J. Pang, C. Wong, and F. Su, Finite element formulation for a digital image correlation method, Applied Optics, vol.44, issue.34, pp.7357-63, 2005.
DOI : 10.1364/AO.44.007357

F. Hild and S. Roux, Digital Image Correlation: from Displacement Measurement to Identification of Elastic Properties - a Review, Strain, vol.334, issue.Srie I, pp.69-80, 2006.
DOI : 10.1111/j.1475-1305.2006.00258.x

URL : https://hal.archives-ouvertes.fr/hal-00013816

F. Hild and S. Roux, Comparison of Local and Global Approaches to Digital Image Correlation, Experimental Mechanics, vol.39, issue.8, pp.1503-1522, 2012.
DOI : 10.1007/s11340-012-9603-7

URL : https://hal.archives-ouvertes.fr/hal-00750756

M. Saadatfar, C. Arns, M. Knackstedt, and T. Senden, Mechanical and transport properties of polymeric foams derived from 3D images, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol.263, issue.1-3, pp.1-3284, 2004.
DOI : 10.1016/j.colsurfa.2004.12.040

F. Fischer, G. Lim, U. Handge, and V. Altstadt, Numerical Simulation of Mechanical Properties of Cellular Materials Using Computed Tomography Analysis, Journal of Cellular Plastics, vol.45, issue.5, pp.441-60, 2009.
DOI : 10.1177/0021955X09339340

S. Youssef, E. Maire, and R. Gaertner, Finite element modelling of the actual structure of cellular materials determined by X-ray tomography, Acta Materialia, vol.53, issue.3, pp.719-749, 2005.
DOI : 10.1016/j.actamat.2004.10.024

URL : https://hal.archives-ouvertes.fr/hal-00436799

R. Singh, P. Lee, T. Lindley, C. Kohlhauser, C. Hellmich et al., Characterization of the deformation behavior of intermediate porosity interconnected Ti foams using micro-computed tomography and direct finite element modeling, Acta Biomaterialia, vol.6, issue.6, pp.2342-51, 2010.
DOI : 10.1016/j.actbio.2009.11.032

J. Jones, P. Lee, and L. Hench, Hierarchical porous materials for tissue engineering, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.58, issue.3, pp.263-81, 1838.
DOI : 10.1002/1097-4636(2001)58:3<270::AID-JBM1016>3.0.CO;2-2

D. Lacroix, J. Planell, and P. Prendergast, Computer-aided design and finite-element modelling of biomaterial scaffolds for bone tissue engineering, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.22, issue.12, pp.1993-2002, 1895.
DOI : 10.1016/j.tibtech.2004.10.004

S. Hollister, J. Brennan, and N. Kikuchi, A homogenization sampling procedure for calculating trabecular bone effective stiffness and tissue level stress, Journal of Biomechanics, vol.27, issue.4, pp.433-477, 1994.
DOI : 10.1016/0021-9290(94)90019-1

R. Müller and P. Rüegsegger, Three-dimensional finite element modelling of non-invasively assessed trabecular bone structures, Medical Engineering & Physics, vol.17, issue.2, pp.126-159, 1995.
DOI : 10.1016/1350-4533(95)91884-J

B. Van-rietbergen, H. Weinans, R. Huiskes, and B. Polman, COMPUTATIONAL STRATEGIES FOR ITERATIVE SOLUTIONS OF LARGE FEM APPLICATIONS EMPLOYING VOXEL DATA, International Journal for Numerical Methods in Engineering, vol.28, issue.16, pp.2743-67, 1996.
DOI : 10.1002/(SICI)1097-0207(19960830)39:16<2743::AID-NME974>3.0.CO;2-A

Y. Yeni and D. Fyhrie, Finite element calculated uniaxial apparent stiffness is a consistent predictor of uniaxial apparent strength in human vertebral cancellous bone tested with different boundary conditions, Journal of Biomechanics, vol.34, issue.12, pp.1649-54, 2001.
DOI : 10.1016/S0021-9290(01)00155-5

G. Niebur, J. Yuen, A. Hsia, and T. Keaveny, Convergence Behavior of High-Resolution Finite Element Models of Trabecular Bone, Journal of Biomechanical Engineering, vol.121, issue.6, pp.629-664, 1999.
DOI : 10.1115/1.2800865

E. Verhulp, B. Van-rietbergen, R. Muller, and R. Hsuiskes, Micro-finite element simulation of trabecular-bone post-yield behaviour ??? effects of material model, element size and type, Computer Methods in Biomechanics and Biomedical Engineering, vol.23, issue.4
DOI : 10.1002/jor.20027

M. Slivka, N. Leatherbury, K. Kieswetter, and G. Niederauer, Porous, Resorbable, Fiber-Reinforced Scaffolds Tailored for Articular Cartilage Repair, Tissue Engineering, vol.7, issue.6, pp.767-80, 2001.
DOI : 10.1089/107632701753337717

G. Tozzi, Q. Zhang, and J. Tong, 3D real-time micromechanical compressive behaviour of bone???cement interface: Experimental and finite element studies, Journal of Biomechanics, vol.45, issue.2, pp.356-63, 2012.
DOI : 10.1016/j.jbiomech.2011.10.011

D. Quinta, J. Fonseca, P. Mummery, and P. Withers, Full-field strain mapping by optical correlation of micrographs acquired during deformation, Journal of Microscopy, vol.34, issue.1, pp.9-21, 2005.
DOI : 10.1117/1.1387992

J. Réthoré, N. Limodin, J. Buffière, F. Hild, W. Ludwig et al., Digital volume correlation analyses of synchrotron tomographic images, The Journal of Strain Analysis for Engineering Design, vol.46, issue.7, pp.683-95, 2011.
DOI : 10.1177/0309324711409999

P. Dierickx, Etude de la microstructure et des mécanismes d'endommagement des fontes G.S. ductiles : influence des traitements thermiques de ferritisation, 1996.

K. Madi, S. Forest, M. Boussuge, S. Gailliegue, E. Lataste et al., Finite element simulations of the deformation of fused-cast refractories based on X-ray computed tomography, Computational Materials Science, vol.39, issue.1, pp.224-233, 2007.
DOI : 10.1016/j.commatsci.2006.01.033

URL : https://hal.archives-ouvertes.fr/hal-00140558

M. Hori and S. Nemat-nasser, On two micromechanics theories for determining micro???macro relations in heterogeneous solids, Mechanics of Materials, vol.31, issue.10, pp.667-82, 1999.
DOI : 10.1016/S0167-6636(99)00020-4

A. Terrier, M. Sedighi-gilani, R. Ghias, A. Aschwanden, L. Pioletti et al., Biomechanical evaluation of porous biodegradable scaffolds for revision knee arthroplasty, Computer Methods in Biomechanics and Biomedical Engineering, vol.41, issue.3, pp.333-342, 2009.
DOI : 10.1016/S0142-9612(98)00155-0

J. Inglada, V. Muron, D. Pichard, and T. Feuvrier, Analysis of Artifacts in Subpixel Remote Sensing Image Registration, IEEE Transactions on Geoscience and Remote Sensing, vol.45, issue.1, pp.254-264, 2007.
DOI : 10.1109/TGRS.2006.882262

URL : https://hal.archives-ouvertes.fr/hal-00578144

S. Bergonnier, F. Hild, and S. Roux, Digital image correlation used for mechanical tests on crimped glass wool samples, The Journal of Strain Analysis for Engineering Design, vol.32, issue.2, pp.185-97, 2005.
DOI : 10.1243/030932405X7773

URL : https://hal.archives-ouvertes.fr/hal-00013799

B. Pan, K. Qian, H. Xie, and A. Asundi, Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review, Measurement Science and Technology, vol.20, issue.6, p.62001, 2009.
DOI : 10.1088/0957-0233/20/6/062001

K. Okamoto, Comparison of sub-pixel estimation of PIV using frequency response analysis, Journal of Visualization, vol.23, issue.4, pp.355-61, 2002.
DOI : 10.1007/BF03182350

H. Leclerc, J. Périé, F. Hild, and S. Roux, Digital Volume Correlation: What are the limits to the spatial resolution? Mech Indus 2012; in press, 2012025.

K. Madi, A. Booker, G. Tozzi, Z. Zhang, Y. Siu et al., Viscoelastic modelling and full-field strain computation of biphasic scaffold for osteochondral defect repair, ECCOMAS ? International Conference on Tissue Engineering P.R. Fernandes et al

F. Henson and A. Getgood, The Use of Scaffolds in Musculoskeletal Tissue Engineering, The Open Orthopaedics Journal, vol.5, issue.1, pp.261-267, 2011.
DOI : 10.2174/1874325001105010261

D. Burr, C. Milgrom, D. Fyhrie, M. Forwood, M. Nyska et al., In vivo measurement of human tibial strains during vigorous activity, Bone, vol.18, issue.5, pp.405-415, 1996.
DOI : 10.1016/8756-3282(96)00028-2