A criterion for Greenberg’s Conjecture
Luca Caputo, Filippo Alberto Edoardo Nuccio Mortarino Majno Di Capriglio

To cite this version:

HAL Id: hal-00947165
https://hal.archives-ouvertes.fr/hal-00947165
Submitted on 24 Feb 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
A CRITERION FOR GREENBERG’S CONJECTURE

LUCA CAPUTO AND FILIPPO ALBERTO EDOARDO NUCCIO

Abstract. We give a criterion for the vanishing of the Iwasawa \(\lambda \) invariants of totally real number fields \(K \) based on the class number of \(K(\zeta_p) \) by evaluating the \(p \)-adic \(L \) functions at \(s = -1 \).

1. Introduction

Let \(K \) be a real abelian number field and let \(p \) be an odd prime. Set \(F = K(\zeta_p) \) where \(\zeta_p \) is a primitive \(p \)-th root of unity and \(H = \text{Gal}(F/K) \). Set, moreover, \(G = \text{Gal}(F/\mathbb{Q}) \) and \(\varpi = \text{Gal}((\mathbb{Q}(\zeta_p))/\mathbb{Q}) \). So the diagram of our extensions is as follows:

\[
\begin{array}{ccc}
F = K(\zeta_p) & \uparrow H & K \\
\downarrow G & & \\
\mathbb{Q}(\zeta_p) & \uparrow \varpi & \mathbb{Q} \\
\end{array}
\]

Let \(\tilde{\omega} : H \to \mathbb{Z}_p^\times \) and \(\omega : \varpi \to \mathbb{Z}_p^\times \) be the Teichmüller characters of \(K \) and \(\mathbb{Q} \), respectively. We give (Theorem 2.3) a criterion under which a set of odd Iwasawa invariants associated to \(F \) vanish: by means of a Spiegelungssatz, these odd invariants make their even mirrors vanish too. In the case \(p = 3 \) (Corollary 2.5) or \(p = 5 \) and \([K : \mathbb{Q}] = 2 \) (Theorem 2.7) this allows us to verify a conjecture of Greenberg for the fields satisfying our criterion.

2. Main result

Proposition 2.1. The following equality holds

\[
\text{rk}_p(K_2(\mathcal{O}_K)) = \text{rk}_p((\text{Cl}_F')_{\omega^{-1}}) + |S|
\]
where $K_2(O_K)$ is the tame kernel of K-theory, Cl'_p is the class group of the ring $O_F[1/p]$ (and we take its ω^{-1}-component for the action of H) and S is the set of p-adic primes of K which split completely in F.

Proof. This result dates back to Tate: for an explicit reference see [Gra] Theorem 7.7.3.1. \square

Proposition 2.2. Suppose that $\mathbb{Q}(\zeta_p)$ is linearly disjoint from K over \mathbb{Q}. Then the following equalities holds

$$v_p(|K_2(O_K)|) = v_p(\zeta_K(-1)) \text{ if } p \geq 5$$

$$v_3(|K_2(O_K)|) = v_3(\zeta_K(-1)) + 1$$

where v_p denotes the standard p-adic valuation and ζ_K is the Dedekind zeta function for K.

Proof. The Birch-Tate conjecture which has been proved by Mazur, Wiles and by Greither (since it is a consequence of the Main Conjecture in Iwasawa theory) tells that

$$\frac{|K_2(O_K)|}{w_2} = \zeta_K(-1)$$

where

$$w_2 = \max\{n \in \mathbb{N} \mid \text{the exponent of } \text{Gal}(K(\zeta_n)/K) \text{ is } 2\}$$

By our hypothesis, $\mathbb{Q}(\zeta_p)$ is linearly disjoint from K over \mathbb{Q}. Hence F/K is Galois with cyclic Galois group of order $p-1$. If $p = 3$, then for the same argument $3 | w_2$ but $9 \nmid w_2$ since $K(\zeta_9)/K$ has degree 6. Taking p-adic valuation we get the claim. \square

Theorem 2.3. Let $p \geq 5$. Suppose that the following holds

- K and $\mathbb{Q}(\zeta_p)$ are linearly disjoint over \mathbb{Q};
- the set S of Proposition 2.1 is empty;
- the Main Conjecture of Iwasawa theory holds for F.

Then, if p does not divide the order of $Cl'_p(\omega^{-1})$, $\lambda_{\omega^2}(F) = 0$ for all characters χ of Δ.

Proof. First of all, we should just prove the theorem for non-trivial characters of Δ, since $\lambda_{\omega^2} = 0$ as it corresponds to the ω^2-part of the cyclotomic extension of $\mathbb{Q}(\zeta_p)$, which is always trivial: indeed, $B_{1/2} = -1/2$, and then Herbrand’s theorem and Leopoldt’s Spiegelungssatz ([Was], theorems 6.7 and 10.9) give $\lambda_{\omega^2} = 0$.

By hypothesis, the set S of Proposition (2.1) is empty. Therefore $rk_p(K_2(O_K)) = 0$ and Proposition (2.2) (that we can apply because K verifies its hypothesis) together with $p \geq 5$ tells us that $v_p(\zeta_K(-1)) = 0$. Since we can factor

$$\zeta_K(s) = \prod_{\chi \in \Delta} L(s, \chi) = \zeta_Q(s) \prod_{\chi \neq 1} L(s, \chi)$$

we find that

$$v_p(\zeta_K(-1)) = \sum_{\chi \neq 1} v_p(L(-1, \chi)) = 0.$$ \hspace{1cm} (2.1)

The interpolation formula for the p-adic L-function (see [Was], chapter 5) tells us that

$$L_p(-1, \chi) = (1 - \chi \omega^{-2}(p)p)L(-1, \chi \omega^{-2});$$
now we invoke the Main Conjecture as stated in ([Gre], page 452) to relate these L functions with the characteristic polynomials of some sub-modules of the Iwasawa module $X_{\infty}(F)$. Observe that the hypothesis of linear disjointness tells us that $G \cong \Delta \times \hat{\omega}$ so we can split

$$X_{\infty}(F) \cong \bigoplus_{\chi \in \Delta} \bigoplus_{i=1}^{p-1} X_{\infty}(F)(\chi \omega^i)$$

where G acts on $X_{\infty}(F)(\chi \omega^i)$ as $g \cdot x = (\chi \omega^i)(g)x$ for all $g \in G$ and $x \in F$. Then the Main Conjecture for F allows us to write $L_{\chi}(1, \Omega^i) = f(-p/(1+p), \chi^{-1}\omega^{i-1})$ for all even $2 \leq i \leq p-1$, where $f(T, \chi^{-1}\omega^{i-1}) \in \mathbb{Z}[T]$ is the characteristic polynomial of $X_{\infty}(F)(\chi^{-1}\omega^{1-1})$: thus $L_{\chi}(1, \Omega^i)$ is an integral. Applying this for $i = 2$ and plugging it into (2.2) we find $v_p(L(-1, \chi)) = 0$ for all χ, and thanks to (2.1) we indeed find $v_p(L(-1, \chi)) = 0$ for all $\chi \in \Delta$, so

$$v_p(L_{\chi}(1, \Omega^{2})) = 0 \quad \forall \chi \in \Delta.$$

If we now apply again the Main Conjecture we find that this corresponds to

$$v_p\left(f\left(\frac{1}{1+p} - 1, \chi^{-1}\omega^{1-1}\right) \right) = v_p\left(f\left(\frac{-p}{1+p}, \chi^{-1}\omega^{1-1}\right) \right) = 0 \quad \forall \chi \in \Delta.$$

Since $f(T, \chi^{-1}\omega^{1-1}) \in \mathbb{Z}[T]$, is distinguished (see [Was], chapter 7) this is possible if and only if $\deg_T(f(T, \chi^{-1}\omega^{1-1})) = 0$; but this is precisely the Iwasawa invariant $\lambda_{\chi^{-1}\omega^{1-1}}$, so we have

$$\lambda_{\chi^{-1}\omega^{1-1}} = 0 \quad \forall \chi \in \Delta.$$

Since the inequality $\lambda_{\chi^{-1}\omega^{1-1}} \geq \lambda_{\Omega^{2}}$ is classical and well-known (see, for instance, [BN] section 4), we achieve the proof. \hfill \Box

Remark 2.4. We should ask that the Main Conjecture holds for K to apply it in the form of [Gre]. For this, it is enough that there exists a field E that is unramified at p and such that $F = E(\zeta_p)$, as it is often the case in the applications. Moreover, we remark that the hypotheses of the theorem are trivially fulfilled if p is unramified in K/\mathbb{Q}.

Corollary 2.5. Assume $p = 3$. If 3 does not divide the order of $Cl(F)(\omega^{-1})$ and it is unramified in K, then $\lambda(K) = \lambda(F) = 0$.

Proof. First of all, the Theorem applies for $p = 3$ also, since we still have (2.1) thanks to $\zeta(-1) = -1/12$; moreover, K is clearly disjoint from $\mathbb{Q}(\sqrt{-3}) = \mathbb{Q}(\zeta_3)$, as it is unramified, and F/K is ramified, so $S = \emptyset$. But in this case we have $\omega^2 = 1$, so the statement of the Theorem is that all Iwasawa invariants λ_{χ} vanish for $\chi \in \Delta$ and their sum is precisely $\lambda(K)$. Concerning $\lambda(F)$, in the proof of the Theorem we first prove that all $\lambda_{\chi \omega}$ vanish, and deduce from it the vanishing of their “mirror” parts. \hfill \Box

Remark 2.6. In the case $K = \mathbb{Q}(\sqrt{-d})$ is real quadratic, this is a classical result of Scholtz (although it is expressed in term of Iwasawa invariants), see [Was] Theorem 10.10.

Theorem 2.7. Let K be a real quadratic field and suppose that $5 \mid |Cl(F)|$. Then $\lambda(K) = 0$.
Proof. Write $K = \mathbb{Q}(\sqrt{d})$ and let χ be its non-trivial character: the result being well-known if $d = 5$ we assume throughout that $d \neq 5$. Then we should consider two cases, namely $5 \mid d$ and $5 \nmid d$. We have the following diagram of fields (we don’t draw the whole of it):

Suppose first of all that $5 \mid d$ or that 5 is inert in K/\mathbb{Q}. Since $5 \nmid [F : K]$, our hypothesis implies that $5 \nmid \text{Cl}_K$ (see [Was] Lemma 16.15). But then we would trivially have $\lambda(K) = 0$ as an easy application of Nakayama’s Lemma (see [Was] Proposition 13.22). We can thus suppose that 5 splits in K/\mathbb{Q}. We then apply Theorem 2.3 to K^* instead of K: since $\mathbb{Q}(\sqrt{5}) \subseteq \mathbb{Q}(\zeta_5)$, our field is linearly disjoint over \mathbb{Q} from $\mathbb{Q}(\zeta_5)$ and $S = \emptyset$ thanks to degree computations. Moreover the Main Conjecture holds for F since $F = K(\zeta_5)$ and K is totally real and unramified at 5. We find that $\lambda_{\omega^2} = 0$ where χ^* is the non-trivial character of K^*. But clearly $\chi^* = \chi \omega^2$ so $\lambda_{\chi} = 0$. Since the Iwasawa invariant associated to the trivial character is $\lambda(\mathbb{Q}) = 0$ we have $\lambda(K) = \lambda(\mathbb{Q}) + \lambda_{\chi} = 0$. \qed

References