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This document is a summary of two talks given at the School on Arith-
metic Geometry held in Guwahati, India, from September 22nd − 29th on
Fitting ideals and their applications to Wiles’ proof of Iwasawa Conjecture
for totally real fields as in [Wil90]. The main references for the theory of Fit-
ting ideals are [Nor76] and the appendix of [MW84]. Nothing in this notes
is new, and every fact is taken - either directly or slightly adapted - from
[Nor76] or [MW84]. Observe that a ring with only one maximal ideal is called
semi-local in [Nor76] and it is called local if it is noetherian with only one
maximal ideal.

1 General results on Fitting ideals

By “ring” we mean a commutative ring with 1. We fix such a ring and we
call it R. If M is a finitely generated R-module and x is a set of generators
of M (we will assume all such sets to be ordered), we indicate by |x| the
number of elements it contains; an element r = (r1, . . . , r|x|) ∈ R|x| is called
a relation among the generators in x if

|x|∑

i=1

rixi = 0 ∈M .

Definition 1. Let M be a finitely generated R-module and let x be a set of
generators of M . A matrix X is said to be a matrix of relations for x if
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1. X ∈ Mq×|x|(R) with q ≥ |x|;

2. X · x = 0, i. e. every row is a relation among the xi’s.

We are now ready to define the main object of our study. If X is a n×m-
matrix (with n ≥ m), we define its determinantal ideal DetId(X) ⊆ R to be
the ideal of R generated by all m×m-minors of X.

Definition 2. Let M be a finitely generated R-module. We define the R-
Fitting ideal of M to be

FittR(M) =
∑

X

DetId(X)

where X runs through all matrices of relations for all sets of generators of
M .

Remark. Observe that a priori the sum in the definition is extended to
infinitely many ideals. Moreover, we want to stress that our convention that
a matrix of relations has always more rows than columns (these being as
many as the generators) is crucial for the definition of the determinantal
ideal. Indeed, suppose that we allow every matrix whose rows are relations
among a set of generators to be a matrix of relations and that we define its
determinantal ideal to be the ideal generated by all minors of largest possible
rank. Then if x is a set of generators, let x′ = {x1, x1, x2, . . . , x|x|} be the old
set of generators with one entry doubled - say the first. Then

(−1, 1, 0, . . . , 0)

would be a matrix of relations, and DetId(X) = R.

The definition of Fitting ideal given above is practically useless for any
application: but it may be of some use in certain proofs. Thus, before passing
to concrete examples, we want to show that in the definition it would have
been enough to sum over all matrices of relations of one fixed set of generators.
Indeed we have:

Proposition 1. Let x be a fixed, finite set of generators of the finitely gen-
erated module M . Then

FittR(M) =
∑

X

DetId(X)

where X runs through all matrices of relations for x.
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Proof. Only for the proof, for every set of generators y of M , set

A(y) :=
∑

Y

DetId(Y )

for Y running, as above, through all matrices of relations for y. We need
to show that for every set of generators y, the equality A(x) = A(y) holds:
indeed, by definition, FittR(M) =

∑
y A(y) and if they all coincide this sum

reduces to A(x).
Let then y be any set of generators and set xy := {x1, . . . , x|x|, y1, . . . , y|y|}:
clearly |xy| = |x|+ |y|. Since the xi’s generate M , we can find a relation

ck1x1 + ck2x2 + · · · ck|x|x|x| + yk = 0 ,

for suitable cki ∈ R, for every 1 ≤ k ≤ |y|. Let now X = (aij) be any
p × |x|-matrix appearing in the sum A(x) and define a new matrix, having
|x|+ |y| columns,

X̃ =




c11 . . . c1|x| 1 . . . 0
...

. . .
...

...
. . .

...
c|y|1 . . . c|y||x| 0 . . . 1

a11 . . . a1|x| 0 . . . 0
...

. . .
...

...
. . .

...
ap1 . . . ap|x| 0 . . . 0




.

It is clearly a matrix of relations for xy (it has p + |y| ≥ |x| + |y| rows) and

every |x| × |x|-minor of X also appears as |xy| × |xy|-minor of X̃, showing
the inclusion A(x) ⊆ A(xy).
Let now Y be a matrix of relations for xy; define a new matrix

Ỹ =




c11 c12 . . . c1|x|
...

...
. . .

... I|y|
c|y|1 c|y|2 . . . c|y||x|

Y




where I|y| is the |y| × |y| identity matrix. Then DetId(Ỹ ) ⊇ DetId(Y ) (just

observe that Y and Ỹ have the same number of columns and every |xy|×|xy|-
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minor of Y is also a |xy| × |xy|-minor of Ỹ ) and Ỹ is row equivalent to

Ỹ ′ =




c11 c12 . . . c1|x|
...

...
. . .

... I|y|
c|y|1 c|y|2 . . . c|y||x|

X 0




(for this, use the identity matrix in the upper right corner of Y to make every
element of the lower right corner trivial by means of elementary row oper-
ations); since the determinantal ideals of similar matrices clearly coincide,

we find that DetId(Y ) ⊆ DetId(Ỹ ) = DetId(Ỹ ′) = DetId(X)DetId(I|y|) =

DetId(X). Moreover, since the rows of Ỹ are relations among the elements

of xy, the same holds for the rows of Ỹ ′, so X is a matrix of relations for x
(since Y was a matrix of relations, X has more rows than columns). This
shows the inclusion A(xy) ⊆ A(x), and repeating the same argument with y
at the place of x shows that A(y) = A(xy) = A(x), as we needed.

Remark. Observe that it is enough to restrict the computation to square
|x| × |x|-matrices. Indeed, substituting a matrix of relations X with all its
|x| × |x|-submatrices in the sum defining DetId(X) gives the same elements
in the determinantal ideal.
Example. LetM = Ra for some a ≥ 1. A set of generators forM is e, where
ei is the vector such that (ei)j = δi,j. For every relation (r1, . . . , ra) ∈ Ra,

a∑

i=1

riei = 0 =⇒ ri = 0 ∀ i .

Therefore there are no non-trivial relations and, in particular, the only matrix
of relations for e is the 0 matrix. Accordingly, FittR(R

a) = 0.
Example. Let p be a prime number, R = Z and let M = Z/pZ × Z/p2.
Then clearly AnnZ(M) = p2Z. We want to compute FittZ(M). For this, let
{(a, 0), (0, b)} be a set of generators of M , where p ∤ ab. Then a matrix of
relations for this set is of the form

X =




α1 β1
α2 β2
...

...
αq βq
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with vp(αi) ≥ 1 and vp(βi) ≥ 2, for some q ≥ 2. Therefore, any 2× 2-minor
of X looks like

det(Xij) =

∣∣∣∣
αi βi
αj βj

∣∣∣∣

and vp(det(Xij) = vp(αiβj − αiβi) ≥ 3, showing via Proposition 1 that
FittZ(M) = p3Z. If we allowed “matrices of relations” having only one row,
(p, p2) would have been one such a matrix, generating the ideal p2Z. In this
sense, this invariant is “finer” than the usual annihilator.

Remark. In his book [Nor76] Northcott defines the i-th Fitting ideal for every
natural number i ≥ 0. What we have defined is then the 0-th Fitting ideal,
and is enough for the purposes of Wiles’ proof.

We now gather the main elementary results on Fitting ideals.

Lemma 1. Let I ⊆ R be an ideal. Then FittR(R/I) = I.

Proof. A generator for R/I is 1 and the general matrix of relations for it is



α1

. . .
αq




such that αi · 1 = 0 ∈ R/I, i. e. such that αi ∈ I for all i’s.

For the rest of this section M will denote a finitely generated R-module.

Lemma 2. Let M ′ be a quotient of M and let π : M ։ M ′ be a surjection:
then FittR(M) ⊆ FittR(M

′).

Proof. Let x be a set of generators for M ; then π(x) = {π(x)1, . . . , π(x)|x|}
is a set of generators for M ′. If {r1, . . . , r|x|} is a relation for x, it is also one
for π(x). Therefore any matrix of relations for x is also a matrix of relations
for π(x), showing the desired inclusion.

Lemma 3. If M ∼= M1 ×M2, then FittR(M) = FittR(M1) · FittR(M2).

Proof. On one side, any two matrices X, Y of relations for M1 and M2,
respectively, give a matrix of relations

(
X 0
0 Y

)
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for M1 ×M2. On the other side, choosing as set of generators for M1 ×M2

one of the form xy = {x1, . . . , x|x|, y1, . . . , y|y|} where x is a set of genera-
tors for M1 and y is one for M2, we can form from any matrix of relations
for xy two matrices of relations for x and y. These matrices verify clearly
DetId(X)DetId(Y ) = DetId(XY ), and our statement follows.

Combining Lemma 3 and Lemma 1 we get

Corollary 1. If M = R/a1×· · ·×R/an for ideals ai ⊆ R, then FittR(M) =
a1 · · · an.

�

Lemma 4. If M can be generated by n elements, then

AnnR(M)n ⊆ FittR(M) ⊆ AnnR(M) .

Proof. First of all, let x be a set of generators with |x| = n. Then, if ci ∈
AnnR(M) for 1 ≤ i ≤ n, the matrix

C =




c1 . . . 0
...

. . .
...

0 . . . cn




is a matrix of relations for x and c1 · · · cn = det(C) ∈ FittR(M), so AnnR(M)n ⊆
FittR(M).
On the other hand, let X be a square n× n-matrix of relations for x: let X◦

be its adjugate matrix1. Then multiplying the equation

X · x = 0

by X◦ shows that det(X) ∈ AnnR(M). Since, as we observed, FittR(M) is
generated by these determinants, we find FittR(M) ⊆ AnnR(M).

Remark. This Lemma gives another proof that FittR(R/I) = I, since in that
case n = 1 and AnnR(M) = I.

1The adjugate matrix X◦ of a square n× n-matrix X with coefficients in a ring R is a
matrix such that XX◦ = det(X)In. It may be defined as the matrix whose (i, j)-entry is
the (j, i)-cofactor of X.
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During the school, Otmar Venjakob observed that since M admits n gener-
ators, there is a surjection

(
R/AnnR(M)

)n
։M

and applying Lemma 2 gives the first inclusion.

Recall that a R-module M is said to be faithful if AnnR(M) = 0. Thus
the above Lemma gives

Corollary 2. If M is a faithful R-module, then FittR(M) = 0.
�

Lemma 5. If I ⊆ R is any ideal of R, then

FittR/I(M/IM) = FittR(M) + I ⊆ R/I

Proof. It is clear that if x is a set of generators for M , than its image under
the canonical projection is a set of generators forM/I, and that any relation
for the first set is also a relation for the second, giving FittR(M) + I ⊆
FittR/I(M/IM).
If now [X] = ([ξij]) is a matrix of relation for the set [x] of generators of
M/IM (we denote by [·] the class · + I), we can find elements αij ∈ I such
that for all 1 ≤ i ≤ |x| we have

|x|∑

j=1

ξijxj =

|x|∑

j=1

αijxj

because every element of IM can be written as a finite sum of the generators
of M with coefficients in I. The matrix X̃ whose i-th row is

(ξi1 − αi1, . . . , ξi|x| − αi|x|)

is a matrix of relations for M and X ≡ X̃ (mod I). Therefore DetId([X]) =

DetId([X̃]) = DetId(X̃) + I ⊆ FittR(M) + I. This gives the other inclusion.

Lemma 6. If 0 −→ M1 −→ M2 −→ M3 −→ 0 is an exact sequence of
finitely generated R-modules, then

FittR(M1) · FittR(M3) ⊆ FittR(M2) .
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Proof. Without loss of generality, we may and will assume that M1 ⊆ M2

and that the first map above is the natural inclusion. Let now [x] be a set
of generators for M3 and let x be a lifting of it to M2. Let y be a set of
generators for M1 ⊆M2. Then xy is a set of generators for M2.
Let X ∈ Mp×|x|(R), Y ∈ Mq×|y|(R) be matrices of relations for [x] and y,
respectively, and let C = (−cij) ∈ Mp×|y|(R), where

X · x =




∑|y|

i=1 c1iyi∑|y|

i=1 c2iyi
...∑|y|

i=1 cpiyi




.

Then the matrix

Z =

(
X C
0 Y

)

is a (p + q) × |xy|-matrix of relations for M2 and DetId(X) · DetId(Y ) ⊆
DetId(Z) since every minor of Z is of the form

∣∣∣∣
MX MC

0 MY

∣∣∣∣ =
∣∣∣∣
MX 0
0 MY

∣∣∣∣

where MX is a submatrix of X and MY is a submatrix of Y .

2 Applications to Wiles’ proof

In this section we focus on the applications of the theory of Fitting ideals
developed up to now to Wiles’ proof. In a first part we will start by assuming
that not only M is finitely generated, but that is in fact finitely presented;
and we eventually specialize to the case R = O[[T ]] where O is the ring of
integers of a p-adic field.

2.1 Finite presentations

First of all, recall that an R-moduleM is said to be finitely presented if there
is an exact sequence of R-modules

Ra h
→ Rb ϕ

→M → 0
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for suitable a, b ∈ N. Clearly, every finitely presented module is finitely
generated, since it can be generated by ϕ(ei) for 1 ≤ i ≤ b. If R is noetherian,
the converse is also true: indeed, if M is finitely generated, it is a quotient
of a finitely generated free module and there is an exact sequence

0 → S
ψ
→ Rb ϕ

→M → 0

for some S and for some b ∈ N. Using that R is noetherian, S should also
be finitely generated, say a quotient of Ra by a module T : we find

0 // T // Rb h //

k

  

Ra ϕ
//M // 0

S

ψ
>>

  
0

>>

0

where h := ψ ◦ k. We can therefore extract from the above diagram the
sequence

Ra h
→ Rb ϕ

→M → 0

that is exact since Ker(ϕ) = Im(ψ) = Im(h).
Now we present some results that are true for general finitely presented R-
modules. Thus, assuming noetherianity reduces this hypothesis to M being
finitely generated.

From now on we we fix an R-module M and we assume it is finitely
presented.

Proposition 2. Let Ra h
→ Rb ϕ

→ M → 0 be a finite presentation of M and
let H ∈ Mb×a(R) be a matrix attached to h. If a ≥ b, then FittR(M) =
DetId(H tr) and if a < b then FittR(M) = 0.

Proof. The finite presentation

Ra h
→ Rb ϕ

→M → 0

shows that a set of generators of M is {ϕ(e1), . . . , ϕ(eb)} and that the rela-
tions among these elements are precisely the kernel of ϕ, namely Im(h), that
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is spanned by the columns of H. By Proposition 1, to compute FittR(M) it
suffices to consider matrices whose rows are relations among these generators.

If a ≥ b, then Htr is a matrix of relations; moreover, if X is any other
matrix of relations, then all its sumbatrices are linear combinations of rows
of Htr and their determinant coincide with the determinant of those rows.
Therefore DetId(X) ⊆ DetId(Htr), showing the desired equality.
If a < b, then every matrix of relations X ∈ Mb×b(R) has at least two linearly
dependent rows, since they belong to Im(h) and this module has R-rank a <
b. Therefore DetId(X) = 0 for all such matrices, showing FittR(M) = 0.

Lemma 7. If I is a finitely generated ideal, then

FittR(M) ⊆ FittR(M/IM) ⊆ (FittR(M), I) ⊆ R .

Proof. The first inclusion is Lemma 2. For the second, if

Ra h
→ Rb →M → 0

is a presentation of M and if I = 〈α1, . . . , αn〉, then a presentation of M/IM
is

Ra+nb h∗
→ Rb →M/IM → 0

where

h∗(w1, . . . , wa, v1,1, . . . , v1,b, . . . , vn,1, . . . , vn,b) =h(w1, . . . , wa)

+
n∑

j=1

(αjvj,1, . . . , αjvj,b) .

A matrix associated to h∗ is

H∗ =




H 0 . . . 0
0 A . . . 0
...

...
. . .

...
0 0 . . . A




where H is a matrix associated to h and A is the diagonal matrix

A =




α1 0 . . . 0
0 α2 . . . 0
...

...
. . .

...
0 0 . . . αn


 .
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Any non-trivial b × b minor of H∗ is either a b × b minor of H or a linear
combination of suitable multiples of some αj’s, and hence we get the second
inclusion. Observe that the above proof works both if a ≥ b and if a < b.

Combining this Lemma with Corollary 2 we get

Corollary 3. If I ⊆ R is a finitely generated ideal and M is a faithful
R-module, then FittR(M/IM) ⊆ I.

�

2.2 Iwasawa Algebras

Next we focus on applications of the theory of Fitting ideal in Wiles’ proof of
the Iwasawa Conjecture. We assume for this that O is the ring of integers of
a p-adic field and we let Λ denote the formal power series ring Λ = O[[T ]]: we
refer the reader to chapters 7, 13 and 15 of [Was97] for basic facts about Λ-
modules. This is a complete, local, noetherian ring: let m denote its maximal
ideal, that is generated (for instance) by π and T where π is a uniformizer of
O. Since it is noetherian, we can combine general results of Section 1 with
those of § 2.1.
If p1, . . . , pk are prime ideals of height 1 in Λ and r, e1, . . . , ek are non-negative
integers, define the finitely generated Λ-module E(r, pe11 , . . . , p

ek
k ) to be

E(r, pe11 , . . . , p
ek
k ) = Λr ⊕

k⊕

i=1

Λ/peii :

These are called elementary Λ-modules: they are classified (up to isomor-
phism) by the above set of prime ideals and integers and every finitely gen-
erated Λ-module is pseudo-isomorphic to exactly one of these modules − a
pseudo-isomorphism being a Λ-homomorphism with finite kernel and coker-
nel.
For a finitely generated torsion module M , r = 0 and a coarser (but often
important) invariant than the entire set above is the so-called characteristic
polynomial, that is the unique distinguished2 polynomial fM(T ) such that

fM(T ) · Λ =
k∏

i=1

p
ei
i ;

2A power series is called a distinguished polynomial if it is either a constant in πO or
it is a monic polynomial whose coefficients are all divisible by π but the leading one.
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since this definition is easily seen to be multiplicative in exact sequences and
since finite modules are pseudo-isomorphic to the trivial module, this is an
invariant under pseudo-isomorphism. Observe that prime ideals of height 1
are all principal, generated either by a uniformizer of O or by irreducible
distinguished polynomial. We start with the following

Lemma 8. Let N = E(0, pe11 , . . . , p
ek
k ) be an elementary torsion Λ-module.

Then

1. fN(T ) · Λ = FittΛ(N) .

2. If none of the pi’s is π · Λ, then

FittΛ(N) = charΛ
(
· T : N → N

)
· Λ .

where charΛ
(
·T : N → N

)
is the characteristic polynomial (say, in the

variable X) of the multiplication by T seen as O-linear endomorphisms
of the finite free O-module N , evaluated at X = T .

Remark. Given a non-constant distinguished polynomial g(T ), the module
Λ/g(T )Λ is O-torsion free; thus, if pi 6= πΛ for all i’s, then N is finitely gen-
erated and torsion-free over the principal ideal domain O, hence free of finite
rank. Moreover, despite its name, we will always denote the characteristic
polynomial of a Λ-module M by fM , leaving the notation charΛ(·) for the
usual meaning of the characteristic polynomial of a linear map (see Corollary
4 below for instances in which these two notions coincide).

Proof. The equality in 1. is clear after Corollary 1 and the definition of
elementary module.
For 2. without loss of generality we can assume that N = Λ/pe with p =
g(T )Λ where g(T ) is a non-constant distinguished polynomial. Then pe =
g(T )eΛ and g(T )e is still distinguished, say of degree λ: let gi be the coefficient
of T i in g(T )e for 0 ≤ i ≤ λ − 1. Let {1, T, . . . , T λ−1} be a basis of N : the
matrix attached to the multiplication by T in this basis is




0 0 0 0 −g0
1 0 0 0 −g1
... 1 0 0 −g2
...

...
. . .

...
...

0 0 0 1 −gλ−1
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and the characteristic polynomial is then

∣∣∣∣∣∣∣∣∣∣∣

−X 0 0 0 −g0
1 −X 0 0 −g1
... 1 −X 0 −g2
...

...
. . . . . .

...
0 0 0 1 −gλ−1 −X

∣∣∣∣∣∣∣∣∣∣∣

Developing the determinant along the first line shows, by induction on λ,
that this characteristic polynomial is precisely

λ−1∑

i=0

giX
i +Xλ = g(X)e .

Using 1. and evaluating at X = T yields 2., since fΛ/g(T )eΛ = g(T )2.

Corollary 4. Let N be a finitely generated torsion Λ-module having no O-
torsion. Then N is a finite free O-module and

fN(T ) · Λ = charΛ
(
· T : N → N

)
= FittΛ(EN)

where EN is the elementary module pseudo-isomorphic to N .

Proof. The freeness of N follows, as before, from O being a principal ideal
domain; observe also that the elementary module attached to a module with-
out O-torsion does not have π ·Λ in its set of invariants. Thanks to the above
Lemma, the equality follows from fN(T ) = fEN

(T ), which is clear since, by
definition, the characteristic polynomial of a Λ-module depends only on its
pseudo-isomorphism class; and from charΛ

(
· T : N → N

)
= charΛ

(
· T :

EN → EN
)
. This last relation may be proven, for instance, by observing

that both are monic polynomials with coefficients in O of the same degree
that have the same image in Λ⊗Qp.

Proposition 3. Let N be a finitely generated torsion Λ-module having no
O-torsion. Then

fN(T ) · Λ = FittΛ(N) .

We start with the following Lemma:
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Lemma 9 (Auslander-Buchsbaum resolution). Let N be finitely generated
torsion Λ-module that is free of finite rank as O-module. Then

Λ⊗O N
γ
→ Λ⊗O N

ε
→ N → 0

is a finite presentation of N as Λ-module, where

γ(λ⊗ n) = Tλ⊗ n− λ⊗ Tn

and
ε(λ⊗ n) = λn .

Proof. The fact that ε is surjective is clear, as well as the fact that both γ
and ε are Λ-homomorphisms and that ε ◦ γ = 0. Moreover, if we prove that
the sequence is exact, it is a presentation of N since the freeness of N implies
that of Λ⊗N .
Thus we need only to show that Im(γ) ⊇ Ker(ε) and this would follow from

x = γ(ξ) + 1⊗ ε(x) ∀ x ∈ Λ⊗O N (1)

for some ξ depending on x. Since (1) is O-linear, we can check it only on
elements of the form x = T k ⊗ n (use also that O[T ] is dense in Λ and both
γ, ε are continuos) for suitable k ≥ 0 and n ∈ N : this we do by induction on
k. If k = 1, x = T ⊗n = T ⊗n− 1⊗Tn+1⊗Tn = γ(1⊗n)+ 1⊗ ε(T ⊗n),
as we wanted. Asssuming (1) up to k − 1, suppose x = T k ⊗ n: then

x = TT k−1 ⊗ n− T k−1 ⊗ Tn+ T k−1 ⊗ Tn
induction

=

= T k−1
(
T ⊗ n− 1⊗ Tn

)
+ γ(ξ′) + 1⊗ ε

(
T k−1 ⊗ Tn

)
=

= T k−1γ(1⊗ n) + γ(ξ′) + 1⊗ T kn =

= γ
(
T k−1 ⊗ n+ ξ′) + 1⊗ ε(x) .

Setting ξ = T k−1 ⊗ n+ ξ′ we get (1).

Remark. It is indeed easy to prove that γ is injective.

We can now prove Proposition 3:

Proof. If x is a O-basis of N , the set {1 ⊗ x1, . . . , 1 ⊗ x|x|} is a Λ-basis of
Λ⊗N : moreover, γ = ϑ− τ where

ϑ : λ⊗ n 7→ Tλ⊗ n τ : λ⊗ n 7→ λ⊗ Tn
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and therefore detMat(γ) = det
(
Mat(ϑ) − Mat(τ)

)
, where we introduce -

just along the proof - the notation Mat(·) to denote the matrix attached to
a linear map in the bases chosen above. Since ϑ maps every element of the
Λ-basis 1⊗ xi to T ⊗ xi, and by definition of τ , we find

Mat(ϑ) = T · I|x| τ = ·T : N → N .

This shows that the characteristic polynomial of multiplication by T (evalu-
ated at X = T ) is the determinant of Mat(γ) and, by Proposition 2 applied
to the Auslander-Buschsbaum resolution, we see that this determinant gener-
ates the Λ-Fitting ideal of N . Corollary 4 then gives the stated equality.

Now that we have collected these results, let M be a finitely generated
torsion Λ-module and assume that “µ = 0”, meaning3 that π does not divide
the characteristic polynomial fM(T ) ofM . Let torO(M) ⊆M be the maximal
O-torsion submodule of M : it is a Λ-submodule of M and there is an exact
sequence

0 −→ torO(M) −→M −→ N −→ 0 (2)

where N satisfies the hypothesis of Corollary 4. Observe now that as an
application of Lemma 6 we find

Corollary 5. Suppose R is a local ring and m is its maximal ideal. If M is
an R-module of finite length, then

m
lengthR(M) ⊆ FittR(M) .

Proof. We claim that over a local ring every module of length 1 is isomorphic
to k := R/m. Granting the claim, the Corollary follows from Lemma 1 and
from Lemma 6, by induction on lengthR(M).
We now prove the claim: observe that if M is a k-vector space endowed with
the natural R-action induced by R ։ k, then the notion of k-vector subspace
and of R-submodule of M coincide. Therefore lengthR(M) = lengthk(M) =
dimk(M). The module M has length 1, and therefore in the chain of inclu-
sions

M ⊇ mM ⊇ 0

one is an equality. By Nakayama Lemma, M = mM ⇒ M = 0, and this is
absurd since lengthR(0) = 0: therefore mM = 0, M is a k-vector space and
our previous discussion shows that it has dimension 1 over k.

3Traditionally, µ is the exponent of π · Λ in the set of invariants of an elementary
module.
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Applying this to our situation, we get:

Proposition 4. Let M be a finitely generated torsion Λ-module such that
µ = 0. Then

fM(T ) · (π, T )lengthΛ(torO(M)) ⊆ FittΛ(M) ⊆ fM(T ) · Λ .

Proof. Observe, first of all, that since torO(M) is finite, it has trivial charac-
teristic polynomial and fM(T ) = fN(T ). Now apply Lemma 6 to the above
sequence (2). We find that

FittΛ(torO(M)) · FittΛ(N) ⊆ FittΛ(M) :

since torO(M) is of finite length and N has no O-torsion, we can apply Corol-
lary 5 and Corollary 4 (together with our first remark) to translate the above
inclusion as (π, T )lentghΛ(torO(M)) · fM(T ) ⊆ FittΛ(M). The second inclusion
just follows from Lemma 2 together with Corollary 4.
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