Image Informative Maps for Estimating Noise Standard Deviation and Texture Parameters

Abstract : The problem of automatic detection of image areas appropriate for accurate estimation of additive noise standard deviation (STD) irrespectively to processed image properties is considered in this paper. For accurate estimation of either image texture or noise STD, we distinguish two complementary informative maps: noise- (NI-) and texture- (TI-) informative ones. The NI map is determined and iteratively upgraded based on the Fisher information on noise STD calculated in scanning window (SW) fashion. Fractional Brownian motion (fBm) model for image texture is used to derive the required Fisher information. To extract final noise STD from NI map, fBm- and DCT-based estimators are implemented. The performance of these two estimators is comparatively assessed on large image database for different noise levels. It is also compared with performance of two competitive state-of-the-art estimators recently published. Utilizing NI map along with DCT-based noise STD estimator has proved to be significantly more efficient.
Type de document :
Article dans une revue
EURASIP Journal on Advances in Signal Processing, SpringerOpen, 2011, pp.806516. 〈10.1155/2011/806516〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00947015
Contributeur : Yolande Sambin <>
Soumis le : vendredi 14 février 2014 - 15:09:12
Dernière modification le : mercredi 16 mai 2018 - 11:23:46

Lien texte intégral

Identifiants

Citation

Mikhail Uss, Benoit Vozel, Vladimir Lukin, Sergey Abramov, I. Baryshev, et al.. Image Informative Maps for Estimating Noise Standard Deviation and Texture Parameters. EURASIP Journal on Advances in Signal Processing, SpringerOpen, 2011, pp.806516. 〈10.1155/2011/806516〉. 〈hal-00947015〉

Partager

Métriques

Consultations de la notice

134