BandClust: An Unsupervised Band Reduction Method for Hyperspectral Remote Sensing

Abstract : We address the problem of unsupervised band reduction in hyperspectral remote sensing imagery. We propose the use of an information theoretic criterion to automatically separate the sensor's spectral range into disjoint subbands without ground truth knowledge. Our approach, named BandClust, preserves the physical sense of the spectral data and automatically provides relevant spectral subbands, i.e., of maximal informational complementarity. Experiments using real hyperspectral images are conducted to compare BandClust with four other unsupervised approaches. The comparison of the selected dimensionality reduction methods is performed via supervised classification using support vector machines and shows the potential of the proposed approach.
Type de document :
Article dans une revue
IEEE Geoscience and Remote Sensing Letters, IEEE - Institute of Electrical and Electronics Engineers, 2011, 8 (3), pp.565-569. 〈10.1109/LGRS.2010.2091673〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00946927
Contributeur : Yolande Sambin <>
Soumis le : vendredi 14 février 2014 - 12:55:25
Dernière modification le : samedi 14 juillet 2018 - 01:06:29

Identifiants

Citation

Claude Cariou, Kacem Chehdi, Steven Le Moan. BandClust: An Unsupervised Band Reduction Method for Hyperspectral Remote Sensing. IEEE Geoscience and Remote Sensing Letters, IEEE - Institute of Electrical and Electronics Engineers, 2011, 8 (3), pp.565-569. 〈10.1109/LGRS.2010.2091673〉. 〈hal-00946927〉

Partager

Métriques

Consultations de la notice

246