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Abstract

We describe a semi-supervised organ segmentation method for Computed Tomography images.
In a first step, a dense oversegmentation of the image is created with an Eikonal-based algorithm.
The proposed superpixel algorithm ourperforms state-of-the-art algorithms on classical metrics.
In a second step, the semi-supervised segmentation is performed on the underlying Region Adja-
cency Graph created from the oversegmentation. As the complexity is greatly reduced, the organ

segmentation can be performed in real-time.
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1. Introduction

Fast and accurate computer aided organ seg-
mentation is more and more required in many
medical applications such automatic detection
of liver cancer [19]], measurements of liver vol-
ume [14], helpful both for surgical planning
prior to hepatic resection [9], and for devel-
oping effective radiation treatments programs
[11]. More precisely our work is part of a
Selective Internal Radiation Therapy (SIRT)
project [/] whose goal is to compute a 3-
dimensional dosimetry of the liver for treat-
ment planning.

To this end the volume of the liver has to
be known to deliver the right dose to the pa-
tient. Lung volume has also to be known to
compute the Lung Shunt Fraction (LSF) in or-
der to avoid irradiation of the lungs during
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the treatment [2]. In this work we propose
a semi-supervised organ segmentation scheme
that gives the control of the segmentation to
the radiologist. A major challenge of such a
scheme in medical applications is the volume
of data that has to be processed, which is often
incompatible with real-time processings.

To tackle this problem, we propose a two-
step scheme that, first simplifies Computed To-
mography images by computing an overseg-
mentation of the volumes, and second per-
forms the segmentation on the graph created
from this oversegmentation. The oversegmen-
tation proposed in this paper belongs to the su-
perpixel algorithms that aim at grouping per-
ceptually and adjacent pixels into meaningful
regions, the so-called superpixels.

Numerous superpixel algorithms have been
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proposed in the literature, they can roughly
be divided into Graph-based methods [18, 21]]
and gradient (or color) based ones [12, 20} [1].
More details can be found on these methods in
Section [3] and a review of these in [1]]. Other
works make use of similar oversegmentations
such [4, 3] based on an energy that favors par-
titions of similar pixels, or [[15] based on the
watershed transformation. These last meth-
ods however do not belong to the superpixel
algorithm class since they do not control the
amount of regions nor their compactness.

Eikonal-based Region Growing Clustering
algorithnﬂ (ERGC) is a new superpixel algo-
rithm that formulates the clustering of pixels
as a solution of an Eikonal equation :

IVUx)|| = F(x) Vxel |
Ux)=0 VxeTl M

where 7 is the image domain, F a positive
function, I" the set of initial seeds, and U(x) the
traveling time or geodesic distance of x from
source I'.

The main difference from other eikonal-
based algorithms comes from the computation
of F(x) which is based on a distance between
pixel and region features.

Efficiently numericaly solved with the Fast
Marching method [17], ERGC leads to the cre-
ation of homogeneous superpixels. An addi-
tional spatial constraint can also be added to F
to enforce superpixel compactness.

The rest of the paper is organized as follows
: Section[2]details ERGC algorithm. Its perfor-
mance is evaluated and compared to state-of-
the-art superpixel algorithms in Section[3] The
application of ERGC as a preprocessing step
of the graph-based semi-supervised segmenta-
tion scheme is detailed in Section ] Section
concludes the paper.

!Source code and executable of ERGC can
be found at https://sites.google.com/site/
pierrebuyssens/ergc

2. Superpixels method

2.1. Notations

In the following several notations are
adopted to simplify the reading of the paper.
A pixel/voxel is noted p and consists of a co-
ordinate triplet (xp,yp,z,) and a color vector
C,. For 2D images, the z coordinate is equal
to zero. A superpixel/supervoxel R; consists of
a seed pixel/voxel s;, a mean color vector C;
and the number N; of pixels/voxels that belong
to Ri.

Note that these formulations are indepen-
dant of the number of channels of the images.
For gray level images, C, reduces to the gray
level of the pixel p.

2.2. Algorithm

The initialization of the algorithm consists
of sampling the number of desired seeds pix-
els/voxels K on a regular grid. Without any
prior, the sampling step for 2D images is set
to § = VN/K with N the number of pix-
els/voxels of the image (similar to [1] and
[12]]). These initial seeds are then perturbed
and moved to the minima of the gradient
map in a Vg neighborhood (V,¢ for 3D im-
ages). The mean color vector of each super-
pixel/supervoxel C; is then initialized with Cs,
and its neighbors in V, (Vg for 3D images).

To compute the numerical solution of equa-
tion[I} we adopt the Fast Marching method in-
troduced by Sethian in [[17]. It consists of com-
puting locally the geodesic distances for an
evolving front with a priority queue (see [16]
for a detailed description of the fast march-
ing method). As a front can only evolve with
a positive speed function, it passes through a
pixel/voxel only once, and the algorithm ter-
minates when all pixels/voxels have been vis-
ited.

Contrary to many front-based methods that
rely on a fixed potential map (often the magni-
tude of the gradient of the image : F' = ||VI|]),
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the right term of equation[I]evolves during the
diffusion process and is not fixed. Given a
pixel p, the proposed function F (right term
of equation [I)) is computed according to an ad-
joining region R; as :

Fo(p,R) =1IC, - Cill3 2)

This formalization favors the creation of su-
perpixels/supervoxels that are more homoge-
neous than those created by classical gradient—
based methods. Figure [I]compares the behav-
iors of both approaches on a toy problem and
on a natural scene.

Within the fast marching algorithm, a su-
perpixel/supervoxel R; has to be updated every
time a pixel p is integrated to R;. This update
is easily computed with :

C CiXN,"i‘Cp
' N;+1
Ni — Ni+1

A similar potential function has been pro-
posed in [13]. Dedicated to the 3D brain seg-
mentation, the potential is computed according
to a histogram analysis prior to the evolution of
active contours. Contrary to our approach, the
features (i.e.: mean and standard deviation of
the color) of the regions that initially define the
active contours do not evolve. Moreover the
analysis of the histogram of the brain allows
the detection of 3 well defined peaks (corre-
sponding to the gray matter, the white matter
and the cerebrospinal fluid), which is not the
case for many kind of images, especially with
CT where different organs may be composed
of pixels with similar or equal gray values. Our
framework is far more general since it can deal
with any kind of multispectral images.

In this primal form, ERGC superpixels may
be very irregular in shape and size. However
an additional spatial constraint can be added
to the right member of equation [I] to enforce
superpixel compactness.

O

0
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Figure 1: First row : initial image. The back and white
circles depict the initial seeds. Second row : the re-
sult segmentation with the proposed F (left) and the
gradient-based potential function (right). Third row :
geodesic distances map U in fake color. Some isocon-
tours are shown in white. Last row : segmentation of a
natural scene. Seeds are depicted in black.



2.3. Superpixels compactness

According to the application, it may be de-
sirable to have compact superpixels. Follow-
ing the idea introduced in [1]], a spatial con-
straint term can be added to the computation
of F. This spatial constraint penalizes the
geodesic distances of a pixel p that is spatially
far from a seed s; via the £, norm ||p — s;|>.

Since the spatial and color proximities are
not defined on the same range (especially with
medical images), a compactness factor m is
used to weigh the relative importance between
the two metrics.

With this spatial constraint, the second term
of equation [I| becomes :

F(p,R) = VF.(p,R)* + Fy(p,s)> (3

with

2
Py =2 @
where S in the initial sampling step. Setting
m = 0 leads to F(p,R)) = F.(p,R;)* which
means that no spatial constraint is considered.
Figure [2] shows the resulting superpixels for a
CT image with varying the number of super-
pixels and the compactness factor.

2.4. 3D extension

ERGC naturally extends to 3D images with
minor modifications of the algorithm. Figure[3|
shows a supervoxel oversegmentation of a 3D
volume from the MICCAI-2007 Grand Chal-
lenge dataset. For display purposes only the
interior part of the body is shown.

3. Evaluation of ERGC

In this section, we evaluate ERGC algorithm
on a natural image dataset and on a medical
image dataset, and compare it to the superpixel
methods published in the litterature.

The classical metrics to compare overseg-
mentation results are used in this evaluation :

(b)

Figure 3: Approximately 1000 ERGC supervoxels for a
Computed Tomography volume of a human body. Only
the interior part of the body is shown for visualization
convenience.

e The boundary recall (BR) indicates how
well superpixels adhere to true bound-
aries of the objects in the image. It mea-
sures the fraction of ground truth edges
that is also present in superpixel segmen-
tation within a distance . In our experi-
ments, ¢ is fixed to 2 (as in [[1} [12] to cite
few).

e The under-segmentation (UE) error mea-
sures the fraction of bleeding caused
by superpixels that overlap a given
ground truth segment. For a given
ground truth segmentation into segments
g1,--.,& and a superpixel segmentation
Ry, ..., Ry, the undersegmentation error
for a segment g; is quantified with

| X 05 Area(R))| - Area(g:)
Area(g;)

where B is set to 5 percent of Area(R;) (as
in [1]) to account for ambiguities of the
ground truth segments. Finally this frac-
tion is simply averaged across all ground
truth segments and all images.

o The Achievable Segmentation Accuracy
(ASA) is a performance upperbound
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measure. It gives the highest performance
when taking superpixels as units for ob-
ject segmentation. Each superpixel is la-
beled with the label of the ground truth
segment with the largest overlap. The
fraction of correctly labeled pixels is the
achievable accuracy :

2k max; sg N gil

i 8
As superpixels are often used as a prepro-
cessing step, the processing time is an im-
portant factor such that it does not slow

down the image processing pipeline too
much.

AS A(s) = 100 x

Performances are evaluated and compared

to five other algorithms :

e The Normalized Cuts approach (NCO5)
proposed in [6] partition a graph de-
fined on pixels by minimizing a global
cost function with an explicit compact-
ness constraint.

Superpixels method proposed in for-
mulates the superpixel partitioning prob-
lem in an energy minimization frame-
work, and optimize it with graph cuts.

Figure 2: CT image with 100 superpixels in the upper left of each image and 900 in the lower right for different values
of the compactness factor.

Two versions of the algorithm are pro-
posed differing in compact (GCal0O) or
constant intensity (GCb10) resulting su-
perpixels.

e The turbopixels method (TP09) proposed
in [12] dilates a set of initial seeds using a
level—-set geometric flow to adapt to local
image structure.

e Quick shift method (QS08) proposed in
[20] exploits kernels to extend mean shift
[5] using a medoid shift procedure.

e SLIC method proposed in [[I]] adapts k—
means in the image plane to exhibit su-
perpixels. The addition of a spatial con-
straint term produces regular regions that
adhere well to image boundaries.

3.1. Berkeley dataset

The Berkeley image dataset contains 300
2D images (in the RGB colorspace) of size
481x312 (or 321 x481) and approximately 10
ground truth manual segmentations for each
image.

Table [1] exhibits results on standard metrics
for the considered algorithms. Results have



been obtained with approximately 500 super-
pixels per image and have been computed for
the 3000 ground truth images. ERGC outper-
forms all other superpixels algorithms on the
standard metrics, while being faster. More-
over, Student’s z-test on these results exhibits
high values (r > 35), which validates the sta-
tistical significance of the results.

Complexity of ERGC relies essentialy on
the complexity of the fast marching algorithm,
which is roughly in O(nlog n) with an appro-
priate heap for sorting the pixels according to
their geodesic distance. Despite this theorical
complexity, ERGC is very fast in practice, and
the algorithm is nearly linear in time. Note
that these results have been obtained without
spatial constraints m = 0. Adding this con-
straint degrades slightly ERGC performances,
but produces more visually pleasing superpix-
els.

3.2. MICCAI-2007 Grand Challenge dataset

The MICCAI-2007 Grand Challenge
dataset [10] consists of 20 CT 3D images
(volumes) used for training and 10 for tests.
In this evaluation we focus on the training
part (and its ground truth) and especially the
slices which contain some liver parts. The
sub—dataset consists then of 2750 2D gray
images (of size 512 x 512), for a total amount
of more than 1.5 million liver boundary pixels.
Table [2| summarizes the results of ERGC and
the current state-of-the-art SLIC algorithm.
Since CT images are grayscale and for fair
comparisons purposes, results of SLIC and
ERGC of table [2] have been obtained by
simulating RGB images (i.e. 3 channels) for
a fair comparison. ERGC, is more realistic
and works directly on monochannel images.
ERGC, then gives the same results as ERGC
while being faster.

As shown in table [I] and 2] ERGC and
SLIC give the lowest Undersegmentation Er-

Table 2: Boundary Recall, Undersegmentation Er-
ror, Achievable Segmentation Accuracy and processing
time (in seconds) comparisons between SLIC, ERGC
and ERGC; on the training part of the MICCAI-2007
Grand Challenge dataset. Processing times are given
for_one slice.

SLIC ERGC ERGC,

BR
mean 0.8736 0.9464 0.9464
std 0.0317 0.0209  0.0209
UE 0.15 0.15 0.15
ASA 98.03  99.12 99.12

Processing time 1.56 0.57 0.37

ror. However ERGC gives the better Bound-
ary Recall and Achievable Segmentation Ac-
curacy results upon the considered algorithms,
and especially SLIC.

The Achievable Segmentation Accuracy re-
sult is the more important in our appli-
cation since the semi-supervised segmen-
tation proposed below considers superpix-
els/supervoxels as units.

4. Semi-supervised organ segmentation

In order to simplify the images and to re-
duce the complexity of the semi-supervised
segmentation algorithm, ERGC is performed
on CT images. The segmentation is then pro-
cessed on the underlying Region Adjacency
Graph (RAG) created from this oversegmen-
tation.

Feature of each vertex is simply the mean
color of the underlying superpixel/supervoxel.
An edge connecting two vertices u# and v is
weighted with the function

W(l/t, V) = ”Cu - CV||2

Figure {] shows a 512 x 512 slice extracted
from a CT volume of the MICCAI-2007 Grand
Challenge dataset, the oversegmentation per-
formed by ERGC containing approximately
1000 superpixels, and the RAG created from



Table 1: Comparison of ERGC to several superpixels algorithms for approximately 500 superpixels on different
metrics. Values of algorithms NCO05, GCal0, TP09, and QS08 have been extracted from [1]] courtesy of the authors.

Graph-based

Gradient-ascent—based

NCO5 GCal0, GCbl0, TP09 QS08 SLICI2 ERGC
(L8]] [21] [21]] (12]  [20] (]
BR 0.68 0.69 0.70 0.61 0.79 0.82 0.88
UE 0.22 0.22 0.22 024 0.20 0.19 0.19
ASA N/A N/A N/A N/A N/A 97.94 98.22
Segmentation speed
320 x 240 image x494 x14 x11 x22 x13 x1 x0.33
2048 x 1536 image N/A x21 x15 x53 x12 x1 x0.49
Control over amount of superpixels Yes Yes Yes Yes No Yes Yes
Control over superpixels compactness No No No No No Yes Yes
Supervoxel extension No Yes Yes No No Yes Yes

this oversegmentation. In this example, no
spatial constraint has been added to F, that is
m=0.

Once the graph is created, a user can manu-
ally label a superpixel and then its correspond-
ing vertex in the graph. Each time a super-
pixel/supervoxel is labeled, a label diffusion
on graph is performed using the Dijkstra al-
gorithm [8]. Since the graph contains very few
vertices (compared to the number of pixels of
the initial image), the diffusion is very fast.
The labeled graph then gives a label to each
superpixel/supervoxel, which leads to the seg-
mentation.

In our tests, the Dijkstra diffusion on graph
that contains 1000 vertices processes in ap-
proximately 0.01 seconds on a standard laptop.
This processing time allows a real-time seg-
mentation by the radiologist, and a bad label-
ing can be corrected on the fly. Figure[5|shows
the semi-supervised segmentation of the liver
on a 2D slice with few manual labels.

Processing 3D CT images operates in the
same manner. Supervoxels are computed from
a CT volume and the underlying RAG is cre-
ated. However, instead of fixing the number of
desired K, the initial seeds of ERGC are sam-
pled according to a fix sampling step S. In

our experiments on the MICCAI-2007 Grand
Challenge dataset, S is fixed to 10 pixels along
x and y axis, and 5 pixels along z axis, to take
into account the inter-slices distance which is
higher than inter-pixels distance in the trans-
verse plane. The second advantage of fixing
S along each axis instead of K is to deal with
images of various depth.

Figure E] shows transverse, sagittal and coro-
nal views of a CT volume containing 183
slices of size 512 x 512. About 96000 ERGC
supervoxels have been computed with the
sampling steps detailed above. Fixing a high
value for the spatial constraint m gives more
compact supervoxels, hence simplifying the
semi-supervised segmentation. In our exper-
iments, m is fixed to the product of sampling
steps which is 500.

Since the graph contains more vertices than
in the 2D example above, the Dijkstra dif-
fusion processing time is quite longer espe-
cially after the firsts supervoxels seeds have
been placed. For the underlying RAG of fig-
ure [6] the first Dijkstra iteration processes in
about 0.3 seconds but the following quickly
decreases to 0.01 seconds or less, since dis-
tances for only a few number of vertices have
to be updated.

Placing seeds into transverse, sagittal and
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Figure 4: (a) Initial slice, (b) approximately 1000 ERGC superpixels without spatial constraint (m = 0), and (c) the
underlying RAG.

Figure 5: Example of a semi-supervised segmentation of the liver. Two superpixels have been labeled as liver in dark
green (a), (b,c,d,e,f) annotation of superpixels as background in dark red. The liver contour is computed on the fly
and appears in green. For clarity purposes, only the liver is segmented.



coronal planes is natural for a radiologist. The
whole process acts in the same manner as in
2D except that seeds can be placed in any of
the three planes. Result segmentation is then
updated in the three planes and the radiolo-
gist can add/remove seeds to refine/correct the
segmentation. Figure [0 shows a segmented
volume with liver, lungs and background be-
longing to different classes (i.e. having differ-
ent labels). Only a few supervoxel seeds are
needed to obtain such a result. Note that edges
of lungs and liver are smoothed with gaussian
kernels of different strengths.

5. Conclusion

In this paper, we proposed a method based
on the Eikonal equation that quickly cre-
ates accurate superpixels/supervoxels. Outper-
forming other oversegmentation algorithms on
classical metrics, ERGC is used as a first step
in a graph-based semi-supervised image seg-
mentation. Applied to Computed Tomography
images, it allows a real-time segmentation by
processing the underlying graph, and gives the
control of the segmentation to the radiologist.

Further works will take into account color
and shape prior to ease the organs segmenta-
tion.
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