H. Abe, H. Kawamura, and Y. Matsuo, Direct Numerical Simulation of a Fully Developed Turbulent Channel Flow With Respect to the Reynolds Number Dependence, Journal of Fluids Engineering, vol.123, issue.2, pp.382-393, 2001.
DOI : 10.1115/1.1366680

F. Archambeau, N. Méchitoua, and M. Sakiz, Code_Saturne: a Finite Volume code for the computation of turbulent incompressible flows -industrial applications, International Journal on Finite Volumes, vol.1, pp.1-62, 2004.
URL : https://hal.archives-ouvertes.fr/hal-01115371

A. J. Chorin, Numerical study of thermal convection in a fluid heated from below, 1966.

A. J. Chorin, On the convergence of discrete approximations to the Navier-Stokes equations, Mathematics of Computation, vol.23, issue.106, pp.341-353, 1969.
DOI : 10.1090/S0025-5718-1969-0242393-5

S. J. Cummins and M. Rudman, An SPH Projection Method, Journal of Computational Physics, vol.152, issue.2, pp.584-607, 1999.
DOI : 10.1006/jcph.1999.6246

W. Dehnen and H. Aly, Improving convergence in smoothed particle hydrodynamics simulations without pairing instability, Monthly Notices of the Royal Astronomical Society, vol.425, issue.2, pp.1-15, 2012.
DOI : 10.1111/j.1365-2966.2012.21439.x

E. R&d, Code_Saturne 3.0.0 theory guide. http://code-saturne.org/cms/ sites/default/files/theory-3.0.pdf. Accessed, pp.2013-2023

M. Ellero and N. A. Adams, SPH simulations of flow around a periodic array of cylinders confined in a channel, International Journal for Numerical Methods in Engineering, vol.187, issue.5, pp.1027-1040, 2011.
DOI : 10.1002/nme.3088

J. Feldman and J. Bonet, Dynamic refinement and boundary contact forces in SPH with applications in fluid flow problems, International Journal for Numerical Methods in Engineering, vol.47, issue.3, pp.295-324, 2007.
DOI : 10.1002/nme.2010

M. Ferrand, D. R. Laurence, B. D. Rogers, D. Violeau, and C. Kassiotis, Unified semi-analytical wall boundary conditions for inviscid, laminar or turbulent flows in the meshless SPH method, International Journal for Numerical Methods in Fluids, vol.153, issue.1, pp.446-472, 2013.
DOI : 10.1002/fld.3666

URL : https://hal.archives-ouvertes.fr/hal-00691603

A. Ferrari, M. Dumbser, E. F. Toro, and A. Armanini, A new 3D parallel SPH scheme for free surface flows, Computers & Fluids, vol.38, issue.6, pp.1203-1217, 2009.
DOI : 10.1016/j.compfluid.2008.11.012

U. Ghia, K. N. Ghia, and C. T. Shin, High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method, Journal of Computational Physics, vol.48, issue.3, pp.387-411, 1982.
DOI : 10.1016/0021-9991(82)90058-4

G. Oger, C. Leroy, E. Jacquin, D. L. Touzé, and B. Alessandrini, Specific pre/post treatments for 3-D SPH applications through massive HPC simulations, Proc. 4th international SPHERIC workshop, pp.27-29, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01156314

V. Guimet and D. Laurence, A linearised turbulent production in the k-? model for engineering applications, Proc. Vth International Symposium on Engineering Turbulence Modelling and Measurements, pp.157-166, 2002.

S. M. Hosseini and J. J. Feng, Pressure boundary conditions for computing incompressible flows with SPH, Journal of Computational Physics, vol.230, issue.19, pp.7473-7487, 2011.
DOI : 10.1016/j.jcp.2011.06.013

X. Y. Hu and N. A. Adams, An incompressible multi-phase SPH method, Journal of Computational Physics, vol.227, issue.1, pp.264-278, 2007.
DOI : 10.1016/j.jcp.2007.07.013

R. Issa, Numerical assessment of the Smoothed Particle Hydrodynamics gridless method for incompressible flows and its extension to turbulent flows, 2004.

H. Kawamura, H. Abe, and K. Shingai, DNS of turbulence and heat transport in a channel flow with different Reynolds and Prandtl numbers and boundary conditions, Turbulence, Heat and Mass Transfer 3 (Proc. of the 3rd International Symposium on Turbulence, Heat and Mass Transfer), pp.15-32, 2000.

S. Kulasegaram, J. Bonet, R. W. Lewis, and M. Profit, A variational formulation based contact algorithm for rigid boundaries in two-dimensional SPH applications, Computational Mechanics, vol.33, issue.4, pp.316-325, 2004.
DOI : 10.1007/s00466-003-0534-0

B. E. Launder and D. B. Spalding, Mathematical models of turbulence, 1972.

E. Lee, Truly incompressible approach for computing incompressible flows in SPH and comparisons with the traditional weakly compressible approach, 2007.

E. S. Lee, C. Moulinec, R. Xu, D. Violeau, D. Laurence et al., Comparisons of weakly compressible and truly incompressible algorithms for the SPH mesh free particle method, Journal of Computational Physics, vol.227, issue.18, pp.8417-8436, 2008.
DOI : 10.1016/j.jcp.2008.06.005

M. De-leffe, D. L. Touzé, and B. Alessandrini, Normal flux method at the boundary for SPH, Proc. 4th international SPHERIC workshop, pp.149-156, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01156281

S. J. Lind, R. Xu, P. K. Stansby, and B. D. Rogers, Incompressible smoothed particle hydrodynamics for free-surface flows: A generalised diffusion-based algorithm for stability and validations for impulsive flows and propagating waves, Journal of Computational Physics, vol.231, issue.4, pp.1499-1523, 2012.
DOI : 10.1016/j.jcp.2011.10.027

A. W. Liu, D. E. Bornside, R. C. Armstrong, and R. A. Brown, Viscoelastic flow of polymer solutions around a periodic, linear array of cylinders: comparisons of predictions for microstructure and flow fields, Journal of Non-Newtonian Fluid Mechanics, vol.77, issue.3, pp.153-190, 1998.
DOI : 10.1016/S0377-0257(97)00067-0

F. Macià, L. M. González, and J. L. , Cercos-Pita, and A. Souto-Iglesias. A boundary integral sph formulation -consistency and applications to isph and wcsph. Progress of Theoretical Physics, pp.439-462, 2012.

S. Marrone, A. Colagrossi, D. L. Touzé, and G. Graziani, Fast free-surface detection and level-set function definition in SPH solvers, Journal of Computational Physics, vol.229, issue.10, pp.3652-3663, 2010.
DOI : 10.1016/j.jcp.2010.01.019

URL : https://hal.archives-ouvertes.fr/hal-01161589

A. Mayrhofer, M. Ferrand, C. Kassiotis, D. Violeau, and F. Morel, Unified semi-analytical wall boundary conditions in SPH: analytical extension to 3-D. Numerical Algorithms, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01318437

A. Mayrhofer, B. D. Roger, D. Violeau, and M. Ferrand, Study of differential operators in the context of the semi-analytical wall boundary conditions, Proc. 7th international SPHERIC workshop, pp.149-156, 2012.

M. Meyer, A. Devesa, S. Hickel, X. Y. Hu, and N. A. Adams, A conservative immersed interface method for Large-Eddy Simulation of incompressible flows, Journal of Computational Physics, vol.229, issue.18, pp.6300-6317, 2010.
DOI : 10.1016/j.jcp.2010.04.040

M. Meyer, S. Hickel, and N. A. Adams, Assessment of Implicit Large-Eddy Simulation with a Conservative Immersed Interface Method for turbulent cylinder flow, International Journal of Heat and Fluid Flow, vol.31, issue.3, pp.368-377, 2010.
DOI : 10.1016/j.ijheatfluidflow.2010.02.026

J. J. Monaghan, Smoothed particle hydrodynamics, Reports on Progress in Physics, vol.68, issue.8, pp.1703-1759, 2005.
DOI : 10.1088/0034-4885/68/8/R01

J. J. Monaghan and J. Kajtar, SPH particle boundary forces for arbitrary boundaries, Computer Physics Communications, vol.180, issue.10, pp.1811-1820, 2009.
DOI : 10.1016/j.cpc.2009.05.008

J. P. Morris, P. J. Fox, and Y. Zhu, Modeling Low Reynolds Number Incompressible Flows Using SPH, Journal of Computational Physics, vol.136, issue.1, pp.214-226, 1997.
DOI : 10.1006/jcph.1997.5776

Y. Peng, Y. Shiau, and R. R. Hwang, Transition in a 2-D lid-driven cavity flow, Computers & Fluids, vol.32, issue.3, pp.337-352, 2003.
DOI : 10.1016/S0045-7930(01)00053-6

S. B. Pope, Turbulent flows. Cambridge, 2000.
URL : https://hal.archives-ouvertes.fr/hal-00338511

D. J. Price, Smoothed particle hydrodynamics and magnetohydrodynamics, Journal of Computational Physics, vol.231, issue.3, pp.759-794, 2012.
DOI : 10.1016/j.jcp.2010.12.011

URL : http://arxiv.org/abs/1012.1885

Y. Saad and M. H. Schultz, GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems, SIAM Journal on Scientific and Statistical Computing, vol.7, issue.3, pp.856-869, 1986.
DOI : 10.1137/0907058

S. Shao, Incompressible SPH simulation of wave breaking and overtopping with turbulence modelling, International Journal for Numerical Methods in Fluids, vol.9, issue.5, pp.597-621, 2006.
DOI : 10.1002/fld.1068

S. Shao and E. Y. Lo, Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface, Advances in Water Resources, vol.26, issue.7, pp.787-800, 2003.
DOI : 10.1016/S0309-1708(03)00030-7

L. Tarrade, A. Texier, L. David, G. Pineau, and M. Larinier, Experimental approach to adapt the turbulent flow in the vertical slot fishways to the small fish species, Journal Hydrobiologia, vol.1, pp.177-188, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00384055

N. Trask, M. Maxey, K. Yang, X. Hu, and J. Xu, Accuracy and performance of implicit projection methods for transient viscous flows using SPH, Proc. 8th international SPHERIC workshop, 2013.

D. Violeau, ONE AND TWO-EQUATIONS TURBULENT CLOSURES FOR SMOOTHED PARTICLE HYDRODYNAMICS, Proc. 6th Int. Conf. Hydroinformatics, pp.87-94, 2004.
DOI : 10.1142/9789812702838_0011

D. Violeau, Fluid Mechanics and the SPH method, 2012.
DOI : 10.1093/acprof:oso/9780199655526.001.0001

D. Violeau and A. Leroy, Maximum time step for keeping numerical stability of viscous weakly compressible SPH, Journal of Computational Physics, pp.unpub- lished

H. A. Van-der and . Vorst, Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems, SIAM Journal on Scientific and Statistical Computing, vol.13, issue.2, pp.631-644, 1992.
DOI : 10.1137/0913035

H. Wendland, Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree, Advances in Computational Mathematics, vol.4, issue.1, pp.389-396, 1995.
DOI : 10.1007/BF02123482

R. Xu, P. Stansby, and D. Laurence, Accuracy and stability in incompressible SPH (ISPH) based on the projection method and a new approach, Journal of Computational Physics, vol.228, issue.18, pp.6703-6725, 2009.
DOI : 10.1016/j.jcp.2009.05.032

M. Yildiz, R. A. Rook, and A. Suleman, SPH with the multiple boundary tangent method, International Journal for Numerical Methods in Engineering, vol.79, issue.10, pp.1416-1438, 2009.
DOI : 10.1002/nme.2458