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Micro-macro dynamics of periodic material structures

Cz.Wozniak

Institute of Fundamental Technological Research PAN, Warsaw, Poland

ABSTRACT:

In this contribution we propose a new non-asymptotic method of macro-modelling

of periodic materials and structures. The obtained models can be applied to the analysis
of vibration and wave propagation problems with the wavelength of an order of a periodi-
city cell dimension. The consideration are restricted to the linear elastic materials and

the small deformation gradient theory.

1 STATEMENT OF THE PROBLEM

Asymptotic methods of macro-modelling for
micro-periodic structures lead to macro-
homogeneous media with the constant (avera-
ged) mass density (cf. Bachvalov & Panasen-
ko (1984) and Bensoussan et al. (1980)).
Hence, asymptotic equations are not able to
describe dispersion effects due to the mi-
cro-heterogeneity of composites and can be
applied solely to problems in which the ti-
me-dependent excitations of the structure
produce wavelength much larger then the ma-
ximum length dimension of a periodicity
cell (a long-wave approximation). The aim
of this contribution is to propose a new
non-asymptotic method of macro-modelling
for micro-heterogeneous composite structu-
res. The obtained equations of micro-macro
dynamics can be applied to vibration and
wave propagation problems with the wave-
length of an order of a cell length dimen-
sion (a short-wave approximation).

2 BASIC ASSUMPTIONS

The subject of the analysis is a linear
elastic micro-periodic composite body,
which in its initial natural state occupies
a region Q in a 3-space parametrized by
cartesian orthogonal coordinates xi with a
orthonormal basis ei1 (i, Jj,k,l run over 1,2,
3; summation convention holds). The proper-
ties of this body are determined by a mass
density p(+) and the tensor of elastic mo-
dulae Aijk1(+) which are V-periodic fun-
ctions, where

V=(-1_/2,1 /2)x(-1_r2,1_r2)x(-1_r2,1_r2)
1 1 2 2 3 3

element
Periods 11,12,13 are sufficiently

is a certain representative volume
(r.v.e.).

small related to the smallest characteris-
tic length dimension of Q.
In order to formulate basic hypotheses

leading to macro-models of the micro-per-
iodic body, we shall introduce two auxilia-
ry concepts. The first of them is that of a
V-macro function. It is a continuous fun-
ction F(-) defined on Q which for every x,
zeQl and z-XeV, satisfies condition F(x)=
=F(z). Generally speaking V-macro functions
describe the macroscopic behavior of the
body. The phenomena related to heterogene-
ous micro-periodic material structure, from
the qualitative point of view, will be des-
cribed by means of independent functions
ha(+), a=1,..,n, which are continuous in Q
and satisfying conditions: ha (x)=ha (x+
+liet ), ha(x)=-ha(x+liei1/2) for every X,
x+l1er €Q, i=1,2,3 (no summation with res-
pect to "i"). Moreover, we assume that
<pha>=0, where <-> is the known averaging
operator defined by

E>(z) = ﬁ J'f(z»«y)dv(y), dvly)=dy, dy_dy,
\Y

for an arbitrary integrable function f(-).
Functions ha(+) will be called micro-oscil-
latory shape functions. The choice of shape
functions has to be postulated a priori in
every special problem and depends on the
character of micro oscillations which we



are going to analyze.

The proposed method of macro-modelling is
based on the assumption that displacement
fields ui{+,T) at an arbitrary time instant
T can be expected in the form (indices a,b
run over 1,..,n, summation convention
holds):

(1) u(x1) = Ul(x,t)+ha(x)D?(x,‘t), xeq,

where Ui (»,T), Di(+,T) are arbitrary V-
macro functions together with their first
and second order derivatives. The V-macro
fields Ui(+,T) are called macro-displace-
ments and haD} (+,T) are oscillations due to

the micro-periodic structure of the body.
The V-macro functions Di(+,T) constitute
the quantitive characteristics of micro-

oscillations and will be called corrector
fields.

The second assumption of the proposed me-
thod of macro-modelling takes into account
the micro-oscillatory character of shape
functions ha(+); we shall assume that in
formulas for material derivatives of
haD? (+,T) terms involving ha(+) can be neg-
lected as small compared to terms involving
derivatives Vha(+). Hence, the approxima-
tion

(2) ul,J(x,t) = Ui'j(x’T)+ha’j(X)Dl(x'T)

will be used in the subsequent analysis.

3 MACRO-MODELLING

The governing equations of the proposed
micro-macro elastodynamics will be derived
by applying assumptions of Sect. 2 to the
well known action functional

_ 1 « . _ 1
4= I (5 plxduy, zAljkl(X)ul' Yy
(3) Q

+ p(x)b u ldv(x) , dv(x)=dx dx dx_,

11 1 72773
where bi are constant body forces. Substi-
tuting Eqs (1), (2) into (3), bearing in
mind V-macro property of macro-displace-
ments Ui (-, T), micro-correctors Di(-+,T) and
of their derivatives, and wusing condition
<pha>=0, after some manipulations we obtain
the approximation Jd=do, where

T casb
4= J [§<p>U1U1+ 5<ph, b, >D D,
Q

1
- =< >
(4) 2 Aljkl

U, U, - <A h, >Uu, D* -
1’ k1 ijki a’j k'1°1

1 a_ b
- L > <p>
2<A”klha,1hb,1 Dle + <p b1U1]dv(x).

Due to V-periodicity of p(+), Aitjki(+),
ha(*) all averages in (4) are constants
which characterize the material and iner-
tial properties of a dynamic system deter-
mined by action functional £o. This dynamic
system represents the macro-model of micro-
heterogeneous periodic body. Lagrange equa-
tions for o read

<A >U, + <A h, >D°, + <p>b =
13ki” ki 13ki b’1” k') i

- sl
P Ul,

(5) (ohh>B® + <A h, h, >D° =
a b 1 1jkl a3 b’1" "1

=-<A __h,>U,

1)kl a’y) k1
Eqs (5) constitute the governing equations
of linear macro-elastodynamics for micro-

heterogeneous periodic bodies. The above
equations have to be considered together
with the boundary and 1initial conditions
for Ui(+) and initial conditions for Di(-)
in the form consistent with Eqs (1) and
(2). It has to be emphasized that the iner-
tial properties of the obtained macro-model
are described not only by an averaged mass
density <p> but also by modulae <phahb>
which depend on the length dimensions of
the r.v.e. Due to this fact the scale and
dispersion effects related to micro-hetero-
geneous material structure of the body can
be investigated. Averages <phahb> will be
called micro-inertial modulae. Let wus ob-
serve that for homogeneous materials
A h , >=A <h , >=0
1jkl a’} 1)kl a’})
under initial conditions

D:(x,0)=b:(x,0)=0 , xeQ ,

and hence,

the second from Egqs (5) has only trivial
solution Di=0, and the first from Eqs (5)
reduces to the well known equations of the
linear elastodynamics. Thus we conclude
that the correctors Df describe the effect
of micro-heterogeneity on macro behavior of
the composite.

It has to be remembered that solutions to

Eqs (5) have a physical sense only if
Ui (-,T), Di(+,t) are V-macro functions for
every T. .

In the asymptotic case term <phahb>Di

drops out from Egqs (5) and we arrive at the
macro-model proposed by Wozniak (1987).

4 EXAMPLE

We shall apply Eqs (5) to the problem of a
straight micro-periodic bar treated as an
uniaxial structure. The r.v.e. V is now re-
duced to the straight-line segment (-1/2,



1/2) of the x-axis, x=x1. We assume that
the Young modulus E(x) and mass density
p(x) are equal to E1, p1 on (-as/2,a/2) and
Ez, pz on (-1/2,1/2)\(-a/2,a/2), where
O<a<l. In this case we introduce only one
(continuous and periodic) shape function
h(+), h(x)=h(x+1), xeR, which is piecewise
linear and takes the values h(-1/2)=h(0)=
=h(1/2)=0, h(-as2)=1, h(as/2)=-1. After neg-
lecting body forces and setting (+)’=
=3(+)/8x1, Eqs (5) 1in this special case
yield

<E>U"(x, T)+<Eh’>D’ (x, T)=<p>U(x, 1) ,
(8)

<phh>B(x, T)+<Eh’h’>D(x, T)=-<Eh’>U’ (x, T},
where

<p>=[p1a+p2(l—a)]/1, <E>=[E1a+E2(1—a)]/1,
<Eh‘>=2(E1—E2), <Eh’h’>=41(E1/a+E2/(1-a)),

<phh>=1%<p>/3 .
Let us define

pP=<Eh’h’>/<phh>, E°F¢

=<E>-<Eh’>%/<Eh’h’>
and assume
U(x,T)=U0(x,T)exp(in)

D(x,r)=D0(x.T)exp(iwr)

The analysis of free vibrations leads to
the conclugion that: (i) if 2
(w/p)® < E°"P/<E> or (w/p)® > 1

then there exist sinusoidal vibrations
Uo(x)=A cos kx, Do(x)=B sin kx ,
(i1) if
BB < (wm)? <1
then there exist exponential vibrations
Uo(x)=A cosh kx , Do(x)=B sinh kx ,
(iii) if

(w/u)2=1 or (w/u)2=EEff/<E>

then we arrive at degenerated or trivial
case, respectively. This classification
holds for <Eh’>#0; if <Eh'>=0 (i.e. for a
homogeneous bar) then only sinusoidal vib-
rations are possible.

In the case (i) (for sinusoidal vibra-
tions), Ua(+)}, Do(+) are V-macro fields
only if 1k « 1. Treating lk as a small pa~
rameter it can be shown that

. <Eh’>?2
K211-(1k)°

ef [
(1) W = E 3
<Eh’h’>

2,2
ol }+o{1%k")
The second term on the right hand side of
Eq. (7) describe the dispersion effect due
to micro-heterogeneous structure of the
bar.

In the case (ii) (for exponential vibra-
tions), we can prove that
2 <E> 2., E°fF 2 2 2
(8) o = %> k [1_ZE§ NHw/pu) +u (w/p)

Eq. (8) has a physical sense only for mic-
ro-heterogeneous bar because in the case of
homogeneity E°"" /<E>=1 and there no expo-
nential vibrations.

The detailed analysis of this problem
will be given in a forthcoming paper.

CONCLUSIONS

The characteristic feature of the proposed
approach is that the inertial properties of
the obtained macro-model given by Eqs (5)
are described not only by an averaged mass
density <p> but also by micro-modulae
<phahb> depending on length dimensions of
r.v.e. Hence, the equations of micro-macro
dynamics makes it possible to 1investigate
the scale and dispersion effects due to
micro-heterogeneity of the body. The advan-
tage of the proposed approach is a relati-
vely simple form of Egs (5); from the illu-
strative example given above it follows
that the general theory can be successfully
applied to the analysis of engineering pro-
blems. The main drawback of the proposed
method of macro-modelling lies in an unpre-
cise choice of shape functions which is
often based on the intuition of the resear-
cher.

Nonlinear treatment of micro-macro dyna-
mics and its applications has been also
analyzed and will be presented separately.
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