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Composite shells with interlaminar imperfections™

Cz. Wozniak and M. Wozniak, Warszawa

Summary: In this contribution the effect of interlaminar initial imperfections on a composite shell behavior is investigated. The
constitutive equations for shells with initial interlaminar bonding imperfections are obtained.

Verbundstoffschalen mit Zwischenschichtdefekten

Ubersicht: In diesem Beitrag wird der FinfluB von anfinglichen Zwischenschichtdefekten auf das Verhalten einer
Verbundstoffschale untersucht und die Materialgesetze fiir solche Schalen werden aufgestellt.

1 Introduction

In most engineering problems a composite shell is designed as a thin laminated structure in which
every lamina is made of a certain standardized anisotropic macro-homogeneous material. Under
assumption of the perfect bonding between the laminae different sandwich-type shell theories have
been taken as a basis for the analysis of a structural shell element; as a classical example we can
mention here the approach proposed in [1]. The objective of this contribution is to propose a certain
unified approach to the formation of 2D-theories for laminated linear elastic shells with initial
imperfections in the interlaminar bonding. This problem, according to the authors knowledge, has
not been yet analyzed in the recent literature on the laminated shell theories. The proposed 2D-shell
theory takes also into account the effect of the interlaminae strain discontinuities on the shell
behavior. The obtained result allow to achieve a better shell design specification than that neglecting
initial bonding imperfections and interlaminae strain discontinuities.

2 Preliminaries

The fragment of the laminated shell under consideration is shown in Fig. 1. The region £ in 3-space
occupied by undeformed shell is assumed to be parameterized by the system of normal coordinates
0*, 0%, {, where 0 = (0%, 0%) e IT are coordinates on the shell midsurface (I7 is a regular region on R?)
and {e[—9/2,6/2], 6 being the shell thickness. The shell is made of M + 1 laminae A,
A=1,..,M+ 1;we also define 4 = U A, By &4, A = 1, ..., M we denote the surfaces separating
A-thand 4 + 1-th laminae, the part of ¢, consisting of many small initial bonding imperfections will
be denoted by 4 4. By v, we define a characteristic function of 4, as a subset of @,. The thickness of an
arbitrary A-th lamina is constant and will be denoted by 6, A =1,..., M + 1.
We assume that:

(i) the material of every lamina is anisotropic macro-homogeneous and linear elastic; every plane
tangent to a coordinate surface { = const is an elastic symmetry plane;

(ii) there is an unilateral contact without a friction across every 1nterlam1nar bondmg imperfection
as well as the perfect bonding on the remaining part ¢,\ 44, 4 =1, .

* The main theses of this paper have been presented on EUROMECH 292, Sept. 1992



bonding_imperfections Fig. 1. Fragment of a laminated shell

(iii) the maximum characteristic length dimension of every single imperfection is small compared to
the shell thickness J;

(iv) the distribution of imperfections on every interface @, is random;

(v) the problem can be considered within the theory of small displacement gradients;

without the lost of generality we neglect the body forces, restrict ourselves to static problems and
assume that the shell is clamped on the edges.

It can be observed that the condition of unilateral contact between laminae across imperfections
implies a nonlinear behavior of a shell.

Introducing 2D-theory for shells under consideration we shall deal with the following modeling
problems:

(i) how to include the possible displacement jumps across imperfections into a formal structure of
2D-theory for laminated shells;

(ii) how to describe the strain jump discontinuities across interfaces @, within 2D-shell theory;
(iii) how to represent the random distribution of interlaminar imperfections within the framework of
the deterministic 2D-theory;

(iv) how to obtain an effective form of the elasticity tensors for laminated shells with initial
imperfections.

The approach starts in Sect. 3 with the well known 3D-formulation of the problem. In order to
pass to 2D-shell theory a new kinematic shell hypothesis will be formulated in Sect. 4. In Sect. 5 an
averaged deterministic approximation for a random distribution of interlaminar imperfections is
proposed. Under some extra hypothesis a certain effective form of shell constitutive equations is
derived in Sect. 6. The discussion of the obtained result in Sect. 7 ends the paper.

2.1 Denotations

The sub- and superscripts i, j, ... run over sequence 1, 2, 3 and are related to the normal coordinate
system in the shell %, 62, 63 (where 6 = {); the sub- and superscripts «, §, ... run over 1,2 and are
related to the coordinates 61, 02. Index a runs over 1, ..., m. The summation convention holds with
respect to all aforementioned indexes. A single vertical line |; stands for the covariant derivative in the
coordinate system 8', 02, 0% in the region occupied by the undeformed shell. A double vertical line
. denotes the covariant derivative on the shell midsurface. Indexes 4, ... run over 1, ..., M unless
otherwise stated. We also denote f 5 = 9f/d05 = df/0( for an arbitrary differentiable function f which
depend on {. By Vi we denote a gradient of an arbitrary differentiable vector field y(-) and define the

1
symmetrized part of this gradient by V(y) = 5 (Vi + (V§)T).

3 3D-formulation

By T(), u() we denote stress tensor and displacement vector fields, respectively defined in
A= Q\ U d,. The possible jump of u across @, will be denoted by

lul,=limu— limu
INCa {7 %a



where the coordinate surface { = {, coincides with the interface @,. The interlaminar stress vector

field on @, will be denoted by t,(*): t, = lim Tn, where n is a unit normal to a parametric surface
{7Lla

{ = const at an arbitrary point of Q. We also denote t,> =t, - n, t,5 = t, — nt,> as a normal and

a tangent (shear) interlaminar stress, respectively.

The governing relations for the shell under consideration are given by:

(i) the principle of virtual work

f tr (TE) dv + Z [ty (0], da —j p-uda, forevery Wilr=0, E=V), (1)
A=1 Dy

where I" stands for the union of boundary surfaces { = {,, { = {341, and p are the boundary loadings

on Tl

(ii) the stress-strain and the strain-displacement relations

T=C[E], E=V@ in4, ©)

where € is a tensor of elastic moduli;
(iii) interlaminar conditions

tS=0 ond,, [u,=0 ond,\d4,, A=1,.,M, (3)
J‘(lj—[u3]A) tA3da§O: VﬁZO’ [u3] go nAA’ A:159M (4)

A4

For the sake of simplicity we assume that the displacements on the shell edges 6Q\ I' are assumed to
be known. The variational inequalities (4) together with (3), describe the unilateral contact across
imperfections. (1)—(4) lead to the well known Signorini problem of the linear elasticity theory for the
displacement field u("), [2]. Until 44 are not known a priori then the solution to this problem can not be
obtained. Hence, the aforementioned relations will be used only as a starting point for further
considerations.

4 Formation of 2D-theories

The passage from 3D-formulation, given by (1)—(4) to the 2D-shell theory will be based on two
hypothesis. In order to formulate the first of them we introduce two kinds of what are called shape
Sunctions hy(-)and i (), A = 1, ..., M, which depend on {; their diagrams together with the diagrams of
their first derivatives are shown in Fig. 2. Functions h,(-) will be called strain jump shape functions and
i) are called displacement jump shape functions. For the periodic laminated structures the
aforementioned shape functions have a sense similar to that introduced in [3]. By a{), { e [—6/2, §/2],
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440) = 0,a = 1, ..., m we also introduce functions such that (0, {) = w(0) + «,({) 4;%0) is a kinema-
tic hypothesis related to a 3 + 3m parameter shell theory in which w;(8) are displacements of the shell
midsurfaces and d(8) are certain “higher order displacements”. For example setting m = 1 and
o1({) = { we arrive at the known six-parameter shell theory. In the kinematic hypothesis formulated
below we shall introduce, independently of wy(-), d;(-), extra unknown vector fields g;4(), j;*(-) defined
on @, which will be referred to as strain jump correctors and displacement jump correctors,
respectively. Moreover, by 11,10, {) we denote the known shell shifters given by ps* = 65 — (bs%(0),
pa® = p,> =0, u3®> = 1, where b;*() are components of the second fundamental tensor of the shell
midsurface.

Under the aforementioned denotations we formulate the following:

1. Extended Kinematic Hypothesis (EKH ). Every displacement field u;(-) in the laminated shell with
initial imperfections can be assumed in the form

u(®, 0) = 178, 0) [W,-(B) + i %(0) d70) + 3 ha(0) 45°0) + . 14(0) jj"(ﬂ)}

0=(0,6%ell, (e(—5/23/2). | 5)

The meaning of terms in (5) involving extra unknowns g;*(-) and j;A(-) is related to the laminated
structure of the shell and to the presence of interlaminar imperfections.

Let 8, be the thickness of A-th lamina, 4 =1, ..., M + 1, and L be the minimum characteristic
length dimension of the shell midsurface. Setting ¢ = max d,/L, treat ¢ as a small parameter, we shall
postulate the following:

2. Thin Lamina Assumption (TLA). Terms of an order 0(¢) will be neglected compared to terms not
involving &. Applying the aforementioned assumptions, after some manipulations, we derive from
(1)—(4), the 2D-formulation of the shell problem under consideration. This formulation consists of:

(i) field equations:

HP|y — by*H? + p* =0, HP|; + b,H? +p> =0,

My — bM P — s+ m =0, MPg+ bsMM — 5. + m> =0, (6)
a=1,...m; o f=12,

where
82 52
HP= | Thuspdl, HP= | TPudl, opfy=12,
—9/2 —d/2
52 82
Mfr= | o,TPurudl, M/P= [ oo, TP dg,
—5/2 —8/2
32 ()
sd = | 0,3 TPudl,  p'=plnni(6/2) + ployp;(—9/2)
~4/2

mai = pi+)“aﬂji(5/2) + p{—)aaﬂji(_5/2)> Lj=123,

where yu is the surface invariant and p+), p(-, are the loadings applied at the upper and lower shell
boundaries, respectively. It can be observed that (6) have a form similar to that of the known 3 + 3m
parameter shell theory,

(ii) constitutive equations.
The components T% of the stress tensor T in definitions (7) are determined by the constitutive
relations:

m m M
T4 = C <W(k|l) + Z Oﬂad?ku)> + Z C3,, 3di + Z Cijk3(hA,361kA + XAiA,3jkA) ind. (8)
A=

a=1 a=1 1



(iii) interlaminar stress continuity conditions:

[Ti3]A:O in @A, A=1,...,M, (9)
where [T?], = lim T® — lim T%.
{nCas {Ala-

(iv) interlaminar imperfections conditions:

xats” =0, (1 — x4 j”=0,

[ 0—js* 1atldaS0 Yoz 0, jA20 ind,, A=1,.,M, (10
Dy
where ;4 = lim T%.

Lrla-
Substituting the RHS of (8) into (7) and then substituting the RHS of the obtained formulae into
(6) we arrive at the system of equations which together with (9), (10) constitutes the system of
governing relations for laminated shells with initial interlaminar imperfections. Because the exact
distributions of imperfections y 4 are not known a priori then (6)—(10) do not lead to any well stated
boundary value problem for wy(), d*(), g:*() and j;*(-). That is why we shall pass below to a certain
averaged 2D-formulation of the shell problem.

5 Passage to averaged 2D-theories

Let B(x, ¢) stand for a ball with a center x = (0, {) and a radius §. Define B,4(x) = B,(x, §) n @,. Foran
arbitrary integrable field y/(-) defined almost everywhere on &, we shall introduce its average:

Yoa (x) = J Y(y) da(y).

Ba(x)

The passage to the 2D-theories with random distribution of imperfections will be based on two
hypothesis:

1. Imperfection Density Hypothesis (IDH). There exist constants 7, 7,€[0,1) such that
Y4 = {fa)a(x) foreveryxe d,, A =1, ..., M. The constants §, will be called imperfection densities
on @, and are assumed to be known a priori.

2. Imperfection Averaging Hypothesis (IAH). Every interface @, of a laminated shell with
micro-imperfections can be modelled as an ideal mixture of delaminated part 4, and perfectly bonded
part &4\ A,. Takinginto account (I4H) we also introduce the partial jump correctors Jt e Gadia
and partial tractions (partial interlaminar stresses) £, = {(y.t,'>4. After averaging of the shell
governing equations (6)—(10) (according to assumptions of the ideal mixture theory) we obtain:

(i) field equations in the form (6) with the denotations (7).
(ii) coustitutive equations for stresses

|B4(x)|

TV = C'# <W(k|l) + Z o d(k|l)) + Z C%, 3d," + Z C 3@ + igafi®) in 4. (11)

a= a= A=1

(iii) interlaminar stress continuity conditions in the form (9).
(iv) constitutive equations for partial tractions:

ty = CAi3k3jkA + 4 [CAi3kl (W(kll) + Z aaAd?k“))

a=1
+ Z CPF%agsd + Cy v g™ — QkA)j| in @, (12)
a=1
where C,°* = lim CB¥(), 0, = a({,), V4 = 04/0441.
{rla-
(v) averaged interlaminar imperfection conditions:
(=0, JO-YLdas0 ¥uz0, j'z0 ind, (13)

D4



It will be shown in Sect. 6 that on the basis of (9), (11)—(13) a certain effective form of shell constitutive
equations can be derived. This form does not involve unknown corrector fields g;4(), j*(-) and plays
the role similar to that of the constitutive equations for 3 + 3m parameter shell theory.

6 Effective form of constitutive equations

In this section we are to show that under certain extra assumptions it is possible to obtain an
interrelation of the form

T = C[V(w), V(d), d] (14)

whered = (dy, ..., d,), and € is called an effective elasticity tensor of multi-parameter 2D-theory for
laminated shells with interlaminar imperfections. (14) will be referred to as the effective shell
constitutive equation.

Define p, = (T>3), as a mean pressure (averaged normal stress) acting on the interface @ 4. The
simple physical reasoning leads to Mean Pressure Assumption (MPA). The following implications
are assumed to hold

pa>0=/31>0 and p,L0=/3"=0 ind,, A=1,..,M. (15)

Conclusion: because the condition p, > 0 implies £,° = 0 then the solution of the variational
mequality (13) is

Jat = —(sgpa)” [(CA3333)_1 CASS”V(W(W) + Z uad&h)) + z Oa3ds” + Vg-1g3" 71 — CI3A] (16)

Taking into account conclusion (16) and using (13),, (12), (9), (11) we can eliminate correctors ¢4, j 4
from the governing equations of the averaged 2D-theory obtained in Sect. 5. The calculations are
rather lengthy and complicated. We restrict ourselves to the final results. To this end we introduce the
denotations

1 if p>0
+_ >
(s p) _{0 if p<0

where p = (T3> (0, {) is a mean pressure on the surface { = const and we describe the averaged
distribution of imperfections by means of the function

M

)= Z iA,3(E) Y4

A=1
In order to write down the final formulae we also introduce what will be called heterogeneity
correction tensors ‘

{H“l}“v, Haaﬁuv, HZ§33} = CaﬂBs{H’tva Hauva Ha3} ’

(H3¥, g,3% g3333) = C333(HW, H™, H,y), (17)
{Ha3p3’ Hazx3ﬂ3, Hg%#?;} = Cd3ﬂ3{n’ N 7’&13}’
where

M
H" = Z hA,3[C33’”]B 3131.;,

4,B=1

HM = 2 hA,s[C33”v]B O‘aB Ig:

H, = Z hA,3[C3333]B “f,sQ?ga

n= Z hA,S[C3”3v]B QﬁvBa (18)
He = Z hA,s[Causv]B “aBQﬁf,

Haz = z hA,3[C3”3v]B “aB,aQﬁfa



and where Qfi® are obtained as solutions to the linear algebraic equations of the form
—V,_ 1C 13]3QA 1.B + (CA1313 -+ VACff_?l’) _ VAC;E-ﬁ A+1,B __ 5AB (19)

It can be proved that the shell constitutive equations with initial interlaminar imperfections can be
written down in the final form (summation convention for a = 1, ..., m holds)

T = {(1 — #sg p)*) (C* — H») + 3(sg p)* T} W,
+{(1 = 7sgp) ") (C¥*0, — H) + j(sg )™ C¥a,} diy,
+ (1 = 7sg p)*) (C***%0, 5 — HE®®) dy°,

where Gy = Cebuv _ Caﬁ33c33ﬂv/c3333;

¥ = (1= 70sgp)7) (CP* — H>*) wypy + (1 — Jsg p) ) (C*30, — H*) i)

+(1 = 7sg p)*) (C?%0, 5 — HZ) dy,

T =2-(1 =7 (C™* — H,*3) Waw +2-1—3) (C*33a, — H,"3) A\
+ (1= 7) (C™3a, 5 — H3*) d,°.

Heterogeneity correction tensors H, H,, H,; in (20) are determined by formulae (17)—(19).

It has to be remembered that (20) hold at any point (0, ¢) belonging to an arbitrary laminae. That
physical components of tensor € in every laminae are constant.

(20) together with (17)—(19) represent the final result of the analysis and are called effective
constitutive relations for laminated linear elastic shells with initial interlaminar imperfections. At the
same time (20) yield the explicite form of the effective elasticity tensor Cf (compare (14)).

Combining field equations (6) with (7), where stress components T are given by means of (20), we
obtain the governing equations of 2D-theory for laminated shells with initial interlaminar
imperfections. It has to be emphasized that these equations do not involve unknown corrector fields
4:(-),ji*("). Hence, from the formal point of view the obtained governing equations have a form similar
to that of the 3 + 3m-parameter shell theory with w(*), d°(), a = 1, ..., m as the basic unknowns.

It can be shown that if j € [0, 1] then formulae (20) lead to the quadratic positive definite form of
the strain energy; the proof of this statement is rather lengthy and will be not presented here.

For 7 = 0 we arrive at the theory of laminated shells without imperfections; it can be seen that the
main advantage of approach proposed in this paper is that the number 3 + 3m of the basic unknowns
isindependent of the number of laminae. Such situation does not hold if the theory of a laminated shell
is based on the broken line kinematic hypothesis where the number of basic unknowns is very large. Let
us also observe that if 7 — 1 and p > 0 then the state of stress tends to the plain stress state.

(20)

7 Discussion

Combining (14) and (20) it can be seen that C**f has the form
C = C—H— C™(},sgp") + H™ (7, sg p) (21)

where € is a standard elast1c1ty tensor and IH is the heterogeneity correction tensor derived from
(17)-(19). Tensor €"™¥(7,sgp*) characterizes the effect of imperfections on the shell behavior
independently of the shell laminated structure while tensor H'™¥, sg p*) describes the effect of
coupling between imperfections and heterogeneity on the state of stress.

It can be shown that

W
Sgp =sg {C33uv _ H33uv’ C33uv(xa _ Ha33uv’ C3333 H3333 a

()

daa

and hence, the effective constitutive equations (20) are nonlinear. It follows that the initial
interlaminar imperfections leads to a nonlinear shell behavior. However, in the first approximation

ulv)



we can introduce what will be called: Mean Pressure Approximation. The mean pressure p = (T3>
acting on an arbitrary surface { = const can be approximated by

p(®, () = P+’ ; -0, , 10 ;r p-20)

where p_ 3(0), p_3(0) are the known normal loadings acting on the shell boundary surfaces { = —§/2,
{ = 8/2, respectively.

Hence, we see that the effective form of constitutive equations (20) (under Mean Pressure
Approximation) depends on the character of normal loadings acting on shell boundary surfaces; if
p(0, {) is a compression then in (20) (sg p)* = 0, if otherwise then (sg p)* = 1.

The effective constitutive equations (20) for laminated shells with initial interlaminar imperfec-
tions have an explicit form and can be used in engineering problems provided that the imperfection
densities are known. (20) describe the effect of imperfections on the shell behavior in the framework of
3 + 3m parameter shell theory. The analysis of special shell problems as well as the possible
generalizations of the proposed approach will be studied separately.

Le[—5/2,8/2].
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