On Flat versus Hierarchical Classification in Large-Scale Taxonomies

Abstract : We study in this paper flat and hierarchical classification strategies in the context of large-scale taxonomies. To this end, we first propose a multiclass, hierarchical data dependent bound on the generalization error of classifiers deployed in large-scale taxonomies. This bound provides an explanation to several empirical results reported in the literature, related to the performance of flat and hierarchical classifiers. We then introduce another type of bounds targeting the approximation error of a family of classifiers, and derive from it features used in a meta-classifier to decide which nodes to prune (or flatten) in a large-scale taxonomy. We finally illustrate the theoretical developments through several experiments conducted on two widely used taxonomies.
Type de document :
Communication dans un congrès
Advances in Neural Information Processing Systems 26, Dec 2012, United States. pp.1824--1832, 2013
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00944215
Contributeur : Rohit Babbar <>
Soumis le : lundi 10 février 2014 - 12:57:42
Dernière modification le : jeudi 11 octobre 2018 - 08:48:04

Identifiants

  • HAL Id : hal-00944215, version 1

Collections

Citation

Massih-Reza Amini, Rohit Babbar, Eric Gaussier, Ioannis Partalas. On Flat versus Hierarchical Classification in Large-Scale Taxonomies. Advances in Neural Information Processing Systems 26, Dec 2012, United States. pp.1824--1832, 2013. 〈hal-00944215〉

Partager

Métriques

Consultations de la notice

164