N
N

N

HAL

open science

Dominance rules for the parallel machine total weighted
tardiness scheduling problem with release dates

Antoine Jouglet, David Savourey

» To cite this version:

Antoine Jouglet, David Savourey. Dominance rules for the parallel machine total weighted tardiness
scheduling problem with release dates. Computers and Operations Research, 2011, 38 (9), pp.1259-

1266. 10.1016/j.cor.2010.12.006 . hal-00943855

HAL Id: hal-00943855
https://hal.science/hal-00943855
Submitted on 14 Feb 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00943855
https://hal.archives-ouvertes.fr

Dominance Rules for the Parallel Machine
Total Weighted Tardiness Scheduling Problem
with Release Dates

Antoine Jouglet*

Heudiasyc, UMR CNRS 6599, Université de Technologie de Compiégne
BP 20529, 60205 Compiégne, France
antoine.jouglet@hds.utc.fr
tel: +33 3 44 23 79 39, fax: + 33 3 44 23 44 77

David Savourey
Ecole Polytechnique, CNRS LIX
F-91128 Palaiseau, France

savourey@lix.polytechnique.fr

Abstract

We address the parallel machine total weighted tardiness scheduling
problem with release dates. We describe dominance rules and filtering
methods for this problem. Most of them are adaptations of dominance
rules based on solution methods for the single-machine problem. We
show how it is possible to deduce whether or not certain jobs can be
processed by a particular machine in a particular context and we de-
scribe techniques that use this information to improve the dominance
rules. On the basis of these techniques we describe an enumeration
procedure and we provide experimental results to determine the effec-
tiveness of the dominance rules.

Keywords: scheduling, parallel machines, total weighted tardiness,
dominance rules, possible machines.

*corresponding author

1 Introduction

In this paper we consider the situation where a set of n jobs J = {1,...,n}
has to be processed on a set of m identical parallel machines M = {1,... ,m}
and where the objective is to minimize the total weighted tardiness. Associ-
ated with each job 7 is a release date r;, a processing time p;, a due date d;
and a weight w;. A job cannot start before its release date and preemption
is not allowed. Machines cannot execute more than one job simultaneously.
The tardiness of job i is defined as T; = max (0,C; — d;), where C; is the
completion time of job 7. The problem is to find a feasible schedule with
minimum total weighted tardiness. This problem, denoted as Pm|r;| > w;T;,
is strongly NP-Hard [25].

The single machine problem has been intensively addressed over the last
two decades. For the 1|r;| > T; problem, Chu and Portmann |1 7] and Chu |15]
introduced dominance rules, heuristics, a lower bound and branch-and-bound
procedures. Baptiste et al. [7] also proposed a lower bound and a branch-and-
bound method using efficient dominance rules. For the 1|r;| Y w;T; problem,
Akturk and Ozdemir [2] proposed dominance rules used in a branch-and-
bound algorithm |1, 2]. Finally, Jouglet et al. |22] studied these two criteria
and generalized and improved the above dominance rules which were used
in a branch-and-bound method. More recently Jouglet et al. [23] described
dominance-based heuristic methods for these problems.

As regards parallel machine problems, several exact methods have been
described. Yalaoui and Chu [32, 33| described dominance rules, lower bounds
and branch-and-bound methods for the general Pm|r;| > C; problem. More
recently Nessah, Yalaoui and Chu [28| described dominance rules and a
branch-and-bound method for the weighted case Pm|r;| > w;C;. Less at-
tention has been given to the tardiness criteria. Nevertheless, Azizoglu and
Kirca [3], Yalaoui et Chu [32] and Shim and Kim [30] solved the problem with
equal release dates Pm/|| > T; using a branch-and-bound algorithm and dom-
inance rules. Moreover, Liaw et al. [20] also proposed a branch-and-bound
algorithm using dominance properties for the weighted case considering un-
related parallel machines. Finally, Baptiste [6] showed that the special case
Pmlp; = p,r;|>_T; of the total tardiness problem with release dates for
which the processing times of jobs are equal can be polynomially solved.

More recently Baptiste et al. [3] proposed several lower bounds for the case
with release dates.
Unfortunately, dominance rules from the literature [3, 26, 30, 32] cannot

be used to solve the Pm|r;| > w;T; problem. Indeed, these dominance rules
no longer holds when release dates are considered. In this paper we describe
new dominance rules for Pm|r;| > w;T; based on solution methods for one-
machine problems. We describe in Section 2 the enumeration procedure
that was used to solve the problem. In Section 3 we introduce the notion
of “possible machines” on which a job can be scheduled, and from this we
derive some dominance rules. In addition, we use this notion of “possible
machines” to improve most of the dominance rules that we shall describe. In
Section 4 we generalize a local dominance rule from the literature concerning
the one-machine problem. In Section 5 we recall the one-machine dominance
rule based on the notion of partial “dominated sequences” of scheduled jobs,
and show how this rule can be used and generalized for the parallel machine
case. Finally, in Section 6 we present some experimental results which show
the interest of the described techniques.

2 Enumeration Procedure

Among the most commonly-used methods for solving combinatorial problems
for which there is no known way of avoiding the huge size of their solution
space are so-called enumerative techniques [31]. The idea is to find a way
of organizing an enumerated list of solutions, using as much information as
possible, so as to eliminate intelligently dominated parts of the solution space
as the computation progresses, without having to enumerate these dominated
parts [24] explicitly. The utility of the method comes from the fact that
only a small part of the solution space actually needs to be enumerated
[27]. The remaining solutions are eliminated from consideration through the
application of dominance rules that establish that such solutions cannot be
optimal or better than the best solution already known.

In this section we describe an enumeration procedure for solving the prob-
lem exactly. First we present the notion of a nearly-active schedule. We show
that the subset of nearly-active schedules is dominant for the problem. Then
we show that there exists a bijection between the set of nearly-active sched-
ules and the set of permutations of (1,...,n). This enables us to represent
a solution as a permutation and to search for an optimal sequence of jobs
instead of searching for the start times of jobs in an optimal schedule.

Building a schedule means allocating resources to jobs over time while re-
specting any constraints that might be imposed. Clearly, in order to find an

optimal schedule, given that the total weighted tardiness is non-decreasing,
it is sufficient to visit the set of semi-active schedules, i.e. schedules in which
no job can be scheduled earlier without changing the execution sequence of
jobs on one of the machines |12]. Because this set contains a lot of obviously
non-optimal schedules (for example, schedules where all jobs are scheduled on
the same machine even though more than one machine is available), we de-
fine the subset of “nearly-active schedules” which is dominant for the studied
problem. Moreover, we are able to build a bijection between the set of per-
mutations of jobs and the set of nearly-active schedules. Thus, enumerating
all permutations allows us to find an optimal schedule.
We now introduce the notion of nearly-active schedule:

Definition 2.1. A schedule is said to be nearly-active if it is semi-active and
if no job can be scheduled earlier by processing it as the last job on another
machine.

Proposition 2.1. The set of nearly-active schedules is dominant for the total
weighted tardiness parallel machines problem.

Proof. Any active schedule is nearly-active and the set of active schedules is
dominant for the studied problem [5, 15]. O

From here onwards we denote by m? the index of the machine on which
job i is processed in schedule S, and by A7 the date of availability of machine
m? before the execution of job i in S.

Proposition 2.2. There exists a bijection between the set ¥ of permutations
of (1,...,n) and the set of nearly-active schedules.

Proof. Let S be a nearly-active schedule. We define the following order
relation on the set of jobs in S : i < j if and only if AY < AJS or (AY =
AJS and my < mf). This defines clearly a total order on jobs of S which can
be represented by a permutation on jobs in S.

Conversely, given a permutation ¢ of jobs, a schedule S is associated to
o using the following scheme: jobs are considered in the order given by o
and are scheduled one by one as soon as possible on the machine available
the earliest. Where several machines are available at the same earliest time,
choose the one with the smallest index number. The obtained schedule is
such that no job can be scheduled earlier without changing some sequence

order, because jobs are scheduled as soon as possible. Moreover, suppose

4

there exists a job j that can be processed earlier by placing it after the last
job scheduled on some other machine. Then, at the step involving job 7, this
other machine would have been chosen to process j. Thus, there is no job
that can be processed earlier by by placing it after the last job schedule on
another machine and the schedule is nearly-active.

Finally, there is a bijection between nearly-active schedules and permu-
tations of jobs. O

An illustration from a nearly-active schedule and its associated sequence
is provided in Figure 1. In this example, 1y =ro =r3 =15 =16 =17 =0
and r, = 3. Jobs are scheduled in the order of the sequence o following the
procedure described in the proof of Proposition 2.2. Thus, there is an idle
time before job 4 which is due to its release date.

w2 | [4] 6 |
My| 5 1 0=(3,524,17,06)

M, 3 7

Figure 1: A nearly-active schedule and its associated sequence.

The nearly-active property is stronger than the semi-active property. In
fact, this property also ensures that the load is “well balanced” between
machines. A schedule in which all jobs are scheduled on the same machine
despite there being several machines available can be semi-active but cannot
be nearly-active.

From now on, the solution to any given problem will be sought only
among the set of nearly-active schedules. We use the one-to-one mapping
between the set of nearly-active schedules and the set of permutations of
the jobs’ index numbers to enumerate solutions. Rather than searching for
the starting times of jobs, we look for a sequence of jobs. To build such a
sequence, we use the edge-finding branching scheme (see for instance Carlier
[13]) when constructing a solution. This involves ordering jobs (“edges” in a
graph representing the possible orderings of jobs): at each node a set of jobs
is selected and, for each job i belonging to this set, a new branch is created
where job 7 is constrained to be first in the sequence among the jobs in this

set. Thus, at each node of the search tree a partial sequence o associated with
a partial nearly-active schedule is considered. By partial solution, we mean
that only a subset of jobs of N has been sequenced to be scheduled as soon as
possible following the procedure described in the proof of Proposition 2.2. In
fact, a partial solution o represents the subset of schedules whose associated
sequence starts with subsequence o. Hereafter we denote as m(o) the earliest
available machine in the partial nearly-active schedule associated with o. At
each node of the search search tree, an unsequenced job i is then sequenced
at the end of o correponding to the schedule of ¢ on machine m(o) as soon
as possible. The sequence is built by using a depth-first strategy.

Throughout the search tree we dynamically maintain several sets of jobs
that represent the current state of a partial solution o:

e F(0) is the sum of the weighted tardiness of the jobs in the partial
schedule associated with o ;

e 7 ={j € N/i ¢ o} is the set of jobs which are not sequenced in o (that
need to be sequenced after o) ;

e PF(0) C & (Possible First) is the set of jobs which it is possible to
attempt to sequence first immediately after o.

Some basic filtering methods are used in this enumeration procedure at
each node of the search tree. First, since the subset of active schedules is
dominant [5] for the problem, we eliminate from PF(c) any job that would
give rise to a non-active schedule if it were to be scheduled first. Secondly,
a simple rule based on the start times of jobs is also used (see for instance
[33]): we only look at sequences that impose an order on scheduled jobs such
that their start times are non-decreasing.

Other dominance rules are described in the following sections to filter the
set PF(o) at each node of the search tree, thus enhancing the performance
of the branch-and-bound procedure.

The following notation is also used in the remainder of the paper:

o Start? is the start time of job 7 in partial the schedule associated with
sequence o;

e (7 is the completion time of job ¢ in partial schedule associated with
sequence o;

e F7 is the cost of job 7 in partial schedule associated with sequence o

e A7 is the availability time of machine j in partial schedule associated
with sequence o;

e (;(t) is the completion time of job i if it is scheduled from date ¢
i.e. Ci(t) = max(r;, t) + pi ;

e [(t) is the cost of job 7 if it is scheduled from date t i.e. Fi(t) =

e o|p represents the sequence resulting from the concatenation of se-
quences o and p.

Note that since a nearly-active (partial) schedule S is associated with each
(partial) sequence o, the terms S and o are used interchangeably below.

3 Machines on which a job can be scheduled

In this section we introduce the notion of machines on which a job can be
scheduled (referred to as “possible machines”) and we show how this notion
can be used to improve the behavior of the enumeration method.

Given a partial solution o and a job i, let uf be the set of machines which
can process job ¢ in any (partial) schedule whose associated sequence begins
with 0. At the root of the search tree, u; is set to M. If i € o then uf is a
singleton containing only the machine m{ which processes ¢ in the schedule
associated with o. If 7 € ¢ then pf C M. Note that the definition of y;
implies that for two partial solutions o and ¢’ such that ¢’ begins with o, we
have p? C pug.

We now show how p; can be filtered throughout the search according to
the jobs already scheduled. In [22], Jouglet et al. described a dominance
rule on unscheduled jobs for the one-machine problems. Let o be a partial
solution. Let j and k be two jobs such that j € ¢ and k € PF(0). Jouglet
et al. described conditions in which j dominates k in the first position. By
“dominance in the first position”, they mean that if k£ is scheduled immediately
after sequence o, and if the sequence ok is completed by any sequence p of
jobs belonging to a/{k} including job j, then it will always be “better” to
interchange j and k, i.e. the sequence olk|p is dominated whatever sequence p
is, and job k can be removed from the set PF'(o) of possible first jobs. While

7

this one-machine dominance rule cannot be used to filter the set PF(o) from
a partial solution o if m > 1, it can, however, be used directly to filter
the possible machines of unscheduled jobs in the following way. Let o be
a solution of a given parallel machines problem with m > 1. Let job k
be the last sequenced job in o. Let j be a job such that 7 € . Suppose
that before job k was processed, job j dominated job k in the first position,
according to the single-machine dominance rule of [22]. We may deduce that
from now on, if j is scheduled on the machine m{, then we will obtain a
strictly better schedule by interchanging j and k or by inserting j before k.
Therefore, we should not schedule job j on machine mf, and pf may be set
to uf = puf \ {m{}.

Note that this possibility of filtering the sets of possible machines is not
exhaustive, and we believe that new deduction methods might be found that
improve performance. The information can be used in different ways:

e If there exists an unscheduled job i € & such that uf = () then the node
associated with the partial schedule ¢ can be pruned from the search
tree since any solution which can be derived from this node is strictly
dominated.

e Suppose that = ¢ pf with i € . Then we also have z ¢ ,u;"p, where p
represents any sequence of a subset of /{i}. Consequently, each time
we encounter a partial solution where the next job to schedule is to be
processed by machine z, i.e. a sequence o|p for which m(o|p) = z, then
job i can be removed from PF(c|p).

e The fact that some unscheduled jobs can be processed by only a subset
of M can be used to improve some dominance rules. Such an improve-
ment is proposed in Section 5.

4 Local dominance rule

In this section we show how we can extend to the parallel machine case the
notion of a “LOWS-Active” schedule, used in solving one-machine problems.

Jouglet et al. [22, 23] described a dominant subset of schedules termed
LOWS-active (LOcally Well Sorted active) schedules. This is an improved
generalization of a local dominance rule described by Chu [15, 16] and Chu

and Portmann [17] for non-weighted criteria, and it involves building sched-
ules such that no exchanges of two adjacent jobs can improve the schedule.

The dominance rule described above may be applied simply to the parallel
machine problem in a branch-and-bound procedure as follows:

Theorem 4.1 (|22, 23]). Consider a partial solution associated with se-
quence o. Let j be the last job on the machine m(c) and let k € PF(0).
If Ch(AT) < CF and Fi (A7) + Fi(Cr(A7)) < F7 + F.(CF) (with at least one
strict inequality), then the schedule associated with sequence olk is dominated
and k is removed from PF (o), since it is better to schedule k before j.

We now propose an adaptation of the LOWS-active property for the par-
allel machine case. We introduce the notion of “adjacent front”, which allows
us to define which jobs are the neighbors of a particular job. Then, we can
check whether or not swapping two neighbor jobs is advantageous. Recall
that m¢ is equal to the machine which processes ¢ in the schedule associated
with o.

Definition 4.1. Consider a solution associated with sequence o. Let Pred{
be the set of jobs preceding i in sequence o. The adjacent front of i in o,
is defined by: Adj{ = {j € Pred]/Vk € Pred],(m] = m7) = (Start] >
Start?)}.

Informally speaking, Adj? is equal to the set of jobs scheduled in the final
slot on each machine according to the partial schedule obtained just before
scheduling i. Now we can introduce the dominant subset of the LOWS-Active
schedules for the parallel machine case.

Definition 4.2. An active schedule associated with sequence o is said to be

LOWS-active if
Vi € 0 and V5 € Adj?

1. if m3 # m7, at least one of the following conditions holds:

9

2. if m§ =m], at least one of the following conditions holds:

(a) F} + F7 < Fi(A7) + F;(Ci(A7));
(b) C7 < C7(Ci(AT));
(c) FY + F7 = F(A7) + F;(Ci(A7)) and CF = C5(Ci(AF)).

A schedule associated with o is said to be LOWS-active if none of the jobs
7 in the schedule can be exchanged with another job j in i’s adjacent front so
as to create a better schedule. Conditions are established so that any such
exchange of jobs either increases the cost locally or delays jobs scheduled
after j. This definition means that a schedule can be discarded where none
of the conditions (a), (b) and (c) are met. In such schedules, exchanging jobs
1 and j leads to a schedule at least as good as the original one. Indeed, as
conditions (a) are not fulfilled, the swap does not increase the sum of costs
of jobs i and j. As conditions (b) do not hold either, jobs scheduled after i
and j are not delayed by this interchange and their cost does not increase.
As conditions (c) are also not fulfilled, it ensures that the interchange either
stricly decreases the sum of costs of ¢ and j or let the machines available
stricly earlier after the schedule of 7 and j.

Note that the case mJ = mj corresponds exactly to the conditions estab-
lished by Jouglet et al. [22, 23] for obtaining a LOWS-active schedule on one
machine. As for the one-machine problem, we can now propose the following
theorem, proved by considering the different possible interchange cases:

Theorem 4.2. The subset of the LOWS-Active schedules is dominant for
the parallel machine total weighted tardiness problem.

Proof. We have to prove that there always exists an optimal schedule that is
also LOWS-Active. At first, it is well known that the set of active schedules
is dominant, i.e. there is at least an optimal schedule which is active [].
Consider an active schedule associated with sequence o which is not LOWS-
active. There exist two jobs ¢ and j for which the condition of LOWS-active
property is not met. First, suppose that ¢ and j are scheduled on different
machines. None of the corresponding conditions (a), (b) and (c) holds. This
means that jobs ¢ and j can be exchanged without delaying any other job
and without increasing the cost (see above). Moreover, because condition (c)
does not hold before the swap, we know that at least one of these conditions
holds after swapping ¢ and j. Now, if jobs ¢ and j are scheduled on the

10

same machine, in the same way the two jobs can be exchanged without
delaying any other job and without increasing the cost [23]. This procedure
can be applied on the schedule each time a couple of jobs ¢ and j that do
not have the LOWS-active property is found. During these swaps, the cost
never increases. This means that the resulting schedule is both optimal and
LOWS-active. O

The dominance rule is used in the branch-and-bound procedure as follows:
if the schedule corresponding to o|k is not LOWS-active, then the sequence
o|k is dominated and k is removed from PF(c). Note that the adjacent front
of k for the test corresponds exactly to the set of jobs last scheduled on each
machine. Since there are at most m jobs to consider in this adjacent front,
testing if o|k is LOWS-active runs in O(m) time.

5 Dominated sequences

In this section we extend the notion of “dominated sequences” defined for the
one-machine problem. Then we show how this notion can be used within the
enumeration procedure to reduce the search space. Here we shall focus on
sequences, but recall that these sequences are associated with nearly-active
schedules (see Section 2) and that we might just as easily talk about schedules
as sequences.

For some flow-shop scheduling problems, Ignall and Schrage [21] showed
how to compare two nodes of the search tree which sequence the same set
of jobs. In fact, this kind of dominance relation can be adapted to the
Pm|r;| > w;T; problem.

Thus, it is possible to compare two partial sequences o and ¢’ from the
same set of jobs (i.e. 0’ is a permutation of ¢). Informally speaking, a
sequence o’ dominates a sequence o if o may be replaced advantageously
by ¢’ in any sequence starting with sequence o. It is clearly a dominance
relation between the set of solutions beginning with sequence ¢ and the set of
solutions beginning with sequence ¢’. Now, suppose that, when enumerating
solutions, we encounter a partial solution o. If we can find such a sequence o’
which dominates o then the implicit enumeration of solutions derived from
o can be stopped if one of the two following conditions is satisfied (see for
example [24]):

1. o’ dominates strictly o and thus o cannot lead to an optimal solution;

11

2. ¢’ is only at least as good as o but we are sure that the best solution
of ¢’ was or will be enumerated during the search.

Several methods exist for finding better permutations o’ of o (see [22]). For
this problem we use a set of sequences already encountered during the search
as explained below. In the following, recall that & is the set of jobs not
belonging to sequence o, i.e. ¢ = {l € N|l ¢ o}. Note that if ¢’ is a
permutation of o, we have ¢’ = 4.

Now, consider any schedule and a subset X of jobs in this schedule.
Suppose that we delay the jobs belonging to X by d time units. Let us
define Ax(§) as any nondecreasing upper bound of the difference between
the total cost of jobs belonging to X before and after delaying these jobs
by 6 time units, whatever their positions in the schedule. For the total
weighted tardiness the evaluation function Ax(8) = 6>, y {w;} is valid.
This function considers the worst case in which all jobs are all already late
before delaying them from . Thus, for each job i € X, a cost dw; is added.

For the special case with m = 1, Jouglet et al. [22] identified the following
conditions in which a partial sequence of jobs ¢ is dominated by another
sequence ¢’ from the same set of jobs. If ¢ is a one-machine sequence, we
denote by A the availability time of the machine, i.e. the completion time
of the last job in o.

Proposition 5.1 ([22]). Consider a partial schedule on a single machine
associated with a sequence o. Consider a sequence o’ such that o' is a per-
mutation of o. If one of the following two conditions holds:

1. A% <max(A°, minje,{r;}) and F(o') < F(o)
2. F(o') + A5(8) < F(0), where § = max (0, A — max(A?, minje,{r;}))
then o is dominated.

Recall that F'(o) is the total weighted tardiness of the jobs in the schedule
associated with o. The first condition concerns the case where no delay is
entailed for the jobs in & when o is replaced by ¢, and the second condition
concerns the case where jobs in & will be delayed by ¢ units of time. Such
a delay occurs when, rescheduling jobs according to o', new idle times are
added. Thus, A;(8) evaluates the maximum cost of this delay.

We shall now show how this dominance rule can be adapted and gener-
alized to the parallel machine case.

12

First, since there is a subsequence of jobs associated with each machine
in a schedule of the parallel machine problem, the previous one-machine
dominance rule can be used. Consider a partial solution associated with
sequence 0. We now denote by o; the subsequence of jobs on machine 7.
If one of the subsequences o; is strictly dominated (in terms of cost) by a
sequence o’ of the same set of jobs according to the previous dominance
rule, then the whole partial solution cannot lead to an optimal solution.
Note that for the second condition, we do not need to consider all the jobs
belonging to & in the evaluation of the additional cost due to the delay
of certain jobs. Indeed, when considering subsequence o¢, we can take the
subset 0; = {j € /i € puf} instead of & since only these jobs will possibly
be scheduled after o; on machine . This is one of the benefits of the notion
of “possible machines” (see Section 3). Applying to the parallel machine
problem, the dominance rule is then expressed as:

Proposition 5.2. Consider a partial schedule on m machines associated with
a sequence o. If one of the subsequence o;,i € M is such that there exists
a schedule on a single machine associated with one-machine sequence o' of
the set of jobs belonging to o; for which one of the following two conditions

holds:

1. A7 <max(A%, min{r;}) and F(o') < F(o)
JET;

2. F(0')+MNjes,(6) < F(o), where § = max (0, A% — max(A?, r%in{rj})>
JEoi

then o cannot lead to an optimal solution.

Computing the sum of weights and the minimum release dates of jobs
belonging to ' takes O(|7]) time. Thus, given sequences o; and ¢’, it takes
O(|a]) time to know if o; is strictly dominated by ¢’, given that it has already
been established that ¢’ is a permutation of o; and that the set of values
{(F(0;), A?), (F(c"), A7)} is known.

We shall now extend the previous dominance rule by considering the
whole sequence o of jobs instead of each subsequence o;. The difficulty now
comes from the fact that the completion time A? of each machine ¢ has to
be taken into account in the conditions of the dominance rule.

Given a sequence o, we now define the following strict total order relation
<, over the index of machines : i <, j if and only if A7 < A or (A7 =

13

A% and i < j). Then, we denote by [i]” the i value in the sorted vector of
the machine indexes according to <.

The extension of the dominance rule to the parallel machine case can then
be expressed as:

Proposition 5.3. Consider a partial schedule associated with sequence o.
Consider a sequence o' such that o' is a permutation of o. If one of the
following two conditions holds:

1. Yie M, A([Tz‘io’ < max (minj@[i](, {Tj},A‘[ji}(,) A F(o') < F(o)

2. F(0') + X5 4(6) < F o),
where §; = max (max (O, A‘[’iio, — max (min {7}, A‘[’i}(,)>>

[d7eng JETi)o
then o is dominated.

Proof. Once again, the first condition concerns the case where, after recon-
figuring, replacing o by ¢’ entails no delay for the jobs in &, while the second
condition is where some jobs in & are delayed.

Consider two sequences o and ¢’ of the same set of jobs with F'(0’) <
F(0). Let S be any schedule whose associated sequence starts with o. Let
7; be the sequence of jobs which completes sequence o; on machine 7 in S,
i.e. the complete subsequence of jobs on machine ¢ in S is 0;|7;. Note that
each job j belonging to 7; is such that ¢ € 7. Thus, in S sequence 7; cannot
start earlier than ¢; = max (A7, min;esi{r;}).

Let S’ be the schedule obtained from S, o and ¢’ in the following way.
The first part of S’ is built by scheduling jobs belonging to ¢ by following
sequence o’ using the procedure described in the proof of Proposition 2.2.
Then, on each machine [i]”, jobs belonging to Ty- are scheduled in S' as
soon as possible from time max(t[i}a,A‘[’iio,) following sequence 7;-. Note

that each job j € & scheduled on machine [;]7 in S is delayed of at most

maX{O,AaU, — max{minjes . {r;}, Af-}}. Note also that we have F(5) —
F(S') = F(o) = F(0') + X, (FF — FY") and thus F(S') = F(S) — F(o) +
(o) = X,y (FS — FS).

First, suppose that condition (1) holds. Then Vi € M, we have Aa”' <
max{min;es,, {r;}, A }. Thus, each job j € & is scheduled at the same
time in S and S’ and we have F = Fjs/. It follows that F'(S") < F(S).

14

Now, suppose that condition (2) holds. In S’, a job j € & is processed
by a machine [i]” belonging to uf. Thus, job j has been delayed by at

most §; = max(jeeps <max(0, A‘[’iio, — max{minjes, {7}, AE}a)}) and FjS’ <

F§ + A;(6;). Tt follows that F(o) — F(o') — Y ,,(FF — F) > 0 and
F('S) < F(S). O

During the construction of S’ the subsequence afi] could have been com-
pleted with a subsequence other than 7 (for example 7;). However, the cho-
sen matching is the one that minimizes the longest possible delay among jobs.
In this evaluation, it could have also been assumed that in the worst case the
cost of all jobs belonging to ¢ will be increased, due to the longest delay over
the jobs which can appear on one of the machines if a schedule beginning by
o is replaced by o’. Nevertheless, like for the single-machine dominance rule
applied to the parallel machine case, we make use of the notion of possible
machines to improve this evaluation, by considering the longest possible delay
d; for each job j considering the set of machines which can potentially process
it. Given two sequences o and o', it takes O(m(logm+|7|) time to know if &
is dominated by o', by considering we already know that ¢’ is a permutation

of o and the set of values {(F'(0), Afjyo. ..., A7,10), (F(07), A?l/]“" ce A‘[’T;}o,)}.

We remark that Proposition 5.3 may be used with only a subset of the m
machines. In fact, in an m-machine schedule, if a subsequence associated with
a schedule considering only £ machines over m is dominated, it is obvious that
the entire schedule is dominated. However, it is not easy to test this rule in
practice, because every possible subset of machines needs to be investigated.
After some fruitless attempts, we abandoned this possibility.

To apply these dominance rules to a current partial solution o associated
with a node of the search tree, we need to find sequences (or subsequences)
o’ which allow us to establish that ¢ is dominated. Of course, enumerating
all such possible sequences is not feasible in practice. During the search
with our enumerative method, we only consider sequences recorded from
previously encountered solutions. Using suitable data structures, relevant
recorded sequences can be found in an effective way.

Consider a partial solution o associated with a particular node of the
search tree. As soon as all solutions which can be derived from this node
have been (implicitly) enumerated, i.e. as soon as the best solution which
can be built from o is known, the characterics of ¢ are stored in two sets V;
and V,,,. To this end, only the following data are saved:

15

e the set of jobs belonging to sequence o associated with the pair of values
(F(0), Afjjes - - - A7, j0) is recorded in V;y;

e for each machine ¢, the set of jobs belonging to sequence o; associated
with the pair of values (F'(0;), A7) is recorded in V].

During the search, the previously recorded solutions are used in the fol-
lowig way at each node of the search tree. Let o be the partial solution
associated with the examined node. The set of possible first jobs PF(o) is
filtered. For all j € PF(o), we seek a state in V;,, whose characteristics meet
the condition of Proposition 5.3 to deduce that sequence ¢|j is dominated.
If such a state is found then scheduling a job j immediately after o yields a
partial solution which is dominated, i.e. no solution better than those previ-
ously encountered can be built from o|j. Thus, job j can be removed from
set PF (o). If it is not the case, job j could be sequenced immediately after
o, i.e. scheduled as soon as possible on machine m(c). The subsequence
am(a)\ J is then tested by searching a state in V; whose characteristics meet
the condition of Proposition 5.2. If it is the case, job j can also be removed
from set PF (o). Note that it is required in Proposition 5.2 that the state
obtained from V; is strictly better than o,,)|j (according to the cost) to
eliminate j from set PF(0). An equivalence is not sufficient to deduce that
no better solution than previously encountered ones can be built from o,
given that subsequences other than o,,s) are not considered.

Hash tables combined with height-balanced binary search trees make for
an efficient use of sets Vi and V,,. This generally allows us to obtain a
pertinent state of one of the sets in O(nlogn). A state of a set consists of
a list of jobs sorted in lexicographic order coded in a vector, and a list of
couples (F, A)) corresponding to the different states of the nodes which have
been visited within this set of jobs. Note that only non-comparable couples
can be retained. Suppose that we search a state with the same set of jobs
belonging to a sequence o in one of set V; or V,,,. Sorting jobs in lexicographic
order runs in O(nlogn) time. Computing an index in the hash table of this
set of jobs runs in O(n) time. Since jobs are sorted in lexicographic order, a
comparison of two sets of jobs runs in O(n) time. Thus, if there is no collision
with another state at the same index in the hash table, seeking the set of
relevant sequences o’ encountered from previously encountered solution in the
search runs in O(nlogn) time. In case of collision with k states at the same
index in the hash table, a height-balanced binary search tree is used with an
additional search running in O(nlog k) time. Once a relevant state has been

16

found with the same set of jobs, it simply needs to be determined whether a
couple (F, A) of the state satisfies the sufficient condition of Proposition 5.3
or Proposition 5.2 according to the case. Experimental tests revealed that
the amount of such (non-comparable) couples is very low.

6 Experimental results

In this section we provide experimental results to compare the effectiveness
of the described dominance rules. All the computations were performed on
a 1.6GHz Pentium-M running MS-Windows XP. Instances were generated
from schemes used in the literature.

We used a classical branch-and-bound procedure given in Algorithm 1.
A depth first strategy is used within this enumeration method using a stack
STACK of nodes. In the search tree, a node corresponds to a partial se-
quence 0. STACK is initialized with the empty sequence. A variable UB is
used to store the value of the best found sequence BestSequence. A lower
bound function LB (see below) is used to evaluate the minimal cost of a given
solution. Dominance rules are applied to each generated node o, leading pos-
sibly to eliminating some children of this node in the tree by filtering PF (o).
When all the possible children of o have been enumerated, the sequence o is
recorded in V; and V,, as explained in Section 5.

To generate instances, we adapted the schemes from Chu [15] and Akturk
and Ozdemir [1] for the single machine problem. For each n, m, we generate
m sets of [%J jobs and one set of n —mx L%J jobs. This method is controlled
by two parameters « and (. Values r;, p;, d; and w; are generated from
uniform distributions: p; are uniformly distributed in [1,100], w; in [1, 10].
Then, r; are distributed in [0, > p;] and d; —r;+p; in [0, 5> p;]. Parameter
« takes values {0,0.5,1,1.5} and [takes values in {0.05,0.25,0.5}. When
n, m, o and § are fixed, 10 instances are created. Finally, there are 120
instances for each couple (n,m).

Tests were done on instances of different sizes in terms of the number
of jobs. For each size there were three sets of instances, depending on the
number of machines: 2, 3 or 5. A time limit of 1800 seconds was fixed.

In Table 1 we compare the effectiveness of the different techniques de-
scribed in this paper. Below, “LOWS” refers to the use of the technique
based on local dominance rule described in Section 4 while “DR;” and “DR,,,”
respectively mean the use of techniques based on Propositions 5.2 and 5.3

17

Algorithm 1: The branch-and-bound algorithm
Push the empty sequence on STACK;
Vi<0,V, + 0, UB+ oo ;
while STACK 1is not empty do
Let o be the sequence on the top of STACK;
if PF(0) # () then
Let j € PF(o0);
PF(e) + PF(0)/{j}
o'« olj;
if LB(0') < UB then
Filter PF(o’) according to Definition 4.2 as explained in
Section 4;
Filter PF(0') according to Propositions 5.3 and 5.2 as
explained in Section 5;

Push ¢’ in STACK;

else
Remove the sequence ¢ which is on the top of STACK;

Add o to V,, and each subsequence o;,7 € M to Vi;

if all jobs belonging to N belong to o and F (o) < UB then
UB < F(o);
BestSequence + o;

described in Section 5. The enumeration procedure is run with instances of
n = 15 jobs and m = {2,3,5} machines. For these tests we use a trivial
lower bound at each node of the search tree. For each partial schedule, the
lower bound is obtained by computing the total cost, assuming that all jobs
will be scheduled as early as possible at the end of the partial schedule. The
method only uses the dominance rule of the active schedule and the start-
times-based dominance rule (see Section 2). The results are reported in the
column “basic”. Techniques are first tested one by one (“LOWS” “DR;”,
“DR,,”). Then, we report the results obtained when all techniques are used
(“LOWS, DRy, DR,,”). Finally, we present the results for the configuration
of techniques that appears to be the best tradeoff between the size of the

18

Table 1: Testing the effectiveness of the techniques, n = 15.

basic LOW S

m % cpu nodes opt. | cpu nodes opt
2 81.67 | 27523 229133 95| 1931 23945 100
3 7417 | 10874 85484 86 | 2562 28074 100
5 75.00 132 1369 79| 105 1163 83

DR, DR,

m % cpu nodes opt. | cpu nodes opt
2 81.67 | 7906 26780 98 | 3112 8135 100
3 7417 | 20478 34175 833939 9517 100
5 75.00 304 1268 75| 267 900 100

LOWS, DRy, DR, LOWS,DR,,

m % cpu nodes opt. | cpu nodes opt
2 81.67 711 1878 100 | 574 1961 100
3 7417 | 1013 2237 100 | 744 2272 100
5 75.00 177 426 100 | 138 427 100

search space and the computation time efficiency, i.e. “LOW S, DR,,”. Note
that for the two last cases, we also used another dominance rule based on
not scheduled jobs (see [29]) whose contribution adds virtually nothing to
the results.

For the different numbers of machines we report the average computing
times in milliseconds (“cpu”) and the average number of generated nodes
(“nodes”) over the 120 generated instances. Note that some instances are
not solved within the time limit. This is why we provide these statistics only
over the instances which have been solved for all versions. The percentage
of concerned instances is shown in the “%” column. However, we provide the
percentage of instances which were solved for each version (columns “opt.”).

We can see that all the rules are effective in reducing the search space, and
especially the rule DR,,, which succeeds in reducing it quite dramatically.
Nevertheless, the rate of improvement decreases as the number of machines
grows. We can see that although DR, reduces the search space, computing
times are higher than for the basic version where m = 3. In the light of our
numerical experiments we decided not to use D R; when the other dominance
rules were activated. In fact, the size of the search space was very similar
with or without DRy, but the computation time was substantially higher.

19

Table 2: Computational results.

m =2 m =3 m =25

n o B cpu nodes cpu nodes cpu nodes
0 0.05 105 360 286 908 394 922

0 0.25 120 400 253 801 337 783

0 0.5 109 380 169 540 122 248

0.5 0.05 25 79 36 121 22 91
0.5 0.25 28 113 28 100 33 120
10|10.5 0.5 41 140 42 156 8 28
1 0.05 12 31 10 35 9 33
10.25 6 24 16 47 3 14

1 05 8 25 6 19 3 6

1.5 0.05 6 21 5 25 6 19
1.5 0.25 6 9 5 15 2 0
1.5 0.5 2 6 3 13 2 1

0 0.05|| 2273 4659 13884 26868 79984 78104

0 0.25| 2924 5614 25551 47681 228389 166394

0 0.5|| 4608 9532 72542 118595 155381 85746

0.5 0.05| 1264 2614 1477 3180 702 1483
0.5 0.25|| 1406 3158 5955 9921 3964 6853
15|0.5 0.5\ 2044 4842 1388 3308 134 324
1 0.05 117 293 109 267 88 207
10.25 56 142 31 78 37 70

1 05 69 155 39 90 8 9

1.5 0.05 42 90 205 453 5 12
1.5 0.25 9 29 11 27 6 2
1.5 0.5 6 12 3 3 5 0

0 0.05|| 30106 40407 473142 489333 1494446 913122

0 0.25|| 78533 89729| 584889 (2) 569814 ~ (10) _

0 0.5||245462 3372321224438 (3) 1082238|1730781 (9) 576345

0.5 0.05|| 50830 71230 117463 153602 137261 109252
0.5 0.25]] 66991 92108 311556 358236| 163428 (2) 124420
20(0.5 0.5]| 42016 62340| 199344 (1) 221334| 85912 (2) 62731
1 0.05 881 1611 4334 6698 12626 10738

1 0.25| 1425 2698 3227 4936 106 176

1 05 25 41 594 974 192 334

1.5 0.05| 1176 1776 53 104 30 44
1.5 0.25 3 9 34 64 60 105
1.5 0.5 2 0 6 5 13 16

20

Results of the branch-and-bound method using the best combination of
the techniques (LOWS, DR,,) are shown in Table 2. The lower bound
Ibgcombo of Baptiste et al. [3] is used.

For the different combinations of parameters («,(3) and for different sizes
of instances the average computing times in milliseconds (cpu) are shown, as
well as the average number of generated nodes (nodes) over the 10 generated
instances. Note that some instances are not solved within the time limit,
and in these cases we provide in brackets the number of instances over 10
which are not solved. The cpu and nodes statistics are then provided only
for the solved instances. As we can see, the hardest instances to solve are the
ones with all release dates equal to 0 (o« = 0). This suggests that a specific
method for the instances without release dates should be used. In the case of
different release dates (a > 0) the hardest instances are those with (o = 0.5,
p =0.25) or (o = 0.5, 8 = 0.5), as in the case of the 1|r;| > w;T; problem
[22]. Above n = 20 jobs the instances become very hard to solve by this
branch-and-bound method if the number of machines is greater than 3. This
is hardly surprising, since to our knowledge even the most effective methods
for the one-machine problem are able to solve all instances only as long as
the number of jobs is less than 30 [22]. In both the one-machine and parallel
machine cases, this can be explained by the fact that the best-known lower
bounds for these problems are not particularly satisfactory. Both the one-
machine and the parallel machine total weighted tardiness problem appear
very hard to solve in practice.

7 Conclusion

This paper describes dominance rules for the parallel total weighted tardiness
scheduling problem. We have shown how it is possible to deduce whether or
not some jobs can be processed by a particular machine in a particular con-
text. This idea is used in non-trivial adaptations of one-machine dominance
rules from the literature. A numerical validation of the described technique is
presented. Experimental results show that the dominance rules are effective
in reducing the search space and the computing times of a branch-and-bound
method. The absence of a satisfactory lower bound for this problem means
that if the number of machines is too high, then it is possible to solve all
instances only as long as the number of jobs does not exceed n = 20. Nev-
ertheless, considering that the best methods for the one-machine version

21

of the problem are only able (to our knowledge) to solve instances up to
n = 30 jobs, and considering that the hardness of the problems dramatically
increases with the number of machines, the obtained results would appear
to be reasonably good. Moreover, note that without the use of the domi-
nance rules described in this paper, a lot of instances of 15 jobs cannot be
solved, which demonstrates the interest of the described techniques. To our
knowledge, ours is the first attempt to solve this problem exactly.

Acknowledgments

The authors would like to thank Jacques Carlier for enlightening discussions
on this problem. They also would like to thank the reviewers, whose remarks
helped to improve this paper.

References

[1] M.S. Akturk and D. Ozdemir. An exact approach to minimizing total
weighted tardiness with release dates. IIE Transactions, 32:1091-1101,
2000.

[2] M.S. Akturk and D. Ozdemir. A new dominance rule to minimize total
weighted tardiness with unequal release dates. Furopean Journal of
Operational Research, 135:394-412, 2001.

[3] M. Azizoglu and O. Kirca. Tardiness minimization on parallel machines.
International Journal of Production Economics, 55:163-168, 1998.

[4] M. Azizoglu and O. Kirca. On the minimization of total weighted flow
time with identical and uniform parallel machines. European Journal of
Operational Research, 113:91-100, 1999.

[5] K.R. Baker. Introduction to Sequencing and Scheduling. John Wiley
and Sons, 1974.

[6] Ph. Baptiste. Scheduling equal-length jobs on identical parallel ma-
chines. Discrete Applied Mathematics, 13:21-32, 2000.

22

[7] Ph. Baptiste, J. Carlier, and A. Jouglet. A branch-and-bound procedure
to minimize total tardiness on one machine with arbitrary release dates.
European Journal of Operational Research, 158(3):595-608, 2004.

[8] Ph. Baptiste, A. Jouglet, and D. Savourey. Lower bounds for paral-
lel machine scheduling problems. International Journal of Operational
Research, 3(6):661-682, 2008.

[9] H. Belouadah, M.E. Posner, and C.N. Potts. Scheduling with release
dates on a single machine to minimize total weighted completion time.
Discrete Applied Mathematics, 36:213-231, 1992.

[10] H. Belouadah and C. Potts. Scheduling identical parallel machines to
minimize total weighted completion time. Discrete Applied Mathematics,
48:201-218, 1994.

[11] L. Bianco and S. Ricciardelli. Scheduling of a single machine to minimize
total weighted completion time subject to release dates. Naval Research
Logistics Quarterly, 29:151-167, 1982.

[12] P. Brucker. Scheduling Algorithms. Springer Lehrbuch, 1995.

[13] J. Carlier. Ordonnancements a contraintes disjonctives. RAIRO, 12:333~
351, 1978.

[14] S. Chand, R. Traub, and R. Uzsoy. Single-machine scheduling with
dynamic arrivals: Decomposition results and an improved algorithm.
Naval Research Logistics, 43:709-716, 1996.

[15] C. Chu. A branch and bound algorithm to minimize total flow time with
unequal release dates. Nawval Research Logistics, 39:859-875, 1992.

[16] C. Chu. A branch and bound algorithm to minimize total tardiness with
different release dates. Naval Research Logistics, 39:265-283, 1992.

[17] C. Chu and M.-C. Portmann. Some new efficients methods to solve
the n|1|r;| > T;. Furopean Journal of Operational Research, 58:404-413,
1991.

[18] R.W. Conway, W.L. Maxwell, and L.W. Miller. Theory of Scheduling.
Addison-Wesley, Reading, 1967.

23

[19]

20]

21]

22]

23]

[24]

[25]

[26]

27]

28]

F. Della-Croce and V. T‘kindt. Improving the preemptive bound for
the one-machine dynamic total completion time scheduling problem.
Operations Research Letters, 31:142—-148, 2003.

A. Hariri and C. Potts. An algorithm for single machine sequencing
with release dates to minimize total weighted completion time. Discrete
Applied Mathematics, 5:99-109, 1983.

E. Ignall and L. Schrage. Applications of the branch-and-bound tech-
nique to some flow-shop scheduling problems. Operations Research,
13:400-412, 1965.

A. Jouglet, Ph. Baptiste, and J. Carlier. Handbook of scheduling : al-
gorithms, models, and performance analysis, chapter Branch-and-Bound
Algorithms for Total Weighted Tardiness, pages 13:1-21. Leung, J. Y-T,
Chapman & Hall / CRC edition, 2004.

A. Jouglet, D. Savourey, J. Carlier, and Ph. Baptiste. Dominance-based
heuristics for one-machine total cost scheduling problems. Furopean
Journal of Operational Research, 184(3):879-899, 2008.

W.H. Kohler and K. Steiglitz. Computer and job-shop scheduling the-
ory, chapter Enumerative and iterative computational approaches, pages
6:229-287. John Wiley & Sons, ed. E.G. Coffman, 1976.

J. Lenstra, A.R. Kan, and P. Brucker. Complexity of machine scheduling
problems. Annals of Discrete Mathematics, 1:343-362, 1977.

C.-F. Liaw, Y.-K. Lin, C.-Y. Cheng, M. Chen. Scheduling unrelated
parallel machines to minimize total weighted tardiness. Computers &
Operations Research, 1777-1789, 2003.

L. Mitten. Branch-and-bound methods: general formulation and prop-
erties. Operations Research, 18 (1):24-34, 1970.

R. Nessah, F. Yalaoui, and C. Chu. A branch-and-bound algorithm to
minimize total weighted completion time on identical parallel machines

with job release dates. Computers & Operations Research, 35(4):1176—
1190, 2008.

24

29]

[30]

[31]

32]

[33]

D. Savourey. Ordonnancement sur machines paralléles : minimiser la
somme des codts. PhD thesis, Université de Technologie de Compiégne,
France, 2006.

S.-O. Shim and Y.-D. Kim. Scheduling on parallel identical machines
to minimize total tardiness. European Journal of Operational Research,
135-146, 2007.

R. Walker. An enumerative technique for a class of combinatorial prob-

lems. American Mathematical Society Symposia in Applied Mathematics,
10:91-94, 1960.

F. Yalaoui and C. Chu. Parallel machine scheduling to minimize total
tardiness. International Journal of Production Economics, 76:265—-279,
2002.

F. Yalaoui and C. Chu. New exact method to solve the Pm|r;| > C;
problem. International Journal of Production Economics, 100(1):168—
179, 2006.

25

	Introduction
	Enumeration Procedure
	Machines on which a job can be scheduled
	Local dominance rule
	Dominated sequences
	Experimental results
	Conclusion

