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The aim of this paper is to investigate the filtration law in rigid porous
matrices for steady-state slow flow of an incompressible viscous Newtonian
fluid when the separation of scales is poor

ε = l

L
<1. (2)

That can be encountered in two typical situations. The first one occurs
when the porous medium is macroscopically heterogeneous, when the mac-
roscopic characteristic length L associated to the macroscopic heterogene-
ities is not “very” large compared to the characteristic length l of the pores.
For such media, length L can be estimated by L ≈ K/|∇K|, where K is
the permeability. When the macroscopic gradient of the permeability ∇K is
large, the ratio l/L may be not “very” small and the separation of scales
is poor.

The second typical situation corresponds to large gradients of pressure
which are applied to macroscopically homogeneous media, such as those
encountered near wells. The macroscopic characteristic length L ≈ p/|∇p|
associated to this gradient of pressure could be not “very” large compared
to l. Again, the separation of scale ratio is not “very” small. The ques-
tion under consideration is: how must the Darcy’s law be modified when
the separation of scales is poor?

To our knowledge, cases of poor separation of scales have received lit-
tle attention in the literature. However, an important work is presented by
Goyeau et al. (1997, 1999). The authors investigate the permeability in a
dendritic mushy zone, which is generally a nonhomogeneous porous struc-
ture. They make use of the volume averaging method to obtain corrector
terms to Darcy’s law. As recognized by the authors, the full solution is still
out of reach. Even when the separation of scales is acceptable, some inves-
tigations need a corrector to Darcy’s law: see, e.g., the study of dispersion
in porous media (Auriault and Adler, 1995).

In the present paper, we use an upscaling technique, i.e. the method
of multiple scale expansions to determine the macroscopic flow from its
description at the pore scale. Heterogeneous systems, as for example porous
media, may enable us to investigate an equivalent macroscopic continuous
system if the condition of separation of scales (1) is verified (Bensoussan
et al., 1978; Sanchez-Palencia, 1980). The cases of poor separation of scales
(2) will be investigated by introducing correctors to the case of good sepa-
ration of scales. The method in use enables us investigating all possible sit-
uations of poor separation of scales.

The macroscopic equivalent model is obtained from the description at
the heterogeneity scale by Auriault (1991): (i) assuming the medium to be
locally periodic, without loss of generality: consider a right-angled paral-
lelepipedic representative elementary volume (REV) of a random porous



POROUS MEDIA WITH POOR SEPARATION OF SCALES 91

medium. Complete this REV by three plane symmetries with respect to
three of its perpendicular faces. Both the so obtained periodic medium
and the random medium obey similar macroscopic behaviours, with a pos-
sibly modified anisotropy. For an investigation of random porous media
without the periodicity condition, see Murdoch and Hassanizadeh (2002).
Nevertheless, the medium can be heterogeneous at the macroscopic scale;
(ii) writing the local description in a dimensionless form; (iii) evaluating
the dimensionless numbers with respect to the scale ratio ε; (iv) looking
for the unknown fields in the form of asymptotic expansions in powers
of ε; (v) solving the successive boundary-value problems that are obtained
after introducing these expansions in the local dimensionless description.
The macroscopic equivalent model is obtained from compatibility condi-
tions which are the necessary conditions for the existence of solutions to
the boundary-value problems. When considering the slow stationary flow
of a Newtonian fluid, the method yields at the first order of approximation
the well known Darcy’s law.

In the present paper, we consider a poor separation of scales, i.e. when
the parameter ε is not very small. In such a case, Darcy’s law becomes a
poor approximation for describing the flow, with a relative error O(ε). The
method consists in looking for correctors to Darcy’s law. In the paper we
consider the two first correctors, which yield a modified flow law with a
relative error O(ε3). The porous medium is described and the pore scale
behaviour is given in part 2. The upscaling is performed in part 3, which
gives at the first order of approximation, i.e. the Darcy’s law. First and sec-
ond correctors are investigated. The second corrector shows a Brinkman
term. For macroscopically homogeneous porous media and large gradients
of pressure, the first corrector cancels out that points out the robustness of
Darcy’s law in this case. Finally, part 4 is devoted to an analytical example.

2. Local Flow Description and Estimations

Consider the flow of an incompressible Newtonian liquid through a porous
medium. The porous medium is spatially strictly or locally periodic and
consists of repeated unit cells (parallelepipeds), see Figure 1. There are two
characteristic length scales in this problem: the characteristic microscopic
length scale l of the pores and of the unit cell (we assume no separation
of scales between these two characteristic lengths), and the macroscopic
length scale that may be represented by either the macroscopic pressure
drop scale or by the sample size scale. For simplicity, we assume both mac-
roscopic length scales to be of similar order of magnitude, O(L). Moreover,
we assume that the two length scales l and L are separated

l �L. (3)
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Figure 1. Schematic view of a period of the porous medium.

The unit cell is denoted by � and is bounded by ∂�, the fluid part of
the unit cell is denoted by �p, and the fluid–solid interface inside the unit
cell is �. Relatively to the porous matrix frame, the momentum balance for
the incompressible viscous Newtonian liquid is

µ
∂2vi

∂Xj∂Xj

− ∂p

∂Xi

=0 in �p, (4)

where v is the velocity vector relative to the matrix frame, p is the pres-
sure and µ is the viscosity assumed as a constant. Gravitational acceler-
ation is included in the pressure term. Equation (4) is completed by the
incompressibility condition and the adherence condition on �

∂vi

∂Xi

=0 in �p, (5)

vi =0 on �. (6)

The ratio between microscopic and macroscopic length scales is small (but
not too small). The fundamental perturbation parameter ε is chosen to be

ε = l

L
, ε �1. (7)

To render dimensionless the system (4–6), we use the local length scale
of a pore l as the characteristic length scale for the variations of the
differential operators: we apply the so-called microscopic point of view
(Auriault, 1991). Therefore, we introduce the small scale dimensionless
space variable y = X/l. Since scales are separated, a second dimensionless
space variable is defined, x = X/L = εy, which is well suited to describing
the macroscopic variations. Other characteristic quantities are denoted by
the subscript c, whereas dimensionless quantities are shown by an aster-
isk. When the porous medium is locally periodic, the period depends on
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the space variable x. Then, the system (4–6) defines a single dimensionless
number Q which is the ratio of pressure to viscous forces. We obtain

Q= pcl

µcvc

, (8)

The estimate for Q comes from a phenomenological argument, i.e. the vis-
cous flow is locally driven by a macroscopic pressure gradient

µcvc

l2
=O

(pc

L

)
, (9)

and thus

Q=O(ε−1). (10)

The dimensionless set that describes the flow is in the form

µ∗ ∂2v∗
i

∂yj∂yj

− ε−1 ∂p∗

∂yi

=0, (11)

∂v∗
i

∂yi

=0 in �∗
p, (12)

v∗
i =0 on �∗. (13)

3. Homogenization

Following the multiple scale expansion technique (Bensoussan et al., 1978;
Sanchez-Palencia, 1980), the velocity v∗ and the pressure fluctuation p∗ are
looked for in the form of asymptotic expansions of powers of ε

v∗ = v∗0(x,y)+ εv∗1(x,y)+ ε2v∗2(x,y)+· · · , (14)

p =p∗0(x,y)+ εp∗1(x,y)+ ε2p∗2(x,y)+· · · , (15)

where the different terms of the asymptotic expansions are �∗-periodic
with respect to variable y. Substituting these expansions in the set (11–13)
gives, by identification of equal power of ε, successive boundary value
problems to be investigated. The lowest order approximation of the pres-
sure requires that

∂p∗0

∂yi

=0, p∗0 =p∗0(x). (16)
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3.1. darcy’s law

We first recall the first order macroscopic flow description (Sanchez-
Palencia, 1980). The first order approximation v∗0 of the velocity and the
second order approximation p∗1 of the pressure are determined by the
following set

µ∗ ∂2v∗0
i

∂yj∂yj

− ∂p∗0

∂xi

− ∂p∗1

∂yi

=0, (17)

∂v∗0
i

∂yi

=0 in �∗
p, (18)

v∗0
i =0on �∗, (19)

where v∗0 and p∗1 are �∗-periodic. The above system has a unique solution
v∗0 which is a linear vector function of ∂p∗0/∂xi (Ene and Sanchez-
Palencia, 1975; Sanchez-Palencia, 1980)

v∗0
i =−k∗

ij (x,y)

µ∗
∂p∗0

∂xj

, (20)

where the tensor field k∗ depends on y, and possibly on x when the porous
medium is macroscopically heterogeneous. From Equation (17), p∗1 can be
put in the form

p∗1 =−a∗
j (x,y)

∂p∗0

∂xj

+p∗1(x), 〈a∗
i 〉�∗

p
= 1

�∗
p

∫

�∗
p

a∗
j dV∗ =0. (21)

Finally, the volume balance (12) gives at the second order

∂v∗1
i

∂yi

+ ∂v∗0
i

∂xi

=0 in �∗
p. (22)

By integrating over �∗
p, we obtain

∂〈v∗0
i 〉

∂xi

=0, 〈v∗0
i 〉=−K∗

ij (x)

µ∗
∂p∗0

∂xj

, K∗
ij = 1

�∗

∫

�∗
p

k∗
ij dV∗

. (23)

Returning to dimensional quantities yields

∂〈v0
i 〉

∂Xi

=0, 〈v0
i 〉=−K

eff

ij (X)

µ

∂p0

∂Xj

, K
eff

ij = l2K∗
ij , (24)

which gives the first order approximation description of the fluid flow

∂〈vi〉
∂Xi

=O
(

ε
∂〈vi〉
∂Xi

)
, 〈vi〉=−K

eff

ij (X)

µ

∂p

∂Xj

+O(ε〈vi〉). (25)



POROUS MEDIA WITH POOR SEPARATION OF SCALES 95

The second relation in (25) stands for the Darcy’s law. It is possible to
show, (Ene and Sanchez-Palencia, 1975; Sanchez-Palencia, 1980), that the
permeability Keff is a symmetrical tensor

K
eff

ij =K
eff

ji .

When ε is not small, Equation (25) gives a poor approximation of the
behaviour. A better behaviour is obtained by introducing a corrector.

3.2. first corrector

The second order approximation v∗1 of the velocity and the third order
approximation p∗2 of the pressure are determined by the following set

µ∗ ∂2v∗1
i

∂yj∂yj

+2µ∗ ∂2v∗0
i

∂yj∂xj

− ∂p∗1

∂xi

− ∂p∗2

∂yi

=0, (26)

∂v∗1
i

∂yi

+ ∂v∗0
i

∂xi

=0 in �∗
p, (27)

v∗1
i =0 on �∗, (28)

where v∗1 and p∗2 are �∗-periodic. By using the compatibility condition
(23), balance (27) becomes

∂v∗1
i

∂yi

+ ∂(v∗0
i −φ−1〈v∗0

i 〉)
∂xi

=0 in �∗
p, (29)

where φ is the porosity. Introducing now the expressions (20) and (21) for
v∗0 and p∗1, respectively, changes (26) and (29) into

µ∗ ∂2v∗1
i

∂yj∂yj

− ∂p∗2

∂yi

=
(

2
∂k∗

ik

∂yj

−a∗
k Iij

)
∂2p∗0

∂xj∂xk

+
(

2
∂2k∗

ik

∂yj∂xj

− ∂a∗
k

∂xi

)
∂p∗0

∂xk

+ ∂p∗1

∂xi

, (30)

∂v∗1
i

∂yi

− 1
µ∗

∂(k∗
ij −φ−1K∗

ij )

∂xi

∂p∗0

∂xj

− 1
µ∗ (k∗

ij −φ−1K∗
ij )

∂2p∗0

∂xi∂xj

=0 in �∗
p.

(31)

The system (28-30-31) verifies the compatibility condition. The solution is
in the form

v∗1
i =−k∗

ij

µ∗
∂p∗1

∂xj

− l∗ij
µ∗

∂p∗0

∂xj

− n∗
ijk

µ∗
∂2p∗0

∂xj∂xk

, (32)

p∗2 =−a∗
j

∂p∗1

∂xj

−b∗
j

∂p∗0

∂xj

−d∗
jk

∂2p∗0

∂xj∂xk

+ p̄∗2(x), (33)
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where tensor k∗ and vector a∗ are defined above and l∗, n∗, b∗ with 〈b∗〉=0
and d∗ with 〈d∗〉= 0 are tensorial functions of x and y. When the porous
medium is macroscopically homogeneous, l∗ij =0 and b∗

j =0.
The volume balance (12) gives at the third order

∂v∗2
i

∂yi

+ ∂v∗1
i

∂xi

=0 in �∗
p. (34)

By integrating over �∗
p, we obtain

∂〈v∗1
i 〉

∂xi

=0, (35)

〈v∗1
i 〉=−K∗

ij (x)

µ∗
∂p∗1

∂xj

− L∗
ij (x)

µ∗
∂p∗0

∂xj

− N∗
ijk(x)

µ∗
∂2p∗0

∂xj∂xk

, (36)

L∗
ij =〈l∗ij 〉, N∗

ijk =〈n∗
ijk〉.

Tensor N∗ can be calculated from tensor fields k∗ and a∗ without solving
the boundary value problem (28-30-31), see relation (82) in Appendix A.
In dimensional form, we obtain

∂〈v1
i 〉

∂Xi

=0, (37)

〈v1
i 〉=−Kij (X)

µ

∂p1

∂Xj

− Lij (X)

µ

∂p0

∂Xj

− Nijk(X)

µ

∂2p0

∂Xj∂Xk

, (38)

Lij = l2L∗
ij , Nijk = l2LN∗

ijk

3.3. first corrected macroscopic behaviour

Let us introduce corrected macroscopic velocity and pressure in the form

〈vi〉=〈v0
i 〉+ ε〈v1

i 〉+O(ε2〈vi〉),
〈p〉=p0 + ε〈p1〉+O(ε2〈p〉).

By adding term by term Equation (242) and Equation (38) multiplied by ε,
we obtain a corrected Darcy’s law in the form

〈vi〉=− 1
µ

((
K

eff

ij +L
eff

ij

) ∂p

∂Xj

− N
eff

ijk

µ

∂2p

∂Xj∂Xk

+O
(
ε2〈vi〉

))
, (39)

with

∂〈vi〉
∂Xi

=O
(

ε2 ∂〈vi〉
∂Xi

)
. (40)
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The corrected macroscopic behaviour is now within a relative error O(ε2).
The effective parameters verify

Keff =O(l2), Leff = εL=O
(

l3

L

)
, Neff = εN =O(l3) (41)

By construction tensor N is symmetrical about its last two indices. By fol-
lowing a similar route as for the permeability K, it is possible to show its
antisymmetry about its two first indices (see the Appendix A)

N
eff

ijk =N
eff

ikj , N
eff

ijk =−N
eff

jik .

It is remarkable to note that for a flow through a macroscopically homo-
geneous porous medium, we have L

eff

ij = 0, and, due to the properties of
tensor Neff , Equation (40) then reduces to

∂

∂Xi

(
K

eff

ij

µ

∂p

∂Xj

)
=O

(
ε2 ∂〈vi〉

∂Xi

)
,

which is similar to the first order approximation (23), but with a relative
error O(ε2). That shows the robustness of Darcy’s law in this case. When
the porous medium is macroscopically heterogeneous, tensor Leff does not
generally cancel out. In such cases, the correction to Darcy’s law is O(ε).

3.4. properties of the flow law

Let us first investigate the physical meaning of the volume averaged veloc-
ity 〈v〉. Consider the identity

∂

∂yi

(yjvi)≡yj

∂vi

∂yi

+vj . (42)

Let vi =v∗0
i . By using the dimensional form of (18) and integrating (42) on

�∗
p, we obtain after some transformation

〈v∗0
i 〉= 1

�∗
i

∫

�∗
pi

v∗0
i dV∗

, (43)

where the right hand member represents a surface average, i.e., a flux. The
surface �∗

i is the cross-section of the period perpendicular to axis ei and
�∗

pi its part in �∗
p. Therefore, 〈v∗0〉=〈v∗0〉�∗ is a Darcy’s velocity. Let now

vi =v∗1
i . On the contrary to v∗0, velocity v∗1 is not divergence free, see (27).

Therefore its volume average is not a flux and we obtain for the corrected
Darcy’s flux
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〈vi〉� =− 1
µ

(
K

eff

ij +L
eff

ij −L
1eff

ij

) ∂p

∂Xj

− 1
µ

(N
eff

ijk −N
1eff

ijk )
∂2p

∂Xj∂Xk

+O(ε2〈vi〉�), (44)

with

L
1eff

ij = l2〈yi

∂k∗
kj

∂xk

〉, N
1eff

ijk = l3〈yik
∗
kj 〉.

In case of macroscopic isotropy, third order tensors are scalar multiple of
the permutation tensor. Since by construction, Neff and N1eff are symmet-
rical with respect to their two last indices, they cancel out.

3.5. second corrector

In some cases, the second corrector of the velocity may be needed. The
third order approximation of the velocity v∗2 and the forth order approxi-
mation of the pressure p∗3 are determined by the following set

µ∗ ∂2v∗2
i

∂yj∂yj

+µ∗ ∂2v∗0
i

∂xj∂xj

+2µ∗ ∂2v∗1
i

∂yj∂xj

− ∂p∗2

∂xi

− ∂p∗3

∂yi

=0 in �∗
p, (45)

∂v∗2
i

∂yi

+ ∂v∗1
i

∂xi

=0 in �∗
p, (46)

v∗2
i =0 on �∗, (47)

where v∗2 and p∗3 are �-periodic. By subtracting the compatibility condi-
tion (35), Equation (46) is changed into

∂v∗2
i

∂yi

+ ∂(v∗1
i −φ−1〈v∗1

i 〉)
∂xi

=0. (48)

The above set now verifies the compatibility condition, that ensures the
existence of a solution. Introducing the expressions (20), (32), (21) and (33)
changes (45), (47) and (48) into a set which solution v∗2 and p∗3 can be put
in the form

v∗2
i =−k∗

ij

µ∗
∂p∗2

∂xj

− l∗ij
µ∗

∂p∗1

∂xj

− m∗
ij

µ∗
∂p∗0

∂xj

−n∗
ijk

µ∗
∂2p∗1

∂xj∂xk

− o∗
ijk

µ∗
∂2p∗0

∂xj∂xk

− p∗
ijkl

µ∗
∂3p∗0

∂xj∂xk∂xk

, (49)

p∗3
i =−a∗

i

∂p∗2

∂xi

−b∗
i

∂p∗1

∂xi

− c∗
i

∂p∗0

∂xi

−d∗
ij

∂2p∗1

∂xi∂xj

− e∗
ij

∂2p∗0

∂xi∂xj

−f ∗
ijk

∂3p∗0

∂xi∂xj∂xk

, (50)



POROUS MEDIA WITH POOR SEPARATION OF SCALES 99

where m∗, o∗, p∗, c∗, e∗ and f∗ with 〈c∗〉= 〈e∗〉= 〈f∗〉= 0 are new tensorial
functions of x and y. The volume balance (12) gives at the forth order

∂v∗3
i

∂yi

+ ∂v∗2
i

∂xi

=0 in �∗
p. (51)

By integrating over �∗
p, we obtain

∂〈v∗2
i 〉

∂xi

=0, (52)

〈v∗2
i 〉=−K∗

ij (x)

µ∗
∂p∗2

∂xj

− L∗
ij (x)

µ∗
∂p∗1

∂xj

− M∗
ij (x)

µ∗
∂p∗0

∂xj

−N∗
ijk

µ∗
∂2p∗1

∂xj∂xk

− O∗
ijk

µ∗
∂2p∗0

∂xj∂xk

− P ∗
ijkl

µ∗
∂3p∗0

∂xj∂xk∂xl

. (53)

As shown below the third derivative term in (53) corresponds to a
Brinkman’s term. Tensor P∗ can be calculated from tensor fields k∗, a∗, n∗

and d∗, without solving the boundary value problem (45-47-48) , see rela-
tion (89) in Appendix B. The dimensional form is easily obtained by fol-
lowing the same route as in the previous subsection. When the medium is
isotropic, third order tensors O∗ and N∗ cancels out. When the medium
is macroscopically homogeneous, L∗ and M∗ cancels out too. The third
derivative term in (53) is a Brinkman’s term. To see this, consider a macro-
scopically homogeneous isotropic porous medium. To the second order of
approximation, the macroscopic behaviour reduces to

〈vi〉=−Keff

µ

∂p

∂Xi

− P eff

µ

∂3p

∂Xi∂Xk∂Xk

+O(ε3〈vi〉), (54)

with

∂〈vi〉
∂Xi

=O
(

ε3 ∂〈vi〉
∂Xi

)
,

where Keff and P eff are scalars and

Keff =O(l2), P eff =O(l4).

After remembering that the third derivative term in (54) is much smaller
than the first derivative term, flow law (54) can be put in the form

〈vi〉=−Keff

µ

∂p

∂Xj

+ P eff

Keff

∂2〈vi〉
∂Xj∂Xj

+O(ε3〈vi〉),
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which shows a Brinkman’s correction term proportional to the Laplacian
of the velocity. This term is of relative weight O(ε2).

4. Analytical Example

We investigate a macroscopically heterogeneous porous medium which the
pore system consists of “locally parallel” plane fissures with slowly vary-
ing thickness h(X1): h∗ =h∗(x1). Median plane of the considered fissure is
(e1, e2) and the medium is periodic of constant period l in the e3 direction,
Figure 2. Two different pressures P0 and P1 are applied at X1 =0 and X1 =
L, respectively. Locally, the fissure is limited by two parallel planes X3 =
±h/2, with arbitrary periodicity in the e1 and e2 directions. Therefore, the
〈v∗i〉’s and p∗i ’s are locally dependent on the dimensionless space variable
y3, only. On an other hand, the only macroscopic dimensionless space var-
iable present in the problem is x1.

4.1. darcy’s law

We first obtain as above

p∗0 =p∗0(x1). (55)

X1

X3

h(X1)l

(a)

y1

y3

l* h*(x1)

(b)

Figure 2. Plane fissure: (a) Scheme in dimensional space variable X. (b) Scheme in
dimensionless space variable y.
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Consider now the boundary value problem for 〈v∗0〉 and p∗1 on a period.
The boundary value problem reduces to

µ∗ ∂2v∗0
1

∂y2
3

= dp∗0

dx1
, µ∗ ∂2v∗0

2

∂y2
3

=0, µ∗ ∂2v∗0
3

∂y2
3

= ∂p∗1

∂y3
,

∂v∗0
3

∂y3
=0, v∗0

i

(
±h

2

)
=0. (56)

The solution is in the form

v∗0
1 =−

(
h∗2

8
− y2

3

2

)
dp∗0

µ∗dx1
, v∗0

2 =v∗0
3 =0,

p∗1 =p∗1(x1), (57)

k∗
11 = h∗2

8
− y2

3

2
, k∗

21 =k∗
31 =0 a∗

1 =0. (58)

Averaging over the period the volume balance of v∗1, see (324) below, yields

d〈v∗0
1 〉

dx1
=0, 〈v∗0

1 〉=−K∗
11

µ∗
d〈p∗0〉

dx1
, K∗

11 = h∗3

12 l∗
. (59)

It is possible to show that k∗
22 = k∗

11, K∗
22 = K∗

11 and the other components
of k∗ and K∗ are zero valued.

4.2. first corrector

By using the above expressions for k∗
ij and a∗

i , the problem for v∗1 and p∗2

becomes

µ∗ ∂2v∗1
1

∂y2
3

= dp∗1

dx1
, µ∗ ∂2v∗1

2

∂y2
3

=0, µ∗ ∂2v∗1
3

∂y2
3

= ∂p∗2

∂y3
,

∂v∗1
3

∂y3
= ∂

∂x1

(
k∗

11

µ∗
dp∗0

dx1

)
, v∗1

i

(
±h∗

2

)
=0, (60)

which solution v∗1 is given by

v∗1
1 =−

(
h∗2

8
− y2

3

2

)
dp∗1

µ∗dx1
, v∗1

2 =0,

v∗1
3 = 1

µ∗
∂

∂x1

((
h∗2y3

8
− y3

3

6
+ h∗3

24

)
dp∗0

dx1

)
,
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and with (59)

v∗1
3 = 1

µ∗
∂

∂x1

((
h∗2y3

8
− y3

3

6

)
dp∗0

dx1

)
, (61)

p∗2 =
(

h∗2

24
− y2

3

2

)
dp∗0

dx1
+p∗2(x1), (62)

where we have considered that b∗ and d∗ are of zero volume average. By
averaging we have

d〈v∗1
1 〉

dx1
=0, 〈v∗1

1 〉=−K∗
11

µ∗
dp∗1

dx1
, 〈v∗1

2 〉=〈v∗1
3 〉=0. (63)

Therefore we have L∗ =0 and N∗ =0. This latter result can be also obtained
from (82). On the other hand, it is possible to show that 〈v∗1〉� = 〈v∗1〉.
To the second order of approximation, the problem under consideration is
described in dimensional form by

〈v1〉=−K
eff

11

µ

dp

dX1
, K

eff

11 = h3

12l
,

∂

∂X1

(
K

eff

11

µ

dp

dX1

)
=O

(
ε2 ∂

∂X1

(
K

eff

11

µ

dp

dX1

))
, (64)

which first relation stands for the classical Darcy’s law. Due to the peculiar
pore geometry under consideration, the first corrector does not account for
the macroscopic heterogeneity of the medium. To point out its influence,
we investigate the second corrector.

4.3. second corrector

The third order approximation v∗2 of the velocity and the fourth order
approximation p∗3 of the pressure are determined by the following set

µ∗ ∂2v∗2
i

∂yj∂yj

+µ∗ ∂2v∗0
i

∂xj∂xj

+2µ∗ ∂2v∗1
i

∂yj∂xj

− ∂p∗2

∂xi

− ∂p∗3

∂yi

=0 in �∗
p, (65)

∂v∗2
i

∂yi

+ ∂v∗1
i

∂xi

=0 in �∗
p, (66)

v∗2
i =0 on �∗, (67)

where v∗2 and p∗3 are �-periodic.
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In the present case, the above boundary value problem simplifies to

µ∗ ∂2v∗2
1

∂y2
3

− ∂2

∂x2
1

((
h∗2

6
−y2

3

)
dp∗0

dx1

)
− dp∗2

dx1
=0, (68)

µ∗ ∂2v∗2
2

∂y2
3

=0, µ∗ ∂2v∗2
3

∂y2
3

− ∂p∗3

∂y3
=0, (69)

µ∗ ∂v∗2
3

∂y3
− ∂

∂x1

((
h∗2

8
− y2

3

2

)
dp∗1

dx1

)
=0, v∗2

i

(
±h∗

2

)
=0. (70)

We are interested by v∗2
1

v∗2
1 = 1

µ∗

(
y2

3

2
− h∗2

8

)
dp∗2

dx1
+ ∂2

∂x2
1

((
h∗2y2

3

8
− y4

3

12
− 5h∗4

16∗12

)
dp∗0

dx1

)
.

By averaging the volume balance of v3, we obtain

〈v∗2
1 〉=− d2

dx2
1

(
h∗2

8

)
K∗

11

µ∗
dp∗0

dx1
− d

dx1

(
7h∗2

24

)
K∗

11

µ∗
d2

p∗0

dx2
1

,

− 7h∗5

720 µ∗l∗
d3

p∗0

dx3
1

− K∗
11

µ∗
dp∗2

dx1
(71)

〈v∗2
2 〉=〈v∗2

3 〉=0,
d〈v∗2

1 〉
dx1

=0. (72)

Therefore we obtain

M∗
11 = d2

dx2
1

(
h∗2

8

)
K∗

11, O∗
111 = d

dx1

(
7h∗2

24

)
K∗

11, P ∗
1111 = 7h∗5

720l∗
.

Brinkman’s coefficient P ∗
1111 can be also obtained from (89). It is possible

to show that 〈v∗2〉� =〈v∗2〉. In practice, we solve successively problems (59),
(63) and (71) for p∗0, p∗1 and p∗2, respectively, with appropriate macro-
scopic boundary conditions.

Let us consider the corrected macroscopic behaviour. We introduce

〈v∗
1〉=〈v∗0

1 〉+ ε〈v∗1
1 〉+ ε2〈v∗2

1 〉+O(ε3),

〈p∗〉=p∗0 + εp∗1 + ε2p̄∗2 +O(ε3).
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The flow in direction x1 is described by

〈v∗
1〉=−K∗

11

µ∗

(
1+ ε2 d2

dx2
1

(
h∗2

8

))
d〈p∗〉
dx1

− ε2 K∗
11

µ∗
d

dx1

(
7h∗2

24

)
d2〈p∗〉

dx2
1

−ε2 7h∗5

720µ∗l∗
d3〈p∗〉

dx3
1

+O(ε3),

d〈v∗
1〉

dx1
=O(ε3).

5. Conclusion

Flow law in porous media was studied by upscaling the pore scale descrip-
tion by using the method of asymptotic expansions. This method enables
us to introduce correctors to Darcy’s law which become nonnegligible in
case of poor separation of scales. The two first correctors were inves-
tigated. Two main results are obtained. Firstly, the first corrector can-
cels out in the case of a macroscopically homogeneous porous medium
submitted to a strong gradient of pressure. That points out the robust-
ness of Darcy’s law for such frequently encountered problems. Secondly,
the second corrector introduces a Brinkman term. That shows that the
Brinkman correction to Darcy’s law is of relative order O(ε2). This result
deserves to be compared with Levy’s investigation of Brinkman’s law (Levy,
1983).

Appendix A. Tensor N

tensor Neff verifies N
eff

ijk =N
eff

ikj

We have

N
eff

ijk

∂2p

∂Xj∂Xk

=N
eff

ijk

∂2p

∂Xk∂Xj

=N
eff

ikj

∂2p

∂Xj∂Xk

,

which is true whatever ∂2p

∂Xj ∂Xk
. Therefore, tensor Neff verifies

N
eff

ijk =N
eff

ikj . (73)

tensor Neff requires that N
eff

ijk =−N
eff

jik
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The periodic tensor field k∗
im is the solution of the following boundary

value problem

∂2k∗
im

∂yj∂yj

− ∂a∗
m

∂yi

+ Iim =0, (74)

∂k∗
im

∂yi

=0, 〈a∗〉=0 in �∗
p, (75)

k∗
im =0 on �∗, (76)

and the periodic tensor field n∗
ikl is the solution of the following boundary

value problem

∂2n∗
ikl

∂yj∂yj

− ∂d∗
kl

∂yi

+2
∂k∗

il

∂yk

−a∗
k Iil =0, (77)

∂n∗
ikl

∂yi

+k∗
kl −φ−1K∗

kl =0, 〈d∗〉=0 in �∗
p, (78)

n∗
ikl =0 on �∗, (79)

Multiply (74) by n∗
ikl and integrate over �∗

p. We have successively for the
different terms, where we apply integration by parts, the divergence theo-
rem and make use of (75), (76), (78) and (79)

∫

�∗
p

∂2k∗
im

∂yj∂yj

n∗
ikl dV∗ =

∫

�∗
p

∂

∂yj

(
∂k∗

im

∂yj

n∗
ikl

)
dV∗ −

∫

�∗
p

∂k∗
im

∂yj

∂n∗
ikl

∂yj

dV∗

=
∫

δ�∗
p

(
∂k∗

im

∂yj

n∗
ikl

)
Nj dS∗ −

∫

�∗
p

∂k∗
im

∂yj

∂n∗
ikl

∂yj

dV∗

=−
∫

�∗
p

∂k∗
im

∂yj

∂n∗
ikl

∂yj

dV∗
,

∫

�∗
p

∂a∗
m

∂yi

n∗
ikl dV∗ =

∫

�∗
p

∂(a∗
mn∗

ikl)

∂yi

dV∗ −
∫

�∗
p

∂n∗
ikl

∂yi

a∗
m dV∗

=
∫

δ�∗
p

a∗
mn∗

iklNi dS∗ +
∫

�∗
p

a∗
m(k∗

kl −φ−1K∗
kl)dV∗

=
∫

�∗
p

a∗
mk∗

kl dV∗
,

∫

�∗
p

n∗
iklIim dV∗ =

∫

�∗
p

n∗
mkl dV∗ =�∗N∗

mkl,

that yields by regrouping all terms

�∗N∗
mkl =

∫

�∗
p

∂k∗
im

∂yj

∂n∗
ikl

∂yj

dV∗ +
∫

�∗
p

a∗
mk∗

kl dV∗
. (80)



106 JEAN-LOUIS AURIAULT ET AL.

Multiply now (77) by k∗
im and integrate over �∗

p. By following the same
route, we obtain

∫

�∗
p

∂k∗
im

∂yj

∂n∗
ikl

∂yj

dV∗ =2
∫

�∗
p

∂k∗
il

∂yk

k∗
im dV∗ −

∫

�∗
p

a∗
l k

∗
km dV∗

. (81)

The two last relations yields tensor N∗ in the form

�∗N∗
mkl =2

∫

�∗
p

∂k∗
il

∂yk

k∗
im dV∗ −

∫

�∗
p

a∗
l k

∗
km dV∗ +

∫

�∗
p

a∗
mk∗

kl dV∗
. (82)

Note that tensor N∗ can be determined from tensor fields k∗ and a∗. We
use expression (82) to demonstrate the antisymmetry of tensor N∗. With
the symmetry property (73) applied successively to N∗

mkl and N∗
kml, we have

�∗N∗
mkl=2

∫

�∗
p

∂k∗
ik

∂yl

k∗
im dV∗ −

∫

�∗
p

a∗
k k

∗
lm dV∗ +

∫

�∗
p

a∗
mk∗

lk dV∗
,

�∗N∗
kml=2

∫

�∗
p

∂k∗
im

∂yl

k∗
ik dV∗ −

∫

�∗
p

a∗
mk∗

lk dV∗ +
∫

�∗
p

a∗
k k

∗
lm dV∗

.

After adding term by term the two last equalities and using relation (76),
we finally obtain

�∗(N∗
mkl +N∗

kml)=2
∫

�∗
p

(
∂k∗

ik

∂yl

k∗
im + ∂k∗

im

∂yl

k∗
ik

)
dV∗

=2
∫

�∗
p

∂(k∗
ikk

∗
im)

∂yl

dV∗ =2
∫

δ�∗
p

k∗
ikk

∗
imNl dS∗ =0. (83)

Appendix B: Tensor P

The periodic tensor field p∗
iklm is the solution of the following boundary

value problem

∂2p∗
iklm

∂yj∂yj

+k∗
imIkl − ∂f ∗

klm

∂yi

+2
∂n∗

ikl

∂ym

−d∗
lmIik =0, (84)

∂p∗
iklm

∂yi

+n∗
mkl −φ−1N∗

mkl =0 in �∗
p, (85)

p∗
iklm =0 on �∗. (86)

Multiply (74) written for k∗
in by p∗

iklm and integrate over �∗
p. We have suc-

cessively for the different terms, where we apply integration by parts, the



POROUS MEDIA WITH POOR SEPARATION OF SCALES 107

divergence theorem and make use of (75), (76), (85) and (86)

∫

�∗
p

∂2k∗
in

∂yj∂yj

p∗
iklm dV∗ =

∫

�∗
p

∂

∂yj

(
∂k∗

in

∂yj

p∗
iklm

)
dV∗ −

∫

�∗
p

∂k∗
in

∂yj

∂p∗
iklm

∂yj

dV∗

=
∫

δ�∗
p

(
∂k∗

in

∂yj

p∗
iklm

)
Nj dS∗ −

∫

�∗
p

∂k∗
in

∂yj

∂p∗
iklm

∂yj

dV∗

=−
∫

�∗
p

∂k∗
in

∂yj

∂p∗
iklm

∂yj

dV∗
,

∫

�∗
p

∂a∗
n

∂yi

p∗
iklm dV∗ =

∫

�∗
p

∂(a∗
np

∗
iklm)

∂yi

dV∗ −
∫

�∗
p

∂p∗
iklm

∂yi

a∗
n dV∗

=
∫

δ�∗
p

a∗
np

∗
iklmNi dS∗ +

∫

�∗
p

a∗
n(n

∗
mkl −φ−1N∗

mkl)dV∗

=
∫

�∗
p

a∗
nn

∗
mkl dV∗

,

∫

�∗
p

p∗
iklmIin dV∗ =

∫

�∗
p

p∗
nklm dV∗ =�∗P ∗

nklm,

that yields by regrouping all terms

�∗P ∗
mkln =

∫

�∗
p

∂k∗
in

∂yj

∂p∗
iklm

∂yj

dV∗ +
∫

�∗
p

a∗
nn

∗
mkl dV∗

. (87)

Multiply now (84) by k∗
in and integrate over �∗

p. By following the same
route, we obtain

∫

�∗
p

∂k∗
in

∂yj

∂p∗
iklm

∂yj

dV∗ =2
∫

�∗
p

∂n∗
ikl

∂ym

k∗
in dV∗ −

∫

�∗
p

d∗
lmk∗

nk dV∗

+
∫

�∗
p

k∗
imk∗

inIkl dV∗
. (88)

The two last relations yields tensor P∗ in the form

�∗P ∗
nklm =2

∫

�∗
p

∂n∗
ikl

∂ym

k∗
in dV∗ −

∫

�∗
p

d∗
lmk∗

nk dV∗ +
∫

�∗
p

a∗
nn

∗
mkl dV∗

+
∫

�∗
p

k∗
imk∗

inIkl dV∗
. (89)

Note that tensor P∗ can be determined from tensor fields k∗, a∗, n∗ and d∗.
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