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C. Boutin

pressure gradient in the ERV—as in the stationary Darcy’s law—but also involves the history
of the pressure gradient in the ERV.

When the wavelength is not too large compared to the ERV size (Rayleigh scattering),
or when the ERV presents a hierarchical microstructure (double porosity) the usual model-
ing has to be revisited (Auriault and Boutin 1994; Boutin et al. 1998; Boutin and Auriault
1993; Boutin 2007). These situations introduce new phenomena at the ERV scale and the
corresponding macroscopic description is enriched by either time or space non-local effects.
The denomination “non-locality in space” means that the mass flux does not depend only
on the pressure gradient in the ERV—as in the classical Darcy’s law—but involves also the
successive pressure gradient, or equivalently the pressure gradient in the neighbor ERVs
of the considered ERV. Those deviations from the equivalent fluid model are supported by
experiments, for instance Leclaire et al. (1996) for the scattering, and Only and Boutin (2003)
for double porosity.

In practice, non-local effects closely interacts with the other phenomena and cannot be
measured independently from laboratory or field experiments. Hence, the interest of under-
standing their origin is to provide physical arguments (and modeling) enabling to discriminate
the possible nature of the deviation from the equivalent fluid model.

The aim of this paper is to investigate how the (non)-locality of the macroscopic descrip-
tion is related to the nature of equilibrium at the ERV scale. The homogenization method of
periodic media (Sanchez Palencia 1980; Auriault et al. 2009), is well adapted to this study
since this multi-scale asymptotic approach enables to build the macroscopic description from
the knowledge of the physics at the local level (provided that a sufficiently good scale sepa-
ration between macro and micro scales is fulfilled). This paper focuses on the specific case
of sound propagation in rigid porous media. However, the generality and the convergence
of the arguments derived from the analysis of single porosity media, Rayleigh scattering
and double porosity media, lead to infer that the conclusions about non-locality versus local
regime, could be extended to other physical phenomena in heterogeneous media.

The paper is organized as follows. The second part recalls the basic physics of gas and
the principle of the homogenization method. The third and fourth parts, respectively, focus
on long wave propagation and Rayleigh scattering in single porosity media, while the fifth
part is devoted to long wave propagation in double porosity media. In these three cases, the
conditions of emergence and the nature of non-local effects are discussed. A synthesis is
drawn in conclusion.

2 Features of Waves in Gas: Homogenization Method

2.1 Compression, Shear, and Thermal Waves in gas

Let us recall the governing equations of a gas submitted to small harmonic perturbations
(of frequency f = ω/2π ) from its equilibrium state (where the pressure, temperature, and
density take the values Pe, T e, and ρe). The variables describing the perturbations are the
variations of pressure, p, temperature, θ , density, ρ, and the gas velocity v, (D(v) is the strain
rate). The parameters of the gas (see Table 1 for physical properties of air) are its viscos-
ity, μ, thermal conductivity, κ , specific heat ratio, γ , and mass capacity cp . Considering a
perfect gas, one has the relation cp(1 − 1

γ
) = Pe

T eρe . Under perturbations of weak amplitude
the balance equations can be linearized and take the form below (here and in the following
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Sound Propagation in Rigid Porous Media

Table 1 Physical parameters of air in ambient conditions

Pe (Pa) T e (K) ρe (kg/m3) Ca (m/s) μ (Pa s) κ(WKm) ρecp (J/Km3) γ

105 293 1.2 343 1.810−5 0.026 1230 1.4

the term exp(iωt) is omitted; ∇ stands for the gradient, � for the Laplacian, dot stands for
contraction, double dots for double contraction, etc.):

• Mass balance:

div(v) + iω
ρ

ρe = 0 (1)

• Momentum balance (Navier–Stokes equation):

div(2μD(v)) − ∇ p − iωρev = 0 (2)

• Fourier equation (energy balance):

div(κ∇θ) − iω(ρecpθ − p) = 0 (3)

• State equation of the gas

p

Pe = ρ

ρe + θ

T e (4)

Noting that the gas state equation enables the elimination of ρ and that div(2μD(v)) =
μ[�(v) + ∇div(v)], the gas is driven by the three-coupled differential operators acting on
the variables p, v, and θ :

div(v) + iω

(
p

Pe − θ

T e

)
= 0 (5)

−∇ p − iρeωv + μ

[
�(v) − iω∇

(
p

Pe − θ

T e

)]
= 0 (6)

iω(p − ρecpθ) + div(κ∇θ) = 0 (7)

The kernel of this set is constituted by three “pure” (or uncoupled) waves modes, each of
them being associated to a characteristic length:

• The classical acoustic mode (P-mode) of wave celerity Ca =
√

γ Pe

ρe . It corresponds to
pure compression associated to pressure, isotropic deformation in the absence of viscosity
and adiabatic regime. The acoustic wavelength λp , is derived from (5) and (6), taking
D(v) = div(v)I, μ = 0 and assuming zero thermal flux, (i.e., κ∇θ = 0, thus ρecpθ = p
and p

Pe − θ
T e = p

γ Pe ):

λp

2π
=
√

γ Pe

ρe

1

ω
= Ca

ω

• The diffusive mode of viscous deviatoric stress (S-mode). The viscous layer thickness
δv , is derived from (5) in the absence of volume variation (div(v) = 0) and assuming
adiabatic regime:

δv =
∣∣∣∣
√

μ

iωρe

∣∣∣∣
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• The diffusive mode of temperature (T -mode). The thermal layer thickness δt , is derived
from (6) in the absence of pressure:

δt =
∣∣∣∣
√

κ

iωρecp

∣∣∣∣
In gas, the viscous and thermal layer thicknesses, both related to Brownian motions, are of the
same order (δv/δt ≈ 0.7 for air). Conversely, in ambient conditions and for usual frequency
range (say less than 100 MHz), the acoustic wavelength is much larger than both viscous and
thermal layers:

2πδv/λp =
√

ωμ

γ Pe ≈ 10−5
√

f � 1

Consequently, in a domain of characteristic size 
 such that:

λp � 
 ≤ δv ≈ δt

the physics is governed by a dynamic regime of the S- and T - modes and a quasi-static regime
for the P-mode. This is precisely the situation encountered in classical poro-acoustics in
medium frequency range as detailed in Sect. 3.

2.2 Basics of Homogenization Method

The macroscopic representation of heterogeneous media makes sense only if there is a scale
separation. This implies (Auriault 1991):

• that the material is regular enough to show an ERV. This is expressed by considering that
the material is composed of repeated identical cells � of characteristic size l.

• that the phenomenon must vary according to a size L larger than l. In acoustics, L is
related to the wavelength by L = λ/2π (Boutin and Auriault 1990).

To capture the variations at the well-distinct lengths L and l, two space variables are intro-
duced (Benssoussan et al. 1978; Sanchez Palencia 1980): x for the macro variations, y for
the micro variations, x and y being related by the scale ratio ε = l/L << 1 ; y = ε−1x . It is
worth mentioning that for a given medium, the actual physical scale ratio ε varies according
to the wavelength, and therefore to the frequency.

The small parameter ε suggests seeking for the variables in the form of asymptotic expan-
sions in powers of ε (where i p(x, y) is the the i th term of the expansion of p(x, y), etc.,. . .):

p(x, y)=
∞∑
0

εi i p(x, y); θ(x, y)=
∞∑
0

εi iθ(x, y); v(x, y)=
∞∑
0

εi iv(x, y) (8)

The scale separation and material periodicity induces the same periodicity for the vari-
ables, thus the terms i p, iθ and iv are �-periodic according to y. Further, using the two
space variables x and y = ε−1x , the gradient ∇ is changed into ε−1∇y +∇x , the Laplacian �
becomes ε−2�y + 2ε−1�yx + �x , with �yx = ∂2

xi yi
, etc.. . . The homogenization proceeds

in three steps:

• first, perform a physical analysis and rescal the equations, using powers of ε for expressing
the order of magnitude of the dimensionless terms,

• second, introduce the two-scale expansions in the rescaled two-scale equations and iden-
tify the terms of same power in ε,

• third, solve the problems obtained in series, and derive the macro description from the
global balance(s) of the cell.

123

Author's personal copy



Sound Propagation in Rigid Porous Media

3 Classical Poro-acoustics

Consider now the gas within a rigid periodic single porosity medium (Fig. 1) of porosity
φ = �f

�
(where �f is the pore volume in the periodic cell of volume �) and characteristic

pores size 
. Keeping the same notations, the governing equations of the small harmonic
perturbations of the gas in the pores � f are still given by (5–6–7). Now, this set has to be
completed by the �-periodicity of v, p, and θ , and the boundary conditions on the gas—solid
interface �, namely (here and in the following the notation /� means the value on �):

Adherence condition of the gas:

v/� = 0 (9)

Isothermal condition imposed by the weak thermal impedance of air, κρecp , compared to
that of the solid:

θ/� = 0 (10)

3.1 Harmonic Gas Motion in Pores: Rescaled Formulation

The conditions on the pores boundary � impose that both velocity and temperature vary at
the pore scale. Consequently, physical variable varying macroscopically is the pressure. This
imposes that the wavelength λp related to the P-mode is much larger than the pores size.
Hence, at pores scale the P-mode is in quasi-static regime. Denoting by � the macroscopic
wavelength, the scale separation imposes:

O(L) = O(�/(2π)) � 
 and ε = O(2π
/�)

The richest physical case occurs when the S- and T -modes are in transient regime at pore
scale, i.e., equivalently, when 
 is of the same order as the viscous and thermal layers:
δv ≈ δt = O(
) = O(εL). To account for this situation, and taking the macroscopic wave-
length as reference length, both viscous term in Navier–Stokes equation, and conduction
term in Fourier equation have to be rescaled by ε2, while the mass balance (1) is unchanged

(b)(a)

Fig. 1 Microstructure of a periodic single porosity media. a Porous media. b Periodic cell � of porous media.
�f is the pore volume filled of gas. � is the air-solid interface. φ = �f/� is the porosity
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(see for instance Boutin et al. (1998)). Thus, the gas is driven by the differential rescaled
system:

G(p, v, θ) = 0; G(p, v, θ) = div(v) + iω

(
p

Pe − θ

T e

)
(11)

N (p, v, θ) = 0; N (p, v, θ) = −∇ p − iρeωv + ε2μ

[
�(v) − iω∇

(
p

Pe − θ

T e

)]

(12)

F(p, θ) = 0; F(p, θ) = iω(p − ρecpθ) + ε2div(κ∇θ) (13)

Then, the operators G, N , F expressed with the two space variables are changed into Gxy,

Nxy, Fxy , whose expansions are given by Eqs. (14) through (16):

Gxy(p, v, θ) = ε−1G−1(v) + G0(p, v, θ) (14)

G−1(v) = divy(v)

G0(p, v, θ) = divx (v) + iω

(
p

Pe − θ

T e

)

Nxy(p, v, θ) = ε−1 N−1(p) + N 0(p, v) + εN 1(p, v, θ) + ε2 N 2(p, v, θ) (15)

N−1(p) = −∇y p

N 0(p, v) = −∇x p − iω
ρe

μ
μv + �y(μv)

N 1(p, v, θ) = 2�yx (μv) − iω
μ

Pe ∇y

(
p − Pe

T e θ

)

N 2(p, v, θ) = �x (μv) − iω
μ

Pe ∇x

(
p − Pe

T e θ

)

Fxy(p, θ) = F0(p, θ) + εF1(p) + ε2 F2(p) (16)

F0(p, θ) = iωp − iωρecpθ + κ�y(θ)

F1(θ) = 2κ�yx (θ)

F2(θ) = κ�x (θ)

Introduce now the expansions (8) of p, v, and θ in Gxy, Nxy , and Fxy and identify terms
of identical power of ε. These balance equations become series in power of ε identically
equal to zero whatever ε � 1, so that each term must vanish. The so-derived equations at
each order—combined with the adherence and isothermal conditions on � satisfied by each
iv and iθ—lead to a series of problems to be solved recurrently.

3.2 Homogenized Description

3.2.1 Macroscopic Mass Balances

The integration of the mass balance of order i ≥ 0 over the pore cell volume, provides:∫
� f

{
divy(

i+1v) + divx (
iv) + iω

( i p

Pe −
iθ

T e

)}
d� = 0

From the divergence theorem, the periodicity and the adherence condition on �, the first term
vanishes. Then, inverting y-integration and x-derivative and introducing the physical (i.e.,
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observable) macro-variables:

i V = 1

�

∫
�f

εi ivd�= φ

�f

∫
�f

εi ivd�; i P = 1

�f

∫
�f

εi i pd�; i T = 1

�f

∫
�f

εi iθd�.

one obtains the macroscopic mass balance at order i :

divx (
i V ) + iωφ

( i P

Pe −
i T

T e

)
= 0 (17)

To go further, we need to determine the local fields ( i p, iv, iθ) by solving successively
the harmonic visco-thermal linear problems in the cell. The first steps of the resolution are
recalled hereafter [for more details see (Boutin 2007)].

3.2.2 Pressure and Temperature at the Leading (Zero) Order

The momentum balance at order ε−1 reduces to N−1(0 p) = −∇y
0 p = 0 that corresponds

to a degenerated P-mode, i.e., a static regime of pressure 0 p at pores scale:

0 p(x, y) = 0 P(x)

This result introduced in the heat balance at order ε0, F0( 0 P, 0θ) = 0 leads to the differen-
tial system {S0

t } set on �f , governing 0θ . The presence of the thermal inertia term clearly
indicates the transient thermal regime of the T -mode at pores scale:

S0
t

{
iω 0 P(x) − iωρecp

0θ + κ�y(
0θ) = 0

0θ/� = 0; 0θ � − periodic

The solution of this linear problem, with 0 P(x) as forcing term, reads:

0θ(x, y)

T e = 0π

(
y

δt

) 0 P(x)

Pe (18)

The temperature distribution 0π (solution for 0 P(x) = Pe

T e ) is complex and depends on
the local variable and the frequency through the dimensionless variable y

δt
. In isothermal

regime, reached at low frequency ( 

δt

→ 0), the temperature vanishes, 0π → 0. In adiabatic

regime, reached at high frequency ( 

δt

→ ∞), the temperature tends to the uniform value
Pe

ρecp T e = (1 − 1/γ ).

3.2.3 Local Velocity, Pressure, and Temperature at the First Order

The local velocity 0v, and the pressure of the first order 1 p, are derived from the system set
on �f :

S0
v

⎧⎨
⎩

−∇y
1 p − ∇x

0 P − iωρe 0v + �y(μ
0v) = 0

divy(
0v) = 0

0v/� = 0 ; 0v & 1 p � − periodic

The (partial) balance of the viscous forces by the inertia of the gas expresses the dynamic
regime of the S-mode at pores scale. Taking the divergence of {S0

v }a gives �y
1 p = 0, hence
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the P-mode again degenerates into a static regime at this order. Set {S0
v } defines the lin-

ear dynamic permeability problem with ∇x
0 P as forcing term, whose solution is, Auriault

(1980):

μ 0v(x, y) = 0k

(
y

δv

)
.∇x

0 P; 1 p(x, y) = 1α

(
y

δv

)
.∇x

0 P + 1̂ p(x) (19)

The tensors 0k and 1α are constituted by velocity and pressure (of zero mean value on �f )
{−0ki/μ, 1αi } corresponding to unit pressure gradient, ∇x

0 P(x) = ei . The fields {0ki ,1 αi }
are complex and depend on the dimensionless variable y

δv
. At low frequency ( l

δv
→ 0), the

inertial effect vanishes and 0k tends to be real. At high frequency ( l
δv

→ ∞), the inertia

dominates and 0k tends to a pure imaginary tensor.

3.3 Classical Poro-acoustic Modeling

Reporting the local fields in the zero-order global mass balance (17) leads to the macro-
scopic description at the leading order. The equivalent continuum is in agreement with the
phenomenological approaches of Zwikker and Kosten (1949), Attenborough (1983), and
Allard (1993) (in the sequel, the index x is omitted for the macro derivatives):

div( 0V ) + iωφ

[ 0 P

Pe −
0T

T e

]
= 0

μ 0V = −0 K .∇ 0 P ; 0 K = φ

� f

∫
�f

0kd� (20)

0T

T e =0 �
0 P

Pe ; 0� = 1

�f

∫
�f

0πd�.

The dynamic permeability tensor 0 K/μ and the effective compressibility φ[1 − 0�]/Pe,
depend on the frequency. At low frequencies, (i) 0 K tends toward the real-valued intrinsic
permeability K = O(
2), (ii) 0� → 0 and the effective compressibility tends toward its iso-

thermal value φ/Pe (more precisely
0�
iω

T e

Pe → ϒ/κ,ϒ being referred to thermal permeability
(O(
2)) by analogy with the intrinsic permeability, (Champoux and Allard 1991). At high
frequencies, (i) 0 K tends toward a pure imaginary value, φμ

iωρeα∞ where α∞ is the tortuosity,

(ii) the perturbations become quasi-adiabatic so that 0� → 1−1/γ , and the compressibility
tends toward φ/γ Pe. Low- and high-frequency domains of shear and thermal phenomena
are, respectively, delimited by critical frequencies ωv and ωt derived by equalizing low- and
high-frequency effects:

ωv = φμ

Kρeα∞
; ωt = κ

ϒρecp
(21)

3.4 Space Locality and Time Non-locality

The description (20) is local in space in the sense that, on a given point, the flux (resp. mean
temperature) is related to the pressure gradient (resp. pressure) on this point.

Besides, the modeling is non-local in time. This relies on the frequency dependance of the
S- and T -modes involved in the effective parameters 0 K (ω/ωv) and 0�(ω/ωt ). Consider
for instance the dynamic Darcy’s law. Coming back in the time domain (inverse Fourier
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transform and convolution product are, respectively, denoted by ∗ and ∗), it reads Auriault
(1980):

μ 0̂V (t) = −0 K ∗
(

τ

τv

)
∗ ∇ 0 P∗ = −

∞∫
−∞

0 K ∗
(

τ

τv

)
.∇ 0 P∗(t − τ)dτ

Therefore, the flux at a given time is not related to the instantaneous pressure gradient, but
to the history of the pressure gradient (on a duration τv = O(1/ωv) characteristic of the
S-mode). Expanding ∇ 0 P∗ in Taylor series around t and noticing that

∫∞
0

0 K ∗( τ
τv

)dτ =
0 K (0) = K, one obtains:

μ 0V ∗(t) = −K.∇ 0 P∗(t) +
⎡
⎣

∞∫
0

0 K ∗
(

τ

τv

)
τdτ

⎤
⎦ .

∂

∂t

[∇ 0 P∗(t)
]

−
[∫ ∞

0

0 K ∗
(

τ

τv

)
τ 2dτ

]
.
∂2

∂t2 [∇ 0 P∗(t)] + · · ·

Thus, the dynamic Darcy’s law is local in time when the time derivatives of the pressure
gradient vanish, i.e., in stationary regime. By construction, the i th term of the expansion of
the convolution is O(K( τv

t )i∇ 0 P∗) = O(K( ω
ωv

)i∇ 0 P), hence for frequency sufficiently
low, ω/ωv � 1, the dynamic Darcy’s law is “slightly” non-local in time. Note that, in this
case, the S-mode regime at pores scale (set {S0

v }) degenerate into a quasi-static regime.
Similar remarks apply for the mean temperature that presents a memory effect—of dura-

tion τt = O(1/ωt ) characteristic of the T -mode—as indicated by the macroscopic law
expressed in the time domain:

0T ∗(t)
T e =

∞∫
0

0�∗
(

τ

τt

) 0 P∗(t − τ)

Pe dτ = ϒ

κT e

∂

∂t
0 P∗(t)

−
⎡
⎣

∞∫
0

0�∗
(

τ

τt

)
τ 2dτ

⎤
⎦ ∂2

∂t2

0 P∗(t)
Pe + · · ·

This shows that the macro non-locality or memory effects arise from the transient regime
of the T - and S- modes at the ERV scale. In the same frequency range, the P-mode at pores
scale remains in quasi-static regime, hence the pressure varies at large scale. This enables to
respect the requirement of a scale separation and to derive the macro behavior. At sufficiently
low frequency (strictly zero frequency) the local regime of the three T -, S-, P-modes tends
to be stationary and the time non-locality tends to disappear.

3.5 Local and Global Modes

From the three modes at pores scale, the up-scaling leads to a single macroscopic acoustic
mode. Clearly the S- and T -modes of wavelength of the order of the pores size disappear at
the macroscale, but their effects are included in the macro-parameters. The wave equation
derived by eliminating the flux and the temperature:

− div

( 0 K

μ
.∇ 0 P

)
+ iω

φ[1 − 0�]
Pe

0 P = 0 (22)
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evidences that the P-mode (of the gas in the absence of solid), associated to pressure varying
at large scale, (quasi-static regime at pores scale) is drastically modified into a Biot wave of
P2 type. The P2 waves features can be identified from harmonic plane waves:

0 P = |0 P0| exp(−ihx) exp(iωt) (23)

Assuming isotropy for simplicity, (0 K = 0 K I ) the complex wave number h = hr + ihi is
given by:

(−ih)2 = iω
φ[1 − 0�]

Pe

μ

0 K

Thus, the wave velocity C , wavelength �, and attenuation ξ read:

h = ω

C
(1 − iξ), i.e., C = ω

hr
; �

2π
= 1

hr
= O

⎛
⎝
∣∣∣∣∣∣
√

0 K

iωμφ

Pe

1 − 0�

∣∣∣∣∣∣
⎞
⎠ ; ξ = − hi

hr

Consequently, the S- and T -modes in transient local regime, result in a strong dispersion of
the P2 wave, evolving from:

• a diffusion wave at low frequency (ω < ωc): C �
√

ω
ωc

√
Pe

α∞ρe ; ξd = 1 − O(
√

ω
ωc

) ;

• to a propagation wave at high frequency (ω > ωc): C �
√

γ Pe

α∞ρe ; ξd ∼
√

ωc
ω

.

Those results at the leading order are derived with a degenerated local P-mode in static
regime. In the next section, a situation with weak inner dynamics of the P-mode is examined.

4 Poro-acoustics with Scattering

Rayleigh scattering of sound in porous media occurs in the case of poor scale separation, i.e.,
when the wavelength is large but not too large compared to the ERV size. Only few studies
focus on this topic, e.g., Tournat et al. (2004). To describe this situation, the homogeniza-
tion method still applies, however, the procedure generally restrained to the derivation of
the leading order, has to be carried on to the next orders (Boutin and Auriault 1993; Boutin
2007). Such a poro-acoustic description, enriched by the first and second-order terms, has
been derived in Boutin (2007). Here, we only indicate the process of resolution of higher
order problems. The macro-description enhanced up to the second-order accounts for “slight
dynamics” of the P-mode at pores scale and the influence of this phenomenon is investigated.

4.1 Local Fields at the Two Next Orders

Following the process of successive resolution, the first corrector 1θ of the temperature is
derived from the heat transfer at order ε governed by the differential system {S1

t } set on � f :

S1
t

{
iω 1 p(x, y) − iωρecp

1θ + κ�y(
1θ) + 2κ�yx (

0θ) = 0

1θ/� = 0; 1θ � − periodic

The previously determined fields 0θ and 1 p (38 and 19) introduce two-independent forcing
terms:

• 1̂ p(x), inducing an identical problem than (S0
t ) except that 1̂ p(x) replaces 0 P(x),

• ∇x
0 P , linked with 1α and ∇y

0π (coming from the equality: �yx (
0θ) = T e

Pe ∇0
yπ.∇x

0 P).
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Therefore, by linearity, the solution is in the form:

1θ(x, y)

T e = 0π

(
y

δt

) 1̂ p(x)

Pe + 1π

(
y

δt
,

y

δv

)
.
∇x

0 P

Pe (24)

The tensor of temperature distribution 1π is constituted by complex and frequency-dependent
solutions 1π i corresponding to pressure gradient, ∇x

0 P(x) = Pe

T e ei . This corresponds to a
transient regime with thermo-viscous coupling.

Similarly, the pressure and velocity, 2 p and 1v, are determined from the set {S1
v}:

S1
v

⎧⎨
⎩

N−1( 2 p) + N 0( 1 p, 1v) + N 1( 0 P, 0v, 0θ) = 0
G−1( 1v) + G0( 0 P, 0v, 0θ) = 0
1v/� = 0; 1v & 2 p � − periodic

the temperature 2θ from the set {S2
t }:

S2
t

{
F0( 2 p, 2θ) + F1( 1θ) + F2( 0θ) = 0
2θ/� = 0; 2θ � − periodic

and 3 p and 2v are derived from {S2
v}:

S2
v

⎧⎨
⎩

N−1( 3 p) + N 0( 2 p, 2v) + N 1( 1 p, 1v, 1θ) + N 2( 0 P, 0v, 0θ) = 0
G−1( 2v) + G0( 1 p, 1v, 1θ) = 0
2v/� = 0; 2v and 3 p � − periodic

At each order, the same differential set as the previous order is recovered, except for new addi-
tive terms, involving the gradient of the solutions of lower order. Thus, once ( j+1 p, jv, jθ),

0 ≤ j < i , have been determined, they become forcing terms in the problems related
to ( i+1 p, iv, iθ), and so on…. For this reason, conversely to the previous orders, the set
{S1

v} (a fortiori {S2
v }) describes an “out of equilibrium” state for the pressure in the period

(�y
2 p �= 0,) that reveals a slight inner dynamics for the P-mode at the pore scale. Finally,

up to the second, the local fields reads:

p(x, y) = 0 P(x) + ε[ 1̂ p(x) + 1α∇x
0 P(x)] + ε2[ 2̂ p(x) + 1α∇x

1̂ p(x)

+ 2α..∇x∇x
0 P(x) + iωμ

Pe
2ν 0 P(x)] + · · ·

−μv(x, y) = 0k.∇x
0 P(x) + ε[0k.∇x

1̂ p(x) +1 k..∇x∇x
0 P(x) + iωμ

Pe
1n 0 P(x)]

+ε2[0k.∇x
2̂ p(x) +1 k..∇x∇x

1̂ p(x) +2 k . . . ∇x∇x∇x
0 P(x)

+ iωμ

Pe
2n.∇x

0 P(x)] + · · ·
(Pe/T e)θ(x, y) = 0π 0 P(x) + ε[0π 1̂ p(x) +1 π.∇x

0 P(x)] + ε2[0π 2̂ p(x) +1 π.∇x
1̂ p(x)

+2π..∇x∇x
0 P(x) + iωμ

Pe
2ζ 0 P(x)] + · · ·

where:

• (−1kmn/μ, 2αmn) and (−1n/μ, 2ν), are the solutions of (S1
v ) with ∇x∇x

0 P(x) = em ⊗
en , and with iωμ

Pe
0 P(x) = 1, respectively.

• (−2k pqr/μ, 3α pqr ) and (−2nm/μ, 3νm), are the solutions of (S2
v ) with∇x∇x∇x

0 P(x) =
ep ⊗ eq ⊗ er and with iωμ

Pe ∇x
0 P(x) = em, respectively.
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• iπ are the solutions of (Si
t ) under unit component of T e

Pe (∇x )
i 0 P and 2ζ is the solution

of (S2
t ) under iωμ

Pe
0 P(x) = 1.

4.2 Enhanced Poro-acoustics

The mean value of the local fields up to the second-order:

P(x) = 1

�

∫
�f

p(x, y)d� = 0 P(x) + 1 P(x) + 2 P(x)

V (x) = 1

�

∫
�f

v(x, y)d� = 0V (x) + 1V (x) + 2V (x)

T (x) = 1

�

∫
�f

θ(x, y)d� = 0T (x) + 1T (x) + 2T (x)

provides the macro-variables appearing in the macro mass balances (17) and the macroscopic
tensors i K ∼ O(0 K )li , i� ∼ li , i N ∼ li , and 2 Z ∼ O(1) (the local fields of pressure αi , νi

are of zero mean value):

i K = 1

�

∫
�f

i kεi d�; i� = 1

�f

∫
�f

iπεi d�; i N = 1

�

∫
�f

i nεi d�; 2 Z =v
1

�f

∫
�f

2ζ ε2d�

The sum of the mass balances Eq. (17) at the leading and at the two next orders, achieves the
poro-acoustics description (of third-order accuracy) in the presence of poor scale separation:

div(V ) + iωφ

[
P

Pe − T

T e

]
= 0

μV =− 0 K .∇ P − 1 K ..∇∇ P − 2 K . . . ∇∇∇ P − iωμ

Pe
1 N P− iωμ

Pe
2 N .∇ P (25)

T

T e = 0�
P

Pe + 1�.∇ P

Pe + 2�..∇∇ P

Pe + iωμ

Pe
2 Z

P

Pe

This description could be extended to higher order terms. The general formulation will
be completed by similar additional correctors associated to higher gradients of pressure.

Remark: A detailed analysis of the properties of the local fields enables to demonstrate
that the first corrector of pressure 1 P vanishes (Boutin 2007). This is obvious in case of
macro-isotropy since odd rank tensors are necessarily null, hence 1 P vanishes (and also 1V
and 1T in this case).

4.3 Space and Time Non-locality of Correctors

As for classical poro-acoustics, the enhanced poro-acoustics is non-local in time because of
the frequency dependance of the macroscopic parameters at the several orders. As a conse-
quence, the effective memory effects are modified ; however, (i) the characteristic frequencies
are identical as at the leading order and (ii) no new characteristic memory time arises from
the slight dynamics of the P-mode at pores scale.

The new point is that the description is also non-local in space: the correctors intro-
duced by the poor scale separation introduces successive gradients in the enhanced dynamic
Darcy’s law and macroscopic thermal law. By construction, these terms are of weak magni-
tude O([2π
/�]i ) compared to the leading order. Thus, the poor scale separation induces
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a “weak non-locality in space”. Strictly speaking, a pure locality in space would require
2π
/� → 0, which may only be reached at stationary regime—also local in time—but not
in acoustics.

The macroscopic laws can equivalently be though as the first terms of the expansion of
a spacial convolution product (denoted by �) of the local physical variables with non-local
effective tensors (and functions) of the media (denoted by .̃), i.e.,:

μV (x0)≈− K̃ � ∇ P− iωμ

Pe Ñ � P =
∫

R3

K̃ (x).∇ P(x0−x)dx− iωμ

Pe

∫

R3

Ñ (x)P(x0−x)dx

Pe

T e T (x0) ≈ �̃ � P + iωμ

Pe Z̃ �
P

Pe =
∫

R3

�̃(x)P(x0−x)dx− iωμ

Pe

∫

R3

Z̃(x)P(x0 − x)dx

The tensors i K , derived by homogenization are related to the non-local complex tensor
K̃ (x) by the identities:

0 K =
∫

R3

K̃ (x)dx; 1 K =
∫

R3

K̃ (x) ⊗ xdx; 2 K =
∫

R3

K̃ (x) ⊗ x ⊗ xdx

and similarly for the non-local functions �̃, Ñ , Z̃ :

i� =
∫

R3

�̃(x)(⊗x)i dx; i+1 N =
∫

R3

Ñ (x)(⊗x)i dx ; i+2 Z =
∫

R3

Z̃(x)(⊗x)i dx

In this framework, local laws would correspond to K̃ (x) = 0 K δ(x); �̃(x) = 0�δ(x),
etc.. . . (where δ(x) is the 3D-Dirac distribution). In fact, the high order terms established by
homogenization show that the spacial extension of the non-local effective dynamic perme-
ability K̃ (x) is of the order of the cell size 
. Because of the requirement of scale separation,
the complete determination of the non-local effective parameters is not necessary (the relevant
scale of spacial variation is the cell size).

The origin of the correctors lies in the terms neglected at preceding orders that become
significant at the considered order. For simplicity, consider macro-isotropy, then the odd ten-
sors vanish and the even tensors, applied to the successive pressure gradients, can be reduced
to scalar functions (denoted, 0 K , 2 K , etc.. . .). With an accuracy up to the third order, the
macroscopic laws can equivalently be rewritten as:

μ

[
V −

2 K
0 K

�(V )

]
= − 0 K

[
1 + iωμ

Pe

2 N
0 K

]
∇ P (26)

1

T e

[
T −

2�

0�
�(T )

]
= 0�

[
1 + iωμ

Pe

2 Z
0�

]
P

Pe (27)

The dynamic Darcy law and thermal law are enriched by two terms:

• on the right hand side, the actual non-local corrector (in space and time) induced by the
non-uniformity of the variable (V and T , hence ∇ P). As for Darcy’s law, it corresponds
to a generalization of the Brinkman’s law in the dynamic range,

• on the left hand side, at this order, a local corrector in space (non-local in time) induced
by the gas compressibility (negligible at the zero-order) with thermo-viscous coupling.
In the Darcy’s law, it expresses the weak contribution of the isotropic viscous stresses.
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In acoustics, the non-locality in space combines with non-locality in time. This comes from
the spacial non-homogeneity of the fields that oscillate according to the frequency-dependent
wavelength. However, as the spacial non-locality is intrinsically linked to the higher gradient,
i.e., the non-homogeneity of the fields, this latter may also occurs in statics (on this point see
Boutin 1996; Auriault et al. 2005).

4.4 Space Non-locality and Eigen Modes with Rayleigh Scattering

The space non-locality is closely related to the Rayleigh scattering that induces a correction
of the zero-order eigen modes. This is established by investigating the second corrector driven
by the set (in isotropic case):

div( 2V ) + iωφ

[ 2 P

Pe −
2T

T e

]
= 0

μ 2V = − 0 K∇ 2 P − 2 K∇� 0 P − iωμ

Pe
2 N∇ 0 P (28)

2T

T e =0 �
2 P

Pe + 2��
0 P

Pe + iωμ

Pe
2 Z

0 P

Pe

Thus, while the leading order of pressure 0 P follows:

−
0 K

μ
�0 P + iω

φ[1 − 0�]
Pe

0 P = 0 (29)

the corrector 2 P is driven by the same wave equation as 0 P complemented by the source
term S2( 0 P):

−
0 K

μ
�2 P + iω

φ[1 − 0�]
Pe

2 P = S2( 0 P) (30)

with:

S2( 0 P) =
2 K

μ
�� 0 P + iω

Pe

[
2 N�0 P + φ( 2��� 0 P + iωμ

Pe
2 Z 0 P)

]
(31)

This is precisely the physics of the Rayleigh scattering: the passing of a long wave 0 P
through heterogeneities generates scattered sources S2( 0 P) that radiate perturbations, i.e.,
the corrective 2 P field. Considering a plane wave (23) at leading order, we have:

S2( 0 P) =
{ 2 K

μ
(−ih)4 + iω

Pe

[2 N + 2�φ
]
(−ih)2 + μφ

(
iω

Pe

)2
2 Z

}
0̃ P exp(−ihx)

so that the scattered source imposes a forcing to the medium according to its eigen mode
itself. This induces a self-resonance effect at the macroscale, and subsequently 2 P is linearly
amplified as the wave progresses:

2 P = Qh2(−ihx) 0̃ P exp(−ihx) with

2Q =
2 K
0 K

+
2 N +2 �φ

φ(1 − 0�)
+ 2 Zφ

0 K

[φ(1 − 0�)]2 (32)

Finally, up to the second-order the macro-pressure reads:

0 P + 2 P = [1 − Q(−ih)2(−ihx)] 0̃ P exp(−ihx)
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At the same level of approximation, within a distance x such as O(|h|x) < 1/
√

ε, the
macro-pressure can also be expressed as:

P = 0̃ P exp(−i h̃x) + O(ε3) with h̃ = h[1 + Qh2]

Thus, the diffraction modifies the zero-order wave number h by a correction of the order of
Qh2 = O(
2/(λ/2π)2). This perturbation comes from the interference between the zero-
order wave and the coherent and amplified scattered wave. Owing to the dispersion of the P2

wave, the perturbation of the wave celerity and attenuation are rather complex as discussed
in Boutin (2007).

Note finally that the restriction to weak spacial non-locality, or equivalently to Rayleigh
scattering, is imposed by the scale separation requirement. This exigence defines a frequency
range that corresponds to weak transient effect of the P-mode at pores scale. In the next
section, we examine the case where the P-mode actually reaches a dynamic regime at the
local scale.

5 Acoustics in Double Porosity Media

From the first works of Barenblatt and ZheltovI (1960) and Warren and Root (1963), many
studies have been devoted to double-porosity systems in geophysics. More recently, this
topic has been addressed in acoustics, e.g., Only and Boutin (2003). Double-porosity media
present a hierarchical morphology where the skeleton—that determines the pores �f —is
itself microporous (thus denoted �sm in the sequel). The micropores are characterized by a
porosity φm and a size 
m much smaller than the microporous domain size dsm = O(
) and
than the pores size 
 (if not, the medium is of single porosity, of total porosity φ+(1−φ)φm).
In the sequel, all the variables attached to the microporous domain are indexed by m Fig. 2.

Such a morphology presenting two interconnected networks of very different character-
istic sizes, enables a dynamic regime of the pressure within the microporous domain, that
in turns, induces a deviation (non-local in time) from the macro behavior of single porosity
media Boutin et al. (1998). The main physical points and the homogenization steps are sum-
marized hereafter, then the macro influence of this additional non-local effect is discussed.

5.1 Physical Analysis of Double-Porosity Media

Three scales are then present in double-porosity media that can therefore be addressed by a
three-scale homogenization, e.g., Auriault and Boutin (1994) and Boutin et al. (1998). How-
ever, the scale separation between pores and micropores enables to proceed by successive
two-scale homogenizations—at least, when looking for a leading order description—namely
a two-scale homogenization at the microscale to determine the properties of the micropo-
rous domain, then a second two-scale homogenization at pores scale, where the microporous
domain is the equivalent homogeneous media derived in the previous step. This easier frame-
work will be used here. Thus, the microporous domain is described by the single porosity
media as exposed in Sect. 3. Since 
m � 
, the intrinsic permeability Km = O(
2

m) and
the critical frequency ωvm = φmμ

Kmρeα∞m
of the microporous domain are much smaller (resp.

larger) than the intrinsic permeability K = O(
2) and the critical frequency ωv = φμ
Kρeα∞ of

the simple porous media (i.e., of single porosity φ, neglecting the microporosity). This has
two consequences:
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Fig. 2 Microstructure of double porosity media. Top Double porosity media. Middle cell of constituted by
the pores �f of size O(
) and the microporous domain �sm of size O(dsm) = O(
). Bottom cell of the
microporous domain of porosity φm with pores of size O(
m)

• First, the flux in the micropores is significantly lesser than within the pores. For this
reason, the influence of the micropores can only appear when the contrast of permeability
is enough strong but not extremely large (if extremely large, the microporous domain is
almost impervious and the medium reduces to single porosity, of porosity φ). The weak
contribution of the micropores insures that, in order of magnitude, the single porosity
estimates applies for the global flow and the wavelength:

μ0V = −O(0 K ).∇0 P; �

2π
= O

⎛
⎝
∣∣∣∣∣∣
√

0 K Pe

iωμφ

∣∣∣∣∣∣
⎞
⎠ (33)

• Second, when the S- and T -modes have reached their dynamic regime in the pores, they
still remain at quasi-static regime in the micropores. Hence, the microporous domain is
simply described (at the leading order) by its intrinsic permeability Km and isothermal
compressibility φ

Pe :

div(Vm) + iωφm
Pm

Pe = 0; μVm = −Km.∇ Pm (34)
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Consequently, the pressure in �sm, results in a field of P2 diffusive waves of wavelength �m:

�m

2π
= O

(∣∣∣∣∣
√

Km Pe

iωμφm

∣∣∣∣∣
)

The interesting situation arises when �m
2π

is of the order of the microporous domain size,

dsm. In that case, occurring for frequencies ω = O( Km Pe

d2
smμφ

= ωd), the pressure in �sm is in

transient regime. Consequently, the order of the pressure gradient in �sm is O( 2π Pm
�m

), while

in the media ∇0 P = O( 2π 0 P
�

). Noticing that the continuity of pressure at the interface �

between the pores and the microporous domain imposes that 0 P and Pm are of the same
order of magnitude, one derives the estimate of the contrast of the velocities in pores and
micropores:

Vm
0V

= O

(Km.∇ Pm
0 K .∇0 P

)
= O

(√
Kmφ

0 Kφm

)
= O

(√
Km

K

)

Consequently, the conditions of emergence of double-porosity effects are reached when:

Km = O(ε2K) , ωvm = O(ε2ωv); thus Vm = εO(0V ), �m = O(ε�) = O(dsm)

(35)

5.2 Homogenized Description of Double-Porosity Media

Since the microporous skeleton is treated as its equivalent Darcy medium, in the second two-
scale homogenization, the y variable accounts for the fluctuations of the physical variables
within the pores and of the “mean” variables Vm, Pm within the microporous domain.

Consequently, in the pores �f , the physics is still described by the set (5–6–7). The only
modification with single-porosity concerns the boundary conditions on the interface �, that
expresses now the continuity of flux, pressure and temperature (i.e., isothermal condition
since this condition prevails in �sm):

v/� = Vm/�; p/� = Pm/�; θ/� = 0 (36)

In the microporous domain �sm, the physics is governed by (34). However, accounting for
the estimates (35), and taking the macroscopic wavelength as reference length, the flux term
have to be rescaled by ε2 and the differential system reads:

− ε2div

(Km

μ
.∇ Pm

)
+ iωφm

Pm

Pe = 0 ; μVm = −ε2Km.∇ Pm (37)

Pm(x, y)= 0 Pm(x, y)+ε 1 Pm(x, y)+· · · ; Vm(x, y)=ε 1Vm(x, y)+ε2 2Vm(x, y) + · · ·
In this frame work, we again proceed to homogenization. In the pores, the fields 0 P, 0θ, 1 p,
0v, are unaffected by the microporosity (simply because the balance equations and the bound-
ary conditions are unchanged up to this order). Now, in the microporous domain, the local
field 0 Pm, is driven by the set:

S0
m

{
−divy(

Km
μ

.∇y
0 Pm) + iωφm

0 Pm
Pe = 0

0 Pm/� = 0 P; 0 Pm � − periodic
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The solution of this linear problem of transient diffusion of pressure, with 0 P(x) as forcing
term on the border � of �sm, may be expressed in the form:

0 Pm(x, y) = 0 P(x)

[
1 + 0ξ

(
y

�m

)]
(38)

The pressure distribution 1 + 0ξ , solution for 0 P(x) = 1, is complex and frequency depen-
dent. At low frequency ( dms

�m
→ 0), an uniform distribution identical to the pressure in the

pores is reached, 0ξ → 0, that means a full coupling between pores and micropores pressures.
At high frequency ( dms

�m
→ ∞), the pressure tends to zero 0ξ → −1: except on a boundary

layer on � of the order of �m, the pores and micropores pressures are uncoupled.
Then, the integration of the zero-order mass balance over pore volume and microporous

domain provides∫
�f

{
divy(

1v) + divx (
ov) + iω

( 0 P

Pe −
0θ

T e

)}
d� +

∫
�sm

{
divy(

1Vm) + iωφm

0 Pm

Pe

}
d� = 0

Using the divergence theorem, the continuity of 1v and 1Vm on �, and the periodicity:∫
�f

divy(
1v)d� +

∫
�sm

divy(
1Vm)d� =

∫
∂�f

1v.nds +
∫

∂�sm

1Vm.nds = 0

and, reporting the local fields, one obtains the macroscopic description at the leading order:

div( 0V ) + iω

[ 0 P

Pe (φ + φm(1 − φ)(1 + 0 D)) −
0T

T e

]
= 0; (39)

μ 0V = −0 K .∇ 0 P;
0T

T e = 0�
0 P

Pe ; 0 D = 1

�sm

∫
�sm

0ξd� (40)

where, 0 K and 0� are the effective parameters of the single porosity media (in the absence
of microporosity) and the function 1 + 0 D expresses the contribution of the phenomena in
the microporous domain to the global mass balance.

Both functions 0 D and 0� are issued from a transient-diffusion process (in the comple-
mentary domains �sm and �f ). Hence, both present similar features: at low frequencies,
0 D → 0 (more precisely

0 D
iω → φm

Pe
μ

Km
Dm, where Dm = O(d2

sm) could be designed as
a “diffusion permeability”) and the media behaves as a single-porosity medium of total
porosity φ + φm(1 − φ); at high frequencies, 0 D → −1, and the medium behaves as a
single-porosity medium of porosity φ. Low and high frequency domains are delimited by the
critical frequency ωd that differs from ωv = O(ωt ):

ωd = Km

Dm

Pe

μφm
; ωd

ωv

= KmK
Dm

Peρeα∞
μ2φφm

(41)

5.3 Comment on Non-locality

Despite the presence of inner dynamics for the pressure at the REV scale, the zero-order
description of the double-porosity medium remains “local in space”. Naturally, an enhanced
description accounting for scattering would introduce non-local correctors in space.

In fact, similarly to the S- and T -modes in the pores, the transient diffusion mode of
pressure (P2-mode) is confined within the microporous domain. Consequently, at the mac-
roscale, this results into an additional parameter non-local in time expressing the frequency
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dependance of the inner dynamics of pressure localized in �sm. The P2-mode in the micro-
porous domain introduces a characteristic time τd = O(1/ωd) different than those related
to T - and S-modes in the pores. The physical mechanism may be summarized as follows.
The carrier macroscopic wave still induces a quasi-static regime of the P-mode within the
pores. This implies a uniform pressure in pores that excites the P2-mode in the microporous
domain, and in turn induces a transient source of flux in the pores.

The interest for sound absorbing materials is that, according to the morphological and
mechanical parameters of �sm, this new diffusion mechanism induces an increase of dis-
sipation that may occur at frequency O(ωd) significantly lower frequency than the critical
frequency of the single porosity medium (Only and Boutin 2003).

6 Conclusion

The study by homogenization of wave propagation in rigid air saturated porous media in
different situations, enables to clarify how the (non)-locality—in time and/or space—of the
macroscopic description is related to the regime of the phenomena that occur at the ERV
scale. Both non-locality effects reveal the loss of a perfect quasi-static equilibrium free of
volume loading at the local scale, but for different reasons.

It appears that the macro non-locality in time is due to modes in transient regime at the
ERV scale, or equivalently having a wavelength of the order of the ERV size. In other words,
this effect arises at the leading order when the frequency of the macroscopic carrier wave
coincides (in order of magnitude) with the eigen frequency of the locally transient phenom-
ena. At lower frequency, the mode degenerates, the regime remains quasi-static at the ERV
scale and the macro description tends to be local in time (or weakly non-local).

The non-locality in time, revealed practically by memory effects, implies that the dynam-
ics deviates from the Newtonian dynamics Auriault (1980), and that the thermal law
departs from the classical thermodynamics. This comes from the coexistence of transient
regimes at both local and macro scale. Such a situation can also be encountered in elas-
tic composites with strong contrasts of properties as demonstrated in the pioneer paper
(Auriault and Bonnet 1985). In that latter case, the deviation from Newtonian dynam-
ics is induced by local resonances and leads to band gap phenomena. By analogy with
electromagnetism, this type of material is now referred to as meta-materials. In poro-
acoustics, the local modes are related to diffusion process, involving viscous deviator-
ic stress (S-mode), and thermal flux (T -mode) for single-porosity media but also pres-
sure diffusion (P2-mode) in double-porosity media. The diffusive nature of the modes
avoids the apparition of inner resonance and the macro waves propagate whatever the
frequency. Nevertheless, porous media could be considered as a particular type of meta
materials.

Note finally, that a simple manner to obtain transient regimes at both macro and local
scale (hence non-locality in time) is to consider several phenomena involving strong con-
trasts of parameters. This applies to the present case since, for single porosity, ωμ/Pe �
1, ωκ/cp Pe � 1 and for double porosity Km/K � 1.

Even if in acoustics, non-locality in space combines with non-locality in time, and if, math-
ematically, both can be addressed in a similar manner—through convolution product—they
are physically of different nature.

Non-locality in space is intrinsically related to the non-homogeneity of the macro fields.
The assumption of perfect scale separation, imposes implicitly the homogeneity of the macro
fields and gives the leading order behavior, local in space. Non-homogeneous macro-fields
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deviate from this perfect case and the macro description requires to be improved by the
effects of higher gradients. These latter modify the local equilibrium, by adding source terms
neglected at the leading order. Hence, the reason of the change of equilibrium is due to spatial
variation and not (directly) to transient effect.

Conversely to memory effects, that may be of the leading order, only weak non-locality
in space has been derived. This relies on the fact, that a non-locality in space at the leading
order, would mean a pressure field fluctuating at both local and global scales, which would
be in contradiction with the requirement of scale separation. Hence, the homogenization only
provides the weak non-local correctors of the local behavior.

Besides, notice that the homogenization method evidences links between, on the one hand,
the theories of higher gradient or micromorphic material (Eringen 1968) mainly developed
for statics in solid mechanics, and, on the other hand, the description of Rayleigh scattering in
heterogeneous media (Ishimaru 1997; Sheng 1995). Further, this study involves phenomena
with memory effects not considered in the classical approaches of scattering (Gubernatis
1977; Hirsekorn 1988; Stanke and Kino 1984).

To conclude, the generality and the convergence of the arguments lead to infer that the
conclusions drawn on the relations between the time/space non-locality and the regime of the
phenomena at the ERV scale, may apply to other physics in heterogeneous media, provided
that the scale separation is respected.
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