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Abstract

Computer experiments are nowadays commonly used to analyze industrial
processes aiming at achieving a wanted outcome. Sensitivity analysis plays
an important role in exploring the actual impact of adjustable parameters
on the response variable. In this work we focus on sensitivity analysis of a
scalar-valued output of a time-consuming computer code depending on scalar
and functional input parameters. We investigate a sequential methodology,
based on piecewise constant functions and sequential bifurcation, which is
both economical and fully interpretable. The new approach is applied to
a sheet metal forming problem in three sequential steps, resulting in new
insights into the behavior of the forming process over time.

Keywords: Sensitivity analysis, Functional input, Sequential approach,
Sheet metal forming, Springback

1. Introduction

In this work a general method is presented to study the influence of func-
tional input and scalar parameters on a scalar output of a time-consuming
computer model, where the interest lies in the behavior of the sensitivity over
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the functional domain. For illustration purposes, let us consider the particu-
lar application in sheet metal forming that originally motivated this research.
Here a scalar output, springback, depends on two functional inputs: friction
and blankholder force. The aim is to analyze the sensitivity of springback
as a measure of geometrical accuracy to the input variables not only as a
whole but as functions over time corresponding to the different stages of the
forming process. Let us look at a few preview runs, where only the friction
between tool and metal is varied (Tab. 1). In the first two runs, the friction
is constant over the 15 seconds of the punch travel. Then different functional
input settings are used, indicating that varying friction can dramatically re-
duce springback. Although the four last runs have equal mean friction over
time, we get very clear differences in the springback results. This clearly mo-
tivates the exploration of the functional behavior of the process, and more
generally the sensitivity analysis of functional input parameters.

The most common method to study data with functional input is func-
tional linear regression (see Ramsay and Silverman [1]), a framework to ap-
proximate, analyze and predict data with functional input. However, a design
of experiments is not considered – data are assumed as already provided –
and the interpretation of the influence of different time regions is not easy
(James et al. [2]). Furthermore, it is restricted to the assumption of linearity.
Morris [3] introduced a Gaussian process model for the analysis of computer
models with functional input and output, taking also the design of the func-
tional experiments into account. However, he did not consider sensitivity
analysis. Three ideas for the sensitivity analysis of computer experiments
with one functional input are presented in Iooss and Ribatet [4]. They result
in one uncertainty index for the input, and thus summarize the functional
domain without giving an insight into the sensitivity with respect to changes
at specific time intervals during the process.

In this paper, sensitivity analysis of functional inputs is obtained by first
transforming the functional problem into a scalar one by considering the basis
of piecewise constant functions, often suggested in functional data analysis
(see e.g. Ramsay and Silverman [1]). That framework also allows to consider
both scalar and functional inputs. Then we adapt the ideas of sequential
bifurcation (Bettonvil [5]) in order to analyze more and more locally the
effect of one specific part of the functional domain. For that purpose, we
introduce a normalized sensitivity index, which allows comparison between
two different steps, and investigate at a theoretical level its properties.

The paper is structured as follows. Sections 2 and 3 present the method-
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Table 1: Preview runs to compare different functional settings of the parameter friction.

ology, together with properties and a way for graphical presentation. Sec-
tion 4 describes the sequential design of the functional input. An application
to sheet metal forming is given in Section 5, exploring the sensitivity of the
time intervals of two functional inputs on springback. A discussion concludes
the paper.

2. Framework

Our aim is to analyze an experiment involving ds scalar input variables
xi ∈ [−1, 1], i = 1, . . . , ds and df functional input variables gj : Dj 7→
[−1, 1], j = 1, . . . , df with a scalar output Y ∈ R. For convenience the in-
put parameters, scalar as well as functional, are bounded to fall into [−1, 1],
and the input functions are defined on Dj = [0, 1] for each j = 1, . . . , df .
The functions depend on a single argument, which in practical applications
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might often be the time, but the approach is not limited to it. The argument
is not necessarily the same for all functional inputs. Beside the bounded-
ness, there are no further conditions on the shape of the functions. Input
and output parameters are connected by an unknown black-box function

f : [−1, 1]ds ×F
df
[0,1] 7→ R,

Y = f
(
x1, . . . , xds , g1, . . . , gdf

)
,

where F[0,1] denotes the space of all functions on [0, 1]. We assume this black-
box function to be very expensive or time-consuming to execute.

Due to functional inputs, the input domain is infinite dimensional. To cope
with this issue, we propose to explore subintervals of the functional domains
as a whole instead of looking at each point. The subintervals are then chosen
sequentially to increasingly finer divisions. This approach is explained later in
Section 4. For now, say we have a decomposition of the domain of each func-
tional input gj into pj ∈ N

+ subintervals at splitting points aj = (a0j , . . . , a
pj
j )

with 0 = a0j < a1j < · · · < a
pj−1
j < a

pj
j = 1,

Dj = [a0j , a
1
j [ ∪ [a1j , a

2
j [ ∪ . . . ∪ [a

pj−1
j , a

pj
j ].

We restrict each gj to belong to Vaj
, the space of piecewise constant functions

over the subintervals defined by aj,

Vaj
=

{
Z

(1)
j ✶[0,a1j [

(t) + · · ·+ Z
(pj)
j ✶

[a
pj−1

j ,1]
(t), with Z

(k)
j ∈ [−1, 1] , 1 ≤ k ≤ pj

}
.

(1)
For a given set of splitting points aj an element of Vaj

is then defined by the

vector (Z
(1)
j , . . . , Z

(pj)
j ). Thus, we obtain a transformation of the input space

of the black-box function from functional to scalar,

Y = f
(
x1, . . . , xds , g1, . . . , gdf

)

= f̃
a1,...,a

pdf

(
x1, . . . , xds , Z

(1)
1 , . . . , Z

(p1)
1 , . . . , Z

(1)
df

, . . . , Z
(pdf )

df

)
. (2)

The described way to design the functional input can also be regarded in
the context of function representation by basis functions (see e.g. Ramsay
and Silverman [1], Chapter 3). They can be viewed as B-splines of order

4



one: linear combinations of piecewise constant functions being constant over
one interval and zero otherwise (Ramsay and Silverman [1], de Boor [6]).
They are also connected to wavelet theory, especially to Haar-Wavelets (see
e.g. Walker [7]), where the basic functions are piecewise constant functions,
being scaled and shifted to the desired functional form. In this work we
restrict ourselves to the basis of piecewise constant functions which allows
a direct and easy interpretation. Nevertheless, we will borrow from wavelet
theory the idea of splitting the domain sequentially. Hence, we will consider
a sequence of embedded spaces Vaj

⊆ V
a
′

j
⊆ V

a
′′

j
⊆ . . . corresponding to

refined time intervals.

A unified framework for scalar and functional inputs. Let us remark that the
space of piecewise constant functions also includes scalar inputs, through the
one-to-one correspondence:

[−1, 1] → V(0,1)

x → x✶[0,1](t)

In other words any scalar input with value equal to x can be considered as a
functional input with a constant value over [0, 1] equal to x. This allows to
consider only functional inputs, having in mind that scalar inputs correspond
to functional inputs that are kept constant over [0, 1], and thus never split.
We adopt this point of view from now on and denote by d = ds+df the total
number of inputs.

3. Sensitivity Indices

With the framework of Section 2, unifying the case of scalar and functional
inputs, it is possible to perform sensitivity analysis on

Y = f̃a1,...,apd

(
Z

(1)
1 , . . . , Z

(p1)
1 , . . . , Z

(1)
d , . . . , Z

(pd)
d

)

A specific sensitivity analysis method can be chosen according to the sup-
posed behavior and evaluation costs of the experiment among methods such
as regression analysis, Morris screening, Sobol indices or others (see e.g.
Saltelli et al. [8] or Confalonieri et al. [9] for an overview). Since the black-
box function is assumed to be expensive, we have a very low budget. Thus,
we suggest the method of regression analysis and use it in the further explo-
rations. Nevertheless, the sequential design strategy proposed in Section 4
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can be adapted to other methods.

Design of experiments for regression analysis usually only cover few levels of
the input values, for instance two extreme values, encoded by −1 and +1.
An equal scaling of the input factors is important to preserve comparability.
Saltelli et al. [8] even suggest scaling input and output to have a mean of
zero and variance of one, that is to use standardized regression coefficients.
A linear model is considered

Y = α +
d∑

j=1

pj∑

k=1

β
(k)
j Z

(k)
j + δ. (3)

The coefficients α and βk
j are commonly computed by the method of Least

Squares using a design matrix Z on the values of Z
(k)
j sufficient for estimation,

i.e. such that Z′Z is invertible (see e.g. Saltelli et al. [8], p. 124). The

estimates α̂ and β̂
(k)
j are obtained by the well-known Least Squares formula

(Z′Z)−1Z′y, with y being the vector of the scalar outputs. As the model is
deterministic no assumptions are made for δ, the difference between response
and regression model and the Least Squares approach is interpreted as simple
curve fitting. The estimates β̂

(k)
j can then be used as sensitivity indices

as they indicate the linear influence of the corresponding scalar input or
functional interval on the output. Additionally, depending on the budget,
higher order effects of interest can be considered, especially the interaction
effect between intervals of the same functional input, leading to the model

Y = α +
d∑

j=1

pj∑

k=1

β
(k)
j Z

(k)
j +

d∑

j=1

∑

1≤k<k′≤pj

β
(kk′)
j Z

(k)
j Z

(k′)
j + δ. (4)

3.1. Normalization

The drawback of β̂ as a sensitivity estimate is that it depends on the chosen
decomposition of the functional input domain. If for instance two adjoint
intervals have a common effect, we expect their combined interval to have
the same effect. This can be achieved by normalizing by the interval size.

Definition 1. As in Section 2, let us consider a set of splitting points

a1, . . . , apd and assume that gj ∈ Vaj
, j = 1, . . . , d : gj(t) =

∑
Z

(k)
j ✶[ak−1

j ,akj [
(t).
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Denote by β̂k
j and β̂

(kk′)
j the estimated first-order and second-order regression

coefficients, then we define by

Ĥk
j =

β̂
(k)
j

akj − ak−1
j

and Ĥkk′

j =
β̂
(kk′)
j

(akj − ak−1
j )(ak

′

j − ak
′−1

j )
,

the so-called normalized regression index of Z
(k)
j and the normalized interac-

tion regression index of Z
(k)
j and Z

(k′)
j resp. for j ∈ {1, . . . , d}, 1 ≤ k < k′ ≤

pj.

Thus Ĥ can be interpreted as the change in the output when increasing
the functional input over the corresponding interval by one unit of time.

Let us consider some particular shapes for the underlying unknown model
f , depending on only one functional input g. The shapes are ideal in the
sense that a pure linear behaviour is assumed for f . It can be shown that
in these cases the returned functional indices have desirable properties. The
corresponding proofs are given in the Appendix.

Proposition 1. Let f be the integral over the functional input g weighted by

an integrable function w : [0, 1] 7→ R

f(g) = α +

∫ 1

0

w(t)g(t) dt,

with α ∈ R. Then for any splitting of the functional domain of g, a =
(a0, . . . , ap) the normalized regression indices return the mean values of the

weight function over the interval and each interaction index is zero.

Ĥk =

∫ ak

ak−1 w(t) dt

ak − ak−1
and Ĥkk′ = 0, k, k′ = 1, . . . , p.

Asymptotically, if the interval size goes to zero the normalized regression

indices return the exact value of the weight function

lim
δ→0

∫ t+δ

t
w(u) du

δ
= w(t).
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In the same way interactions between time regions are recaptured.

Proposition 2. Let f be the product of two integrals of g over two different

time regions [ai
∗−1, ai

∗

] and [aj
∗−1, aj

∗

] with c, α ∈ R

f(g) = α + c

∫ ai
∗

ai
∗
−1

g(t) dt×

∫ aj
∗

aj
∗
−1

g(t) dt.

Then for any splitting a of the functional domain of g with
{
ai

∗−1, ai
∗

, aj
∗−1, aj

∗
}
∈ a,

the estimates of the indices and the interaction indices hold

Ĥk = 0, k = 1, . . . , p and Ĥkk′ =

{
c, k = i∗, k′ = j∗,

0, otherwise.

Furthermore we can show that the definition is robust against non-linear
transformations of the input g in the computer model.

Proposition 3. If g is transformed by a not necessarily linear, but strictly

monotonic increasing function ζ : [0, 1] 7→ R

f(g) = α +

∫ 1

0

w(t)ζ(g(t)) dt

then for a two-level design the values Ĥk are linear in the mean values of the

weight function, and the weighting function still determines the importance

of the intervals compared to each other. Thus, there exists λ > 0 such that

Ĥk = λ

∫ ak

ak−1 w(t) dt

ak − ak−1
, k = 1, . . . , p.

3.2. Interpretation and graphical representation

The indices can be represented by plotting them on the time scale of each
functional input. An artificial example of such a visualization is depicted
in Fig. 1. A positive bar size indicates that a raise of the input at this
time interval causes an increase in the mean output, a negative size causes a
decrease. Here, one can directly see the increasing influence with the time.
Yet, care has to be taken in the interpretation, as the indices represent mean
values, as mentioned above in Prop. 1. In an extreme case, the joint interval
of two intervals with influences of different signs could show zero influence
when the intervals cancel each other out. So any interpretation of the indices
can only relate to the mean influence of the interval.
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Figure 1: Graphical representation of functional sensitivity indices.

4. Splitting and design

4.1. Sequential splitting approach

To keep the number of runs as low as possible, we propose a sequential design
approach, where runs are saved by omitting regions of ’low interest’ in the
analysis. The approach is based on group factor screening, a method to iden-
tify important factors with very small designs by grouping factors and then
sequentially dividing active groups (Watson, G. S. [10] or for an overview
Morris [11]).

For easier readability, we consider only one functional input g : D 7→ [−1, 1]
as sole input, i.e. d = 1. The method is easily extended to more inputs by
considering them as addditional groups. For a specific iteration step r we
denote the splitting points

ar = (a0,r, . . . , ap
r,r), 0 = a0,r < a1,r < · · · < ap

r−1,r < ap
r,r = 1

and the space of piecewise constant functions

Va
r =

{
Z(1,r)1[0,a1,r[(t) + · · ·+ Z(pr,r)1[apr−1,r,1](t), Z

(k,r) ∈ [0, 1]
}
.

The idea of group factor screening is transferred to functional input screen-
ing by interpreting the intervals as groups of factors. Interesting intervals
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are then split into smaller intervals corresponding to dividing active groups
of factors. The algorithm runs as follows: Start with a low number p1 of
intervals, a1 = (a0,1, . . . , ap

1,1) and choose the suitable design for the corre-
sponding variables Z(1,1), Z(2,1), . . . , Z(p1,1). Then perform the experiments
and compute the indices Ĥ1,1, . . . , Ĥp1,1. From the results decide which in-
tervals shall be explored further in the second step and which can be ignored.
We recommend to take the decision in close cooperation with experts. Gen-
erally, an interval should be seen as important, if its index is bigger than
an assumed approximation error. However, it has to be kept in mind, that
the indices are only mean values as explained in Section 3.2. Consequently,
intervals where a change in sign can be suspected should rather be explored
further, even if the index is small. All intervals of interest are then split in
the middle, that is in the second step, the vector of splitting points a2 will
include all points of a1 and for each interval

[
a1,k−1, a1,k

]
to be split at the

point ak−1,1+ak,1

2
. Then a next design allowing for the analysis of these new

intervals is set up. The procedure of estimating and splitting is repeated
until the functional domain is satisfyingly explored.

4.2. Sequential designs

In the literature on group factor screening, there are various ways on
how to design the groups at the different steps, which differ e.g. in their
assumptions, orthogonality, the treatment of interactions, or the way of
reusing. A very economical way to reuse the points is sequential bifurca-
tion (Bettonvil [5]). Let us first consider the case of a linear model without
interactions. Adapted to our functional framework the design is set in the
following way. The factors are designed on two extreme levels, encoded to
−1 and 1. It starts with only one interval, corresponding to a constant curve,
one set to −1 and one to 1. Using the result of the two runs, the normalized
regression index of the whole function can be estimated. Then the interval
is split in the middle, resulting in two intervals in the second step. Only
one additional run is required to estimate the coefficients of both intervals,
where we set the first interval to +1 and the second interval to −1. Values for
(+1,+1), (−1,−1) are already known from the previous step. The result for
(−1,+1) would just be a linear combination of the responses from the other
3 runs and is not needed for the calculation of the indices. Generally, for
each split interval, only one run is required to estimate the influence of both
new intervals, the one with +1 up to the cut point and −1 from there is used.
The approach is depicted in Fig. 2. It shows three sequential steps requiring
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t
0 1

Z(1,1) = −1run 1 → y1

Z(1,1) = +1run 2 → y2

Z(1,2) = +1 Z(2,2) = −1run 3 → y3

Z(1,3) = +1 Z(2,3) = −1 Z(3,3) = −1 Z(4,3) = −1run 4 → y4

Z(1,3) = +1 Z(2,3) = +1 Z(3,3) = +1 Z(4,3) = −1run 5 → y5

...
...

...

Figure 2: Scheme for the design based on sequential bifurcation. White and grey shading
indicate the setting to +1 and −1.

a total of 5 runs. In the first step, the mean influence of the whole interval
can be estimated by Ĥ1,1 = 0.5(y2−y1)

1
. In the second step the result of run 3

can be used to estimate Ĥ1,2 = 0.5(y3−y1)
0.5

and Ĥ2,2 = 0.5(y2−y3)
0.5

. Splitting both

intervals, from run 4 and run 5 we get Ĥ1,3 = 0.5(y4−y1)
0.25

, Ĥ2,3 = 0.5(y3−y4)
0.25

, and
so on.

In presence of interactions, Bettonvil [5] suggest to add mirror runs to
the design, that means adding to each run another run with opposite signs
in order to obtain unbiased estimates of the main effect coefficients.

If orthogonality and/or the possibility to estimate interactions are re-
quired, factorial or fractional factorial designs are further design options. A
new such design is then constructed in each step r on all factors of interest
Z(1,r), . . . , Z(pr,r), all non-interesting intervals are set to a constant value, e.g.
0, in the design and thus are not regarded in the sensitivity analysis any
more. Here again, runs from former steps can be reused. It is easy to show
that for full factorial designs in a step where all intervals have been split,
half of the required runs can be reused. For fractional factorial designs, the
reuse possibilities depend strongly on which effects are confounded in the
sequential designs, as different confounding requires different runs.
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5. Application

Deep drawing is an important sheet metal forming process, especially
in the automotive industry. The main aim of deep drawing is to form a
flat sheet metal into the desired shape by pressing it with a punch into the
die. An example for such a press is shown in Fig. 3 (a) and the formed
workpiece can be seen in Fig. 3 (b). In the deep drawing, special care
has to be taken in terms of shape accuracy, especially springback, which
leads to serious problems during the assembly of different parts. Such an
inaccuracy in flange is depicted in Fig. 3 (c) at the top. The increased use
of advanced high strength steels, due to their advantages of light weight and
higher strength, has additionally enhanced the requirements to the shape
accuracy, as they tend to have higher springback.

The forming process can be adjusted by several parameters, concerning
for instance metal properties, the geometry of the die or process parame-
ters. Here we consider two of the process parameters, blankholder force and
friction. Blankholder force is the pressure of the blankholder, which keeps
the metal flange on its place during the forming (see Fig. 3, left). Friction
measures the friction between tool and metal at various points. The pro-

(a) (b) (c)

Figure 3: Sheet metal forming press (a), example of a resulting formed metal (b), formed
parts to demonstrate springback (c).

cess is usually studied by complex Finite Element simulation. In previous
studies the parameters could only be kept on a fix value during the forming
process (Gösling et al. [12]). Adjustments to the machines and to the simula-
tion tool give us now the possibility to temporally change two of the inputs,
blankholder force and friction, that is to vary their values during the punch
travel.

Hence, there are no scalar inputs and 2 functional inputs, friction and
blankholder force. We performed three steps of functional sensitivity analysis

12



following the design based on sequential bifurcation of Section 4.2, taking 24
runs in total. We refer to the Appendix for the complete design. Figure 4
shows the results of the three steps. In the first step both functional inputs
are split into two intervals. A stronger influence of friction than blankholder
force is visible as well as a general tendency towards a positive influence
in the first half and negative influence in the second half for both. As all
intervals are at this point interesting to the engineers, all are split in the
second step. There it can be seen that for both factors, the last interval has
the greatest impact on the springback. On the other hand, the first and third
intervals have relatively small influence. Therefore, in the third step of the
sequential analysis, these intervals are not explored further and each second
and fourth interval is split again. Overall a similar behavior of both factors
can be clearly seen. A clear break in about half of the time can be observed.
It is also noted that the magnitude of the influence increases towards the
end of both halves. These intervals are most important for the springback
behavior.

6. Conclusion

This paper has proposed a solution to perform sensitivity analysis for
time-consuming computer experiments with both scalar and functional in-
puts, focusing not only on the sensitivity of the functional inputs as a whole
but on the sensitivity behavior over the functional domain as well. Our mo-
tivation came from an industrial sheet metal forming simulation where the
behavior of two process parameters over the forming process should be ex-
plored.
We proposed a framework based on piecewise constant functions, applicable
for scalar and functional inputs. The method’s idea is to reduce the dimen-
sion by dividing the functional domain into subintervals. The subintervals
are then sequentially screened following methods from group factor screen-
ing, resulting in an increasingly fine decomposition of the interesting parts of
the functional domains. Normalized regression indices were proposed as sen-
sitivity indices. They meet desirable requirements to represent the behavior
over the functional domain.
The method shows some limitations, due to the strongly limited number of
runs. The indices capture only linear behavior, and thus possibly ignore
non-linear influences. Though we showed that under some circumstances the
method is robust against a direct non-linear transformation, global sensitiv-
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Figure 4: Three steps of the sheet metal application. First step (top). Second step
(middle). Third step (bottom). The bar colour references sign and amplitude of the bar.
Recall that these amplitudes are comparable to each other at each step.

ity indices like Sobol indices can as well be employed in the method and are
a good, but more expensive alternative in strong non-linear cases. Another
limitation concerns the interpretation of the indices, a well-known issue in
group factor screening. As they can only be interpreted as mean values over
the subinterval, theoretically strong sensitivities of different sign inside one
subinterval could get canceled out. In our experiences, this problem could
be handled well by user knowledge.
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Appendix A. Proofs

In all three propositions, recall that g is a piecewise constant function

g(t) =

p∑

k=1

Z(k)
✶[ak−1,ak[(t).

Proof of Prop. 1. As g is bounded and w is integrable, wg is integrable.

f(g) =α +

∫ 1

0

w(t)g(t) dt,

=α + Z(1)

∫ a1

a0
w(t) dt+ · · ·+ Z(p)

∫ ap

ap−1

w(t) dt

=(1, Z(1), . . . , Z(p))η

with η =
(
1,
∫ a1

a0
w(t) dt, . . . ,

∫ ap

ap−1 w(t) dt
)′

. Now using a design matrix Z on

the values of Z(1), . . . , Z(p) such that (Z′Z) is invertible, and denoting by y

the output, we have y = Zη. The Least Squares coefficients are given by

β̂ = (Z′Z)−1Z′y = η,

which leads to

Ĥk =

∫ ak

ak−1 w(t)

ak − ak−1
.

Finally, as there are no interaction terms in Z, we have Ĥkk′ = 0, k, k′ =
1, . . . , p..

Proof of Prop. 2.

f(g) =α + c

∫ ai
∗

ai
∗
−1

g(t) dt×

∫ aj
∗

aj
∗
−1

g(t) dt

=α + c× Z(i∗)(ai
∗

− ai
∗−1)× Z(j∗)(aj

∗

− aj
∗−1)
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Then similarly to Prop. 1 we obtain β̂k = 0, k = 1, . . . , p and

β̂kk′ =

{
c(ai

∗

− ai
∗−1)(aj

∗

− aj
∗−1), k = i∗, k′ = j∗,

0, otherwise.

leading to the result.

Proof of Prop. 3.

f(g) =α +

∫ 1

0

w(t)ζ(g(t)) dt,

=α + ζ(Z(1))

∫ a1

a0
w(t) dt+ · · ·+ ζ(Z(p))

∫ ap

ap−1

w(t) dt.

Now for a design on two levels {-1,1}, we can define λ and κ ∈ R, such that

ζ(z) = λz + κ for the two values z = −1, z = 1.

Since ζ is increasing, we have λ > 0. It follows for all Z(k) ∈ {−1, 1}, k =
1, . . . , p that

f(g) =α + (λZ(1) + κ)

∫ a1

a0
w(t) dt+ · · ·+ (λZ(p) + κ)

∫ ap

ap−1

w(t) dt

=

[
α + κ

p∑

k=1

∫ ak

ak−1

w(t)dt

]
+

p∑

k=1

[
λ

∫ ak

ak−1

w(t)dt

]
Z(k)

Then for the computations of the coefficients, we obtain

β̂k =λ

∫ ak

ak−1

w(t), k = 1, . . . , p

⇒ Ĥk =λ

∫ ak

ak−1 w(t)

ak − ak−1
, k = 1, . . . , p.
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Appendix B. Application data

Sequential bifurcation design on 2 factors: for friction 0.05 (–) and 0.2
(+), for blankholder force 67.5 (–) and 125 (+). Mirror runs are shaded.

step run time intervals: friction time intervals: blankholder force y

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
1 1 – – – – – – – – – – – – – – – – 6.2

2 + + + + + + + + + + + + + + + + 0.7
3 + + + + + + + + – – – – – – – – 2.1
4 – – – – – – – – + + + + + + + + 4.7
5 + + + + – – – – – – – – – – – – 9.1
6 – – – – + + + + + + + + + + + + 0.7
7 + + + + + + + + + + + + – – – – 2.3
8 – – – – – – – – – – – – + + + + 4.3

2 9 + + – – – – – – – – – – – – – – 6.8
10 – – + + + + + + + + + + + + + + 0.7
11 + + + + + + – – – – – – – – – – 6.9
12 – – – – – – + + + + + + + + + + 0.5
13 + + + + + + + + + + – – – – – – 2.2
14 – – – – – – – – – – + + + + + + 4.7
15 + + + + + + + + + + + + + + – – 1.9
16 – – – – – – – – – – – – – – + + 4.5

3 17 + + + – – – – – – – – – – – – – 6.8
18 – – – + + + + + + + + + + + + + 0.7
19 + + + + + + + – – – – – – – – – 4.2
20 – – – – – – – + + + + + + + + + 0.5
21 + + + + + + + + + + + – – – – – 2.2
22 – – – – – – – – – – – + + + + + 4.4
23 + + + + + + + + + + + + + + + – 0.7
24 – – – – – – – – – – – – – – – + 4.2
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