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Abstract

We know that fg-penalized methods have good theoretical properties but unfortunately
high computational cost. On the contrary, convex relaxations - such as the Lasso - have
been introduced but their theoretical guarantees hold for restricted models. To tackle this
impasse, [13| [I4] come up with sparsity priors in a Pac-Bayesian framework. They give rise
to good theoretical properties, i.e. sparsity oracle inequalities, reached by computationally
attractive sequential procedures. In this paper, we investigate this issue in clustering.

We construct online clustering algorithms which learn according to the following game
protocol. At each trial ¢ > 1, nature reveals a deterministic z; € R?, d > 1. A forecaster
predicts the next value with several - and as small as possible - proposals. Then, nature
reveals the next value and the forecaster pays the minimal distance between this value and
its set of proposals. To deal with this problem, we use the Pac-Bayesian theory with group-
sparsity priors. It gives sparsity regret bounds and allows us to perform online clustering
of a possible non-stationnary process, without any knowledge about the number of clusters.
These results can be applied to the classical i.i.d. case to deal with the problem of model
selection clustering as well as high dimensional clustering.

1 Introduction

Prediction of individual sequences is the core of a huge amount of work these last decades in
game theory and statistics. The problem could be summarized as follows. A blackbox reveals at
each trial ¢ a real value ; € R, which could be a temperature at a given time, a risk asset, or an
unemployment rate. Then, a forecaster predicts the next value based on the past observations
and expert advices. These expert advices could be based on deterministic - or stochastic - models,
or even adversarial. The goal is to predict as well as the best expert, no matter what sequence
is produced by the blackbox. This sequential game has been investigated by many authors. We
can mention the monograph of [9] for a nice introduction to the area (see also the pioneering
work of [22]). Very often, the introduced algorithms are based on convex combinations of expert
advices, where coefficients depend on the past performances of each expert. In this paper, we
suggest to tackle a more difficult task by considering vector-valued instances z; € R%, d > 1,
and no expert advice.

Instead, we construct online clustering algorithms which learn according to the following
protocol. On each day ¢, the forecaster must predict the next instance z; € R? with at most
p > 1 possible ”proposals” or 7strategies”. On the morning of day ¢, he has access to the inputs
Z1,...,T4—1 of the previous days. Based on these instances, he must propose a codebook of
p > 1 strategies ¢; = (é1,...,61p) € R, At the end of the day, he receives x; and encurs a
loss - or distortion - £(¢&, z¢), where:

l(er, 7)) = Inin |65 — 43, (1.1)

=1l,...
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and | - | stands for the Euclidean norm in R% The goal of the forecaster is to control the
cumulative distortion ZtT:1 £(Et, ), with |€;|o as small as possible, where |€;|o corresponds to
the number of non-zero strategies at time ¢, i.e.:

lclo:==card{j =1,...,p:¢c; # (0,...,0)" € R}, Ve = (c1,...,cp) € RP.

At this stage, it is important to explain what means |¢;|o as small as possible. Firstly, note
that a possible candidate strategy - but out of interest in practice - is the following. At each trial
t > 1, the forecaster puts a proposal on each past instance z; € R% and let the other components
to zero. This trivial system will have the property |¢¢|o = ¢, for any ¢ > 1. Consequently, this
strategy will induce small cumulative loss Ethl £(€4, ;) but huge complexity, and is equivalent
to the so-called ”overfitting phenomenon”. In this contribution, we want to develop algorithins
which summarize the information of the deterministic sequence, namely such that |¢]o << ¢.

A motivating example is as follows. A t-shirt sailer receives online data about their sales,
customer after customer (such as prize, color and shape). After each checkout process ¢, he must
predict the next instance in order to market appropriately to the current customer’s patterns.
Since different social clusters are involved (such as boys, teens, or gothics), he can advise differ-
ent strategies or attempts. The only restriction he has is to come up with a finite - and as small
as possible - number of strategies in order to summarize the demand (he has not access to an
infinite store size). Moreover, since fashion changes over time, the retailer wants to learn in an
online way.

In this contribution, we make no assumption about the sequence of inputs that arrives at
each trial. Our results hold for a worst case sequence of instances. It allows to tackle non
stationarity in the learning process and predict - or cluster - sequence of trials with time-varying
structure. This problem has been, as far as we know, very poorly treated in the literature. In
the framework of expert advice, we can mention [11], where different clustering algorithms are
aggregated at each trial to get an online clustering algorithm. [31] investigates an online version
of the spherical k-means algorithm. In the present paper we have not any expert advice (such
as k-means). In particular, we have no idea about the number of clusters to use in the learning
protocol.

From theoretical viewpoint, we are interested in sparsity regret bounds introduced in [16].
More precisely, we recommend to control the cumulative loss as follows:

T T
> (e, z) < inf {Z e, zy) + A]c]o} +rA(T), (1.2)
t=1 c€RM

where r)(7T) is a residual term and A > 0 is a temperature parameter. It has to be calibrated
in order to minimize the right hand side of (1.2). In other words, we want to control the
regret of our sequential procedure to have not reach the compromise between fitting the data
and compress the information (i.e. the infimum which appears in the right hand side). Going
back to the t-shirt retailer example, it means that we are looking at a strategy that fits to the
customer’s patterns as well as possible, but also which minimizes the number of offers. This
compromise is of first interest in information theory and statistics.

To get sparsity regret bounds , we use Pac-Bayesian bounds in the spirit of [8]. We are
also largely inspired from the seminal paper of [2], which presents a unified Pac-Bayesian theory
for both the deterministic (or worst case) scenario and the batch (or i.i.d.) case. The second
ingredient of our results in the introduction of new sparsity priors. It is based on previous priors
recommended in prediction under the sparsity assumption in high dimensional statistics (see
for instance [12] 13]). The main challenge in this area is to introduce procedures which balance
good theoretical properties (such as £y-penalized estimators) and low computational cost (such as
solutions of convex or linear programming). In the framework of individual sequences, this issue
has been considered recently in [16] in the problem of online linear regression. From a theoretical
perspective, the present contribution develops sparsity regret bounds in online clustering.



Our algorithms are based on standard sequential randomized procedures largely inspired
from the literature cited above. It has been noted in [14] that these methods are computa-
tionally feasible for relatively large dimensions of the problems, by using a so-called Langevin
Monte-Carlo method. These computational aspects have been also considered in [I] in a sparse
single index model and in [I§] in a sparse additive model. Note that this direction is of first
interest in clustering since the available algorithms are not quiet satisfactory. In the standard
i.i.d. case, it has been noticed by many authors that the existing methods, such as the popular
k-means, suffers from non-convexity. As a result, the initialization affects the performances of
the algorithm, which does not guarantee the convergence to the global minimum of the empirical
risk (see [7]). Within the PAC-Bayesian framework of this paper, up to some Monte-Carlo ap-
proximation, we are abble to compile the algorithm which have the desire theoretical properties.
Moreover, in this work, we enlarge the framework to non-stationary processes in comparison to
the i.i.d. case. That’s why the algorithmic part is an interesting direction for future works.

The paper is organized as follows. In Section we present the sequential randomized
algorithm and give the main results of the paper, for the problem of online clustering with known
horizon T. The online clustering algorithm reaches sparsity regret bounds as in (1.2). Then, in
Section 3] we turn out into the problem of adaptation, namely the knowledge of T'. We give an
adaptive version of the online algorithm of Section [2| where the temperature parameter A > 0
could vary over time. Finally, we illustrate in Section {4] the power of the Pac-Bayesian theory
in the standard i.i.d. case to investigate model selection clustering as well as high dimensional
clustering. We conclude in Section 5] with a short discussion whereas Section [6] is dedicated to
the proofs of the main results.

2 Main results

In this section, we describe the first online clustering algorithm and its generalization ability.
We begin with a general Pac-Bayesian bound, which holds for any prior and any temperature
parameter. This result allows us to get a sparsity regret bound for our problem, by using a
group-sparsity prior.

2.1 The algorithm

For any integer d,p > 1, we denote by M (R?%) the set of probability measure on R%. We start
by describing the algorithm as follows. Let us introduce a prior 7w € MT(R‘”’) and an inverse
temperature parameter A > 0. At the beginning of the game, we draw ¢; with law p; := 7. We
fix Sp = 0. Then, learning proceeds as the following sequence of trials ¢t = 1,...,T":

e Get z; and compute S;(c) = Si_1(c) + £(c, z¢) + (e, ) — £(&,7¢))?, Ve € RP.

o Let pryi1(de) == 5 " n(de) € MT(R%), where Wy = Egore *51(9),

e Draw €41 according to the law pgyq.

Then, we have constructed a vector of probability measures (pi,...,pr+1), where each p; €
MT(de ) is calculated thanks to the sequence of past instances z1, ..., z; 1 and the realizations
of (€1,...,¢;—1). More precisely, the principle is to update the current error of any codebook

c € R a5 follows:
A .
St(C) = Stfl(C) + E(c,xt) + 5[6(0,!1%) — E(ct,xt)]g, (21)

where A > 0 is some temperature parameter. At each trial £, the loss of a codebook is decomposed
as the loss over the past, the current loss £(c, z;) and a stability term that ensures ¢;11 to be not



so far from ¢;. This term can be viewed as a penalization term to better control the variance
in our procedure (see [2] for details and inequality (2.4) below). Due to the construction of a
randomized estimator ¢, we are interested in the cumulative expected loss, given by:

T
Er(€) := ZE(ﬁl,...,ﬁt)g(éta Tt), (2.2)
=1
where for each ¢ > 1, the product measure (p1,...,p;) is constructed in the algorithm.

2.2 A Pac-Bayesian bound

Pac-Bayesian bounds go back to the work of [23] (see also [8] or more recently [27]). It gives a
control in expectation of the risk of any randomized estimator. The precise expression of the
upper bounds depends on the context, but it is very often an empirical risk penalized in terms of
Kullback-Leibler divergence. In what follows, the Kullback-Leibler divergence of two measures
p,m € M{(R%) in the measurable space (R%, B(R¥)) is defined as:

Eewplog 2(g) ifp<<m
K = c~p dr ?
(p,) { 400 otherwise.

A nice property (see for instance [8]) is the following duality formula. For any measurable
function A : R? — R, we have:

1og Eenre™® = sup  {Ec,h(c) — K(p,7)}. (2.3)
peM (Rir)

Since the earlier work of Mac Allester, many authors have investigated Pac-Bayesian bounds.
For our purpose, we can mention [2], which has largely inspired the result of Theorem |l below.
In particular, the construction of the algorithm in Section - and more precisely the update
of the current error described in (2.1)) - ensures the following property:

1 L

VA > 0,Yp € MT(R%),Vz € RY, Bul(c,z) < —XECINP log Ecwpeﬂ@(w)%Wc,wt)f@(c e)]?).
(2.4)

The assertion ([2.4) is proved in [2] in a quiet general setting and called the variance inequality.

This inequality can be traced back to [19] (see also [20] in the i.i.d. setting). In our framework,
it is the starting point to get the following result:

Theorem 1 For any deterministic sequence ()1, € R, for any p € N*, any A > 0 and any
prior m € M (R%), the cummulative loss ([2.2)) satisfies:

T T
- : IC(,O, 7T) A S 2
Er(e) < inf Eeo e, o) + + =Es s Een e, o) — (e, x .
T( ) >~ pEMf(RdP){ c pt_zl ( t) by 2 (B1,e..,.pr) e ptzzl[ ( t) ( t t)]

(2.5)

The bound of Theorem [1| gives a control of the expected cumulative loss of the randomized
procedure described in Section The interesting point with Theorem [I] is that it holds for
any choice of prior 7, as well as any inverse temperature parameter A > 0. It allows us in the
sequel to choose a suitable prior, namely a group-sparsity prior, to give a sparsity regret bound
for our problem.

Proof of Theorem . From (2.4), we have, for any p € M (R), for any A > 0:

1 ! 2
Y c Rd, EC/pr(c’,x) S _XEC’N;J logECNpe—)\[é(C,x)-‘n (f(cyit)—f(c 7£U)) ]



Then, for any ¢ € {1,...T}, for fixed (¢1,...,¢;_1), we have:

—A[{(c, It)+%(£(c,l‘)7£(cl,$))2} )

1
Eonp (e, 20) < = Eop, 10g Eanpy

A
Integrating with respect to (pi,...,pt—1) and summing over ¢, we get:
T 1 T .
. 2
D By i (€, m0) < =3 Y By J0g Benp e ee T2 Eem) eI = Ag,
t=1 t=1

Next step is to rewrite the RHS Ap. By construction of the algorithm and namely the equality
St(C) = Stfl(C) + é(C, lﬁt) + %(ﬁ(c,xt) — E(ét,xt))Q, we have:

T
1
Ar == B, log Bevp e 3510

t=1
_ _l iE 5 5.) log f]de —St-i(e)] 7)\St_l(c)d7r(c)
- A — (pla"'apt) 1’/‘[/t71
T
1 W, 1
= B\ ;E(@w,ﬁt) log (Wt—l) = )\ (P1-DT) logH (Wt 1)

We are now on time to apply the chain rule (see [4]) to get:

1
AT = )\ (1171, br) log (WT)

= i\ (o) log ECNﬂef)\ST(C)

1
= DY (P1, br) sup {_/\ECNPST(C) —/C(p,ﬂ)}

peM{ (RYP)
_ : K(p, )
= E(ﬁl,...,ﬁT) pe/\jEfde) {ECNPST(C) + )\}
Kp,m) A T

< emtem { e~ Zﬁ ¢ o) )\ + 5B (i) Bemp ;[ac,m - e<ét,$t)12} :

where we use the Kullback duality formula (2.3 at the third line.

2.3 A group-sparsity prior

Group-sparsity encourages occurences of whole blocks of zeros in the decision vector (see [29]).
It has been used in many applications, such as genetics or image annotation (see [30]), where the
Lasso is not consistent for variable selection in high correlation settings. In this paper, we are
looking at a vector ¢ = (c1,...,¢,) € R? such that |c|o := card{j = 1,...,p: ¢j # (0,...,0) " }is
small, namely a so-called group-sparsity. More precisely, we want that many ¢; in ¢ = (c1,...¢p)
are (0,...,0)" of R% To deal with this issue, we come up with a new kind of prior, called a
group-sparsity prior. It consists of a product of multivariate Student’s distribution v/27T;(3),
where 7 > 0 is a scaling parameter and Ty(3) is the d-multivariate Student with three degrees
of freedom. It can be viewed as a generalization of the prior used in [13], where a product of
univariate Student is considered. Essentially, a group-sparsity prior generalizes a sparsity prior
with groups of size d > 1, instead of groups of size 1. Consequently, we use the multivariate
Student’s distribution presented in [2I], defined as the ratio between a gaussian vector and the



square root of an independent x? distribution with 3 degrees of freedom. In our case, it leads
to the following representation:

P 2y — %
o
ms(de) == [ {0}3}7 (1 + ’é‘;) I(|cjlz < 2R)} de, (2.6)

j=1

where Cp ; 1= chIP’(\/ﬁTTd(?)) € B2(2R)) for some constant ¢q, > 0. Here, R > 0 is a threshold
that could be chosen arbitrarily big. Roughly speaking, the scaling parameter 7 > 0 - which
can be fixed to a really small parameter - ensures sparsity for the vector of p groups v/27T;(3)
whereas the heavy tails property of T;(3) guarantees that a small proportion of groups are quiet
far from zero. From theoretical viewpoint, the introduction of the group-sparsity prior
gives rise to the following lemma:

Lemma 1 Let p € N*, 7, R > 0 and 7g defined in [2.6). Let ¢ = (c1,...,c,) € R¥ such that
cj € Bo(R) = {c € RY: |c|]y < R}, for any j € {1,...,p}. Introduce py the following translated
version of mg with mean c:

2 -3 T
po(dc') = H CR_,; (1 + ]67'2> ﬂ(‘c; - Cj’2 < R) dcla
j=1

where here Cp = ca+P(vV271T4(3) € Ba(R)). Then py << s and we have:

P
) Chr.~
K(po,ms) < ZZlog (1 + ’\;%E) +plog <C?7 )
R,T

j=1
> !qb) | 12pdr?

V67| clo R?

The proof of the lemma is postponed to Section @ It is based on the result of [13] and the
property of the multivariate Student’s distribution (see [21I]). In particular, it is important to
stress that the multivariate Student distribution Ty(3) introduced in [2I] is not a product of
independent univariate Student’s distribution.

Note that the first inequality of Lemma [I| shows that we can also consider approximate
group-sparsity, i.e. codebook ¢ = (ci,...,¢p) where many c;, j = 1,...,p are very close to
zero. However, we state the main results with the second inequality of Lemma [I, which leads
to (exact) sparsity regret bounds in our setting.

< 2|elp log (1 +

2.4 Sparsity regret bounds

In this paragraph, we state the main results of this section, i.e. sparsity regret bounds of the
form (1.2} for the algorithm described in Section The first result is a direct consequence of
Theorem [1] and the introduction of the sparsity prior (2.6)).

Corollary 1 For any deterministic sequence (zct)thl, any T,A, R > 0, let us consider the algo-
rithm of Section using prior ng defined in (2.6). Then, the following holds:

T p
2 . |c;
&r(e) < inf { e, zy) + |;|° log (1 + 21| ]|2>}
t=1

cERIPV] |cjla<R V6leloT

12pdr?
ARZ

+CT (/Bpr + 20AR?) +

where C := 2By + 3R with Br = max;—__ 1 |z|2.



The proof is a direct consequence of Theorem|[I], gathering with Lemma/[I]above. It is postponed
to Section@ for concision. Moreover, by tuning the couple of parameters (7, A) in the algorithm,
we can show the following corollary.

Corollary 2 For any deterministic sequence (xt)z;l, any R > 0, let us consider the algorithm
of Section using prior wg defined in (2.6) and parameters (1,\) = ((pT)*l/Q,Tfl/Q). Then,
the following holds:

T ——
&r(e) < o { (e, x) + 2|cloVT log (1 + VT 3 5 lejl2
=1

T ceRIPVj|cj 2 <R V6 clo

- 12d
VI (Voo +20°R) + 2

The choice of (7,A) in Corollary [2| gives rise to a sparsity regret bound with rate O(v/T), up
to a log T factor. Fix p =T and suppose the infimum of the RHS is reached by a codebook c*
such that |c*|o = s for some sparsity index s € N*. Then, we have the following bound:

Er(¢) — Er(c*) <sVTlogT,

where a < b means that there exists a constant ¢ > 0 such that a < cb.

Note that the residual term of Corollary [2| when 7 := 7(p,T) does not depend on p. As a
result, we can choose p = T in the algorithm without any influence on the rate of convergence.
However, the choice of the couple (A, 7) depends explicitly on the horizon T', which is not known
in a pure online setting. This problem is considered in Section [3| where an adaptive version of
the algorithm of Section is given.

Finally, the infimum in Corollary |I| and Corollary [2] is restricted to {¢ € R% : Vj, |¢j|l2 < R}.
This arises for technicalities in the proof and could be extend to the whole space R%. In the
spirit of [16], we can consider the truncated loss function:

g(C,III) = Enln ‘:E - [cj]B’%a
J=1,..p

where [c]p is the projection of ¢ into the ball of radius B > 0 in R? defined as:

[c]g =c T(jc|]p < B) +arg  min |c— ul3.
uER®:|ul2<B
This step is not of major importance since by choosing large enough constant B > 0, it has no
influence on the loss function.

3 Adaptation

The choice of the inverse temperature A > 0 in Corollary [2| depends explicitly on the horizon
T of the deterministic sequence. However, if we consider a pure online setting, the size of
the deterministic sequence is unknown. This problem is called adaptation in the deterministic
literature and has been extensively studied in the context of prediction with expert advices (see
[3L 10, [16]). Originally, one can use a doubling trick, which consists in restarting the algorithm
at periods of exponentially increasing lengths of size 2, for £ > 1. A more natural alternative
is to let the tuning parameters depend on the trial ¢ > 1. The idea has been introduced in [3]
and influences the regret bounds by only a constant factor. This approach is developed below.

The adaptive online clustering algorithm mimics the previous sequential procedure as follows.
Let us consider a prior 7w € Mi"(de ) and a non-increasing sequence of temperature parameter
(M)IE At the beginning of the game, we draw ¢, with law §; := 7. We fix Sy = 0. Then,
learning proceeds as the following sequence of trials ¢ € {1,...,T}:



e Get zy and compute: Si(c) = Si_1(¢) + (e, x¢) + %[é(c, zy) — (&, 21)])%, Ve € R,

—At415¢(c)

e Let piy1(de) := “———m(dc) where Wy = EeogeA+15(e),
e Draw €;41 according to the law pgyq.

The adaptive algorithm presented above lead to a randomized estimator denoted as Caqapt- It
depends on a sequence of non-increasing temperature parameters ()\t)tlel. From Section |2 the
choice of \; = 1/+/t seems optimal and gives rise to the following adaptive regret bound.

Theorem 2 For any deterministic sequence (mt)le, any 7, R > 0, let us consider the adaptive

algorithm with \y = 1/\/t, for t = 1,..., T + 1 and prior ng defined in [2.6). Then:

CEde:‘C”QSR f|c|07

5T(éadapt) S inf {Zﬁ C $t —|—2|c|0\/710g (1 + Z] 1| ]|2>}

+CVT (\/GpTT + 2CR2> + WR{T.
This result gives a sparsity regret bound when A varies over time in the sequential procedure.
If we choose a scale parameter 7 = (MT)~'/2, it leads to a residual term of order O(v/T) as in
Corollary 2l However, this choice is not possible in this adaptive setting of unknown horizon 7T'.
Note that this problem also occurs in [16], where a doubling trick is recommended to get a fully
automatic algorithm.

4 Batch revisited

In this section, we go back to the standard clustering problem. Let us introduce an unknown
probability P over the metric space R?, such that Ep|X|3 < oco. Given an ii.d. sample of
random variable X1,..., X, drawn from P, and an integer £k > 1, we want to find a set of k
cluster’s centers, or codebook ¢ = (cy,...,¢;) € R%* which resume the law of P. Many authors
have studied this problem. Usually, we want to minimize a distortion of the form:

Wi(c) = Ep min [X — ¢jl3, Ve € R,
=150

where | - |2 denotes the Euclidean distance in R%. In this setting, it is extremely standard to

minimize an empirical risk based on the i.i.d. sample X1,..., X, defined as:
n
Wk(c) _! Z min |X ¢, Ve € R, (4.1)
n 1—13 1,0k ¢

The existence of a minimizer of has been proved in [I7]. The consistency as well as central
limit theorem have been showed by Pollard (see [25] and [26]). However, in practice, we can
note two principal drawbacks of this approach. Firstly, as mentionned in [7], it is not possible
to reach the global minimum of , since we are faced to a non-convex minimization problem.
Standard algorithms, such as the Lloyd algorithm, are made of Newton’s type iterations and
depend strongly on the initialization step. Moreover, the knowledge of &k in the problem of
clustering is not always guaranteed and a data-driven choice of this parameter remains a hard
issue. In the following, we propose to use the Pac-Bayesian framework to get a fully automatic
algorithm that performs model selection clustering.

Finally, for completeness, we also consider in this section the problem of high dimensional
clustering. In this case, we suppose that the number of clusters & is known but the dimension
d of the variable X could be much larger than the sample size n.



4.1 Model selection clustering

Recently, [15] formulates the problem of selecting the number of clusters k as a problem of
model selection. She gives standard-style statistical learning bounds by using empirical process
theory. For any integer k > 1, let us denote ¢; the minimizer of (4.1). Given the family

{¢k, k=1,...,n}, [I5] suggests a penalized model selection procedure to choose k as follows:
k= arg rrllin {Wk(ék) + pend(k)} ,
=1,...,n

where peny(k) is an increasing function of the dimension kd. In practice, the choice of the
penalty is made in two steps:

1. A theoretical study gives the shape of the penalty, namely here (see [15][Theorem 2.1]):

[ kd
peny(k) =04/ —, for some O > 0.
n

2. Then, the constant [1 > 0 in front of the penalty’s shape can be calibrated thanks to the
slope heuristic (see [5]).

In this paragraph, we develop the Pac-Bayesian analysis of the previous sections as follows.
Let us introduce an integer p > 1, which could be large enough (we can choose p = n to fix the
ideas). Consider the prior 75 € M| (R%) defined as (See (2.6)):

wg(de) 1= H {C (1 + |63|22> I(|ej)2 < 2R)} de.

j=1
Fix Sp = 0 and draw ¢&; according to w. Then, for any ¢ € {1,...,n}:
e Get X; and compute: S;(c) = S;_1(c) + £(c, X;) + [ﬁ(c X;) — £(¢;, X;)]?, Ve € R,

AS; (c)

e Let p;11(de) := m(dc) € M7 (R%?) where W; = Ecpe™ %),

e Draw ¢; 11 accordlng t0 Piy1-

The final estimator in the i.i.d. case, denoted as Cya, is a realization of the uniform law over
{él, caey én+1}1

emaA ~ fi=U{C1,...,Cnt1}), (4.2)
where /i is the uniform law over the set of estimators {€1, ..., ¢p41}, conditionally to the training
set Dy,. This additional step is called Miror Averaging (MA) and has been used in the i.i.d.
setting by many authors (see for instance [20, 3], 2]). Since éya is a realization of an uniform
law, we are finally interested in the expectation (with respect to the training set D,) of the
expected risk of ¢éya, given by:

1 n+1
Ep,Ec~aW(c') = Ep, n+1 ; e

The main result of this paragraph is a penalized oracle inequality for the miror averaging esti-

mator defined in (4.2]).

Theorem 3 Suppose the distribution P satisfies P(|X|o < B) = 1 for some B > 0. Let us
consider the miror averaging eva defined in (4.2) using parameters R > 0, p = n and prior 7g
defined in (2-6). If we choose (1,A) = (n~t,n"1/2), the following holds:

2k nY o leil
. / < g * J
Ep, EggW(c) < lglgclin {W(ck) + NG log (1 + NG

+n~1/2 (232(23 +3R)? +V6(2B + 3R) + ;d)

. .
where ¢j = arg min egan.|cjg=k,|c;|,<r YV (€)-



The RHS of Theoremcan be compared with [I5], where the penalized model selection procedure
described above is used. The inequality of Theorem [3| ensures that in the i.i.d. case, the risk of
our procedure is as well as the risk of the best codebook in the family, up to a residual term.
This term approaches the rate n=Y2, up to a logn factor.

From a model selection point of view, if we compare this result with [15], the main advantage
of our approach is that there is not any tuning parameter to choose. The miror averaging
estimator built in (4.2)) reaches a penalized oracle inequality without any parameter to tune.
This comes from the Pac-Bayesian analysis used in this paper.

4.2 High dimensional clustering

In this paragraph, we turn out into the problem of high dimensional clustering (see [6l, 24]). Let
us briefly introduce the model. Given an integer k£ > 1, we consider an i.i.d. sample X1,..., X,
with unknown law P over R%, where d could be much larger than n. In this framework, we
are interested in a codebook ¢ = (ci,...,¢) such that |¢jlo << d for any j = 1,...,k, where
here, | - |o stands for the usual fp-norm (i.e. the number of non-zero components in ¢;). The
main result of this paragraph is a sparsity oracle inequality for the miror averaging estimator
defined in (4.2)) with a slightlty different prior. In this setting of high dimensional clustering, we
introduce the following sparsity prior:

d 2y e
ms(de) =[] {OR}T (1 + ‘60;’22) I(|ci|o < 23)} de, (4.3)

1=1

where ¢; = (ci1,...,cix) € R¥ denotes the vector of the i'! coordinates of each ¢; in ¢ =
(c1y...,cx), and Cg, = cx,P(v27T;(3) € Ba2(2R)) for some constant cx, > 0. Let us briefly
explain the introduction of this modified prior. Since we are looking at sparsity with respect
to the dimension of the problem, we construct a product of d multivariate T (3) Student’s
distribution, where k > 1 is the known number of clusters in the problem. This choice mimics
the introduction of g in the model selection case. It encourages codebook ¢ with small sparsity
index |c|j defined as |e|y, =card{i =1,...,d: Z?Zl c;; # 0}

Theorem 4 Suppose distribution P salisfies P(|X|2 < B) = 1. For some integer k > 1, let us
consider the miror averaging cma defined in (4.2)) using prior 'y defined in ({4.3)) with parameters
R > 0. If we choose: (1,)\) = ((dn)~Y/2,n"1/2) | the following holds:

! / d )
Ep,EeiR(¢) < inf {W(c) 4 2lelo 1o (1 + M) }

c€RIk V3 |¢;[2<R Vv el

12k
+ Y2 (\/6(3}2 +2B) + 2R*(3R+ 2B)? + RQn) .

where ||y = card{i =1,...,d: Z?Zl c?j # 0} is the sparsity index of the codebook c.
The RHS of Theorem 4] gives a rates of convergence of the form logd/+/n, which has to be
compared with the usual rate logd/n in high dimensional linear regression. Here, the presence
of a non-convex loss function gives rise to a rate of order O(n=1/2), up to a classical log d term.

5 Discussion

As a conclusion, we have taken a Pac-Bayesian point of view that I hope will shed some light
on the issue of clustering. At the first glance, we consider the problem of online clustering
of a deterministic sequence z; € R? ¢t = 1,...,T. Interestingly, this problem could be seen
as a prediction problem and allows to construct online clustering algorithms inspired from the
prediction literature. Using a Pac-Bayesian analysis and a new kind of sparsity prior called

10



group-sparsity prior, we lead to sparsity regret bounds for our sequential algorithms. These
results give the opportunity to deal with clustering of a non-stationnary process, i.e. with
possible moving clusters and without any a priori on the number of clusters.

Finally, if we go back to the classical i.i.d. setting, clustering have been widely investigated.
In this contribution, using pseudo-Bayesian estimators, we are abble to perform model selection
clustering as well as high dimensional clustering. These two problems are related with a different
kind of group-sparsity. It allows to perform them in a unified algorithm, by using two slightly
different group-sparsity priors.

The main issue for future works is to give a practical way to compute the presented al-
gorithms. In this direction, several authors suggest to use Markov chains with rare events to
approximate appropriate Gibbs distributions on the prediction space. These recent techniques
seem to be applicable in our setting. It could be a way of performing clustering in an online
way, with many potential applications (see Section |l| for an illustration). Moreover, even in
the classical batch setting, it could be an alternative to the classical k-means scenario, which
has many drawbacks, such as the dependence on the initialization and the dependence on the
number of clusters k.

6 Appendix

6.1 Proof of Lemma 1

First note that, for any ¢ € R% such that Vj = 1,...,p, ¢j € Bo(R), we have by definition of
wg and pg:

Pp /|2 2

Cryr 1+ |¢l3/67
K(pg, = :/ lo : || J dc’
Po7ms) = | 108 (0@) 5 LG — il /672 polde’)

1+ |c}]3/67
14 |c; - cjl3/672

] p()(dcl).

To prove the first assertion, we hence have to show that:
2 /6.2
1+ |c;|2 /6T

p
Z |C_]|2

1 (de) < 221 6.1
j=1 /Rd” " L+1c —Cj|§/672] ¢ Og( V6T (6.1)

By simple algebra, we have, for any ¢, ¢ € R%, and any a > 0:

2 "2 / 2 2

a® + |3 2a(c’ — ¢, c/a) lcl2 | el |c|2

a2+\c’—c]2:1+a2+\c’—c]2 s+ a +a2§ I+ a '
2 2

Applying this result for any j = 1,...,p and for « = V67 leads to:
- 1+ |;[3/672 p .
lo j de') <23 o (1+a2>.
3 o8 7575 2 oz ) <220 (1

=1
For the second assertion, first note that, by concavity of z — log(1 + z), we have:

& lcjl2 i lejle
: 0

J=1
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Moreover, by definition of mg and py, we have, for some random variable 7 € R? with multi-
variate Student’s distribution Ty(3):

CRT P(ﬁTTE BQ(2R))
log ; = log
CRT P(v27T € Ba(R))
-1
crog (14 BTl > (V31
P(v27T € By(R))
P(|T|2 > (V21) 'R)
P(v21T € Bay(R))
272E| T3
~ R2P(V27T € By(R))
472E|T|3  12d7?
=Rz T Rz
provided that R > v/27t4(1/2), where t4(1/2) is such that P(T € Ba(tq(1/2)) = 1/2. Then,
since \T|§ /d has a Fisher distribution F(d, 3) (see [21]), the last equality follows easily.

O

6.2 Proof of Corollary [1I] and Corollary

The proof of Corollary[I]is a direct consequence of Theorem|[I]and the introduction of the sparsity
prior of Lemma Let us consider 7, R > 0, ¢ € R such that ¢; € By(R) for any j € {1,...,p}.
Denote pg the translated version of g with mean c¢. By using Lemmal[I] gathering with Theorem
m, we have:

T T
ZE (P1s--5Pt) (€, 1) Z ¢ zt) + Ee ~Ppo Z[((C,, z1) — £(c, 71)]
T
2|c|0 Yhoileile) | 12pdr® X o
g (1 + \/€|C|07' + )\RQ + §E(ﬁ1,...,ﬁT)Ec’Npo tzzl[g(cl,fﬂt) — E(ct,mt)] .

Now, for any t € {1,...,T}, by definition of ¢ and py, we have pg-a.s. :

(e, 20) = £c’, z)| € max [lze = ;13 — |ze = &3]

< (B3R +2Br7) jmax lcj = cjl2,
where with a slight abuse of notations, | - | stands for the Euclidean norm in R%. Then,
gathering with the previous inequality, we arrive at:

, , »
. 2|clo 1 lcjl2

E Es s 0(Ce,x <E e, z) + log |1+ ==—"""| + CTE¢.,, max |c;—c;

=1 e U0 20) < =1 (e, ) P ( V6lc|oT o iy I

A o 5 12pdr?
+§C TE(ﬁl .pT)EC/NPOJEaX |C] .|2 R ,

where C' := 3R 4 2By. Last step is to control the last two terms in the previous inequality. By
definition of the measure py and a standard maximal inequality (see for instance [28]), we have:

Bernp max [¢) = o < B _max Eenple; - ¢ < v/6pr.
.]: 7"'7p .7: 7"'7p
The last term can be controlled as follows:

B¢

A a2 2
ﬁl:u-:ﬁT)EC,NpO jgiaxp ’cJ - Cj’ < 4R”.

Then, Corollary [1}is proved. Corollary [2] follows easily with a proper choice of 7, A > 0.

12



6.3 Proof of Theorem

The proof is based on an adaptive version of the Pac- Bayesian bound of Theorem [I] Indeed, we
can show that the adaptive algorithm with sequence (At) ! satisfies the following bound:

Proposition 1 For any deterministic sequence (;)1_,, for any prior 7, for any non-increasing
sequence (A)i=1,..1+1, the cumulative loss of the adaptive algorithm satisfies:

T
. P, A
Er(e) < inf { CNPZK (e, zy) ) + ;E(ph ) Ee~p Z[ﬁ (e, z¢) —ﬁ(ct,xt)]Q}.

peM T (RaP) >\T+1 1

The idea of the proof is to control the quantity log(Wr)/Ari1 — log(Wo)/A1. On the one side,
using the definition of Wy, we have:

>\T+1 >\1 >\T+1

R {EcwpsT<c>+’C(”’”)}, (62)

pEM (RiP) AT 41

log W _ log Wy _ 1 log <Ecw7r€7)\T+IST(C))

where the second equality comes from the duality formula (2.3). On the other side, by cancel-
lation of sum argument, we can write:

logWr logWy _ i (log W log th)

AT 1 A1 =\ At At
_i(loth_loth 1 W/ ) 63)
N\ At At NoOEW '

where W/ is defined for any t =1,...,T as:
W! = Eere (),

Now, note that by Jensen’s inequality, we have:

log W; log (EcNﬂ— [(e*AtSt(C)))‘fH/)‘t])
B <

log ([Ecwefxtsxc)]ml/ Af) log W
At+1 PV

Att1 At41

Then, one obtains:

logW; log W/ <0,

6.4
At41 At (6.4)
We turn out into the last term in (6.3). We have, by definition of py:
! log Wi _ 1 log Ecnre M5t(€)
>‘7 Wt 1 /\t Eepe AtSt-1(c)
1 f . 7)\t[£(c Tt )+ Azt [4(c,zt)— K(ct,zt)mB—AtSt,l(c)dTr(c)
= —log [ =& »©
At Jga» € M5-1(0)dm(c)
- c Mg é 2
/\7 log ( B TUCENES S CERRICED) ]) ' (65)

Now, using (2.4), we can write:

ECNﬁtef)\t[f(c It)+%[Z(C,It)*f(ét,l‘t)]z] < _ECNﬁtg(c’ ).
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A~

Applying the above inequality to (6.5), summing over ¢ and integrating with respect to (p1, ..., pr),
we arrive at:

T
logWypr  log Wy .
~ T ] < - ;E(ﬁl,...,ﬁt)e(ctaxt)- (6.6)

Gathering with , we arrive at the conclusion of Proposition . The proof of Theorem
follows easily using the same paths as in the proof of Corollary [2l Let us consider 7, R > 0, pg
the measure defined in Lemma[I] As in the proof of Corollary [I we can show with Proposition
that the adaptive algorithm satisfies:

E r
PLl Arga

T T P
R 2|c|o 1 lcjle

Es s 8(Ce, ) < £(c, ) + log| 1+ === +CTEy., max |c;—c¢;

t:Zl (1) U021 15:21 (,2) AT 41 & ( V6le|or erpo j:L--.,p’ 5~ il

)\l 12pdr?

2 Api1R?

where C' = 3R + 2By. The control of the RHS in the previous inequality follows exactly the

proof of Corollary |1} It leads to the result when A\; =1/ V.

+

C?TE Ecrnp, max |é; — i3+

J=1,..0p

P1yesPT)

6.4 Proof of Theorem [3

The proof of Theorem [3]is based on an i.i.d. version of Theorem [I} Indeed, by using Theorem
3.1 1in [2], it is clear that the miror averaging (4.2)) satisfies the following PAC-Bayesian bound:

. Kp,m) A
Ep, B pR(c') < EcnpR — 2 4 ZEp, Eew B sEp[l(c, X) — £(c, X)]?
Dn c 12 (C)_pe./\/IlI‘;"_l&dp){ c~p (C)+>\(n+1)+2 Dn Crvp-—=c H P[ (c7 ) (C7 )] ?
(6.7)
where /i := U({€1,...,En41}) is defined in (4.2). Now, using the same path as in the proof of
Corollary (1} and using the fact that | X|. < B, we have:

2 P e

cERIPY; |¢;|<R (n+ V6|c|oT

12pdr?
PAT" 4 (3R + 2B)\/6pr + 2R%(3R + 2B)?A.

A(n + 1)R?
For p = n, the choice of (7, ) in Theorem [3| ends up the proof.

6.5 Proof of Theorem

The proof of Theorem {4 follows the proof of Theorem [3l The use of the modified sparsity prior
7 defined in [4.3| gives us:

d
. 2|cl{ > i1l
Ep EepR(c) < inf Rle)+ ——% _Jog |1+ ===
onEri B ’—cew:wz{ O X g( Vel

12dk7?

XG;;EEE+43R+23hﬁﬂr+23%33+2Bﬁx

where |c|f, = card{i = 1,...,d : Z§:1 cgj # 0} is the sparsity index of the codebook c¢. The
choice of (7, A) is Theorem (4| gives:

2lc|” Vrd S el
Ep,Ec;R(c') < inf {R(c) + clo log (1 + TM) }

~ ceRdki|e;|<R vn e[
12k ~1/2 2 2
s T (VB(BR+2B) + 2R (3R +2B)?).
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