Maximum-Margin Framework for Training Data Synchronization in Large-Scale Hierarchical Classification

Abstract : In the context of supervised learning, the training data for large-scale hierarchical classification consist of (i) a set of input-output pairs, and (ii) a hierarchy structure defining parent-child relation among class labels. It is often the case that the hierarchy structure given a-priori is not optimal for achieving high classification accuracy. This is especially true for web-taxonomies such as Yahoo! directory which consist of tens of thousand of classes. Furthermore, an important goal of hierarchy design is to render better navigability and browsing. In this work, we propose a maximum-margin framework for automatically adapting the given hierarchy by using the set of input-output pairs to yield a new hierarchy. The proposed method is not only theoretically justified but also provides a more principled approach for hierarchy flattening techniques proposed earlier, which are ad-hoc and empirical in nature. The empirical results on publicly available large-scale datasets demonstrate that classification with new hierarchy leads to better or comparable generalization performance than the hierarchy flattening techniques.
Type de document :
Chapitre d'ouvrage
Lee, Minho and Hirose, Akira and Hou, Zeng-Guang and Kil, RheeMan. Neural Information Processing, Springer Berlin Heidelberg, pp.336-343, 2013, <10.1007/978-3-642-42054-2_42>
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00943206
Contributeur : Rohit Babbar <>
Soumis le : vendredi 7 février 2014 - 11:03:06
Dernière modification le : mardi 28 octobre 2014 - 18:35:09
Document(s) archivé(s) le : lundi 12 mai 2014 - 11:55:42

Fichier

372.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

LIG | UGA

Citation

Rohit Babbar, Ioannis Partalas, Eric Gaussier, Massih-Reza Amini. Maximum-Margin Framework for Training Data Synchronization in Large-Scale Hierarchical Classification. Lee, Minho and Hirose, Akira and Hou, Zeng-Guang and Kil, RheeMan. Neural Information Processing, Springer Berlin Heidelberg, pp.336-343, 2013, <10.1007/978-3-642-42054-2_42>. <hal-00943206>

Partager

Métriques

Consultations de
la notice

126

Téléchargements du document

222